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Abstract

Vorticity plays a prominent role in the dynamics of incompressible viscous flows. In
two-dimensional freely decaying turbulence, after a short transient period, evolution is es-
sentially driven by interactions of viscous vortices, the archetype of which is the self-similar
Lamb-Oseen vortex. In three dimensions, amplification of vorticity due to stretching can
counterbalance viscous dissipation and produce stable tubular vortices. This phenomenon is
illustrated in a famous model originally proposed by Burgers, where a straight vortex tube is
produced by a linear uniaxial strain field. In real flows vortex lines are usually not straight,
and can even form closed curves, as in the case of axisymmetric vortex rings which are very
common in nature and in laboratory experiments. The aim of this chapter is to review a few
rigorous results concerning existence and stability of viscous vortices in simple geometries.

1 Introduction

Since the pioneering work of Helmholtz [24], vorticity has been widely recognized as a quantity
of fundamental importance in fluid dynamics, especially for turbulent flows. According to a
famous quote by Küchermann [28], “vortices are the sinews and muscles of fluid motions”.
Intuitively, vorticity describes the local rotation of fluid particles at a given point. In the
Eulerian representation, if u(x, t) denotes the velocity of the fluid at point x = (x1, x2, x3) ∈ R
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and time t ∈ R, the vorticity is the vector ω(x, t) = curlu(x, t) = ∇ ∧ u(x, t). Under the
evolution given by the Navier-Stokes equations, the vorticity satisfies

∂tω(x, t) + (u(x, t),∇)ω(x, t) − (ω(x, t),∇)u(x, t) = ν∆ω(x, t) , (1.1)

where ν > 0 is the kinematic viscosity of the fluid, i.e. the ratio of the viscosity to the fluid
density. In the incompressible case considered here, the velocity field satisfies divu(x, t) = 0
and is thus entirely determined by the vorticity distribution up to an irrotational flow. The
Biot-Savart law is a reconstruction formula that expresses u in terms of ω, depending on the
geometry of the fluid domain and the boundary conditions. In the whole space R3, if the vorticity
distribution is sufficiently localized, the Biot-Savart formula reads

u(x, t) = − 1

4π

∫

R3

(x− y) ∧ ω(y, t)

|x− y|3 dy . (1.2)

In viscous fluids, vorticity is usually created within boundary layers near walls or interfaces,
or in the vicinity of a stirring device. Once produced, vorticity can be substantially amplified
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by the local strain in the fluid, through a genuinely three-dimensional mechanism that is often
referred to as “vortex stretching”. A Taylor expansion of the velocity field at a given point x0

reveals that

u(x, t) = u(x0, t) +
1

2
ω(x0, t) ∧ (x− x0) + (Du(x0, t))(x − x0) +O(|x− x0|2) ,

where Du = 1
2

(

(∇u)+ (∇u)⊤
)

is the deformation tensor, whose eigenvalues γ1, γ2, γ3 are called
the principal strains at x0. Incompressibility implies that γ1 + γ2 + γ3 = 0, so that two generic
situations may occur. If two principal strains (say, γ1 and γ2) are negative and the third one is
positive, vorticity gets amplified at x0 in the direction of the principal strain axis corresponding
to γ3. That stretching mechanism can compensate the viscous dissipation and result in the
formation of stable vortex filaments, a typical example being the Burgers vortex [2] which will
be studied in Section 4. In contrast, if two principal strains are positive at x0, the stretching
effect leads to the formation of vortex sheets, which are also commonly observed in turbulent
flows although they undergo the Kelvin-Helmholtz instability at high Reynolds numbers. Vortex
sheets play a prominent role in interfacial motion and boundary layer theory, and the interested
reader is referred to the chapter entitled “The Inviscid Limit and Boundary Layers for the
Navier-Stokes Flows” for further information.

In the present chapter, emphasis is put on vortex tubes or filaments, for which vorticity is
essentially concentrated along a curve with no endpoints in the fluid. In general, the curve will
evolve with time, because it is advected by the flow. According to Helmholtz’s first law, the
total circulation of such a vortex filament is constant along its length, and is also independent of
time as long as the viscous effects can be neglected. This very important quantity, often denoted
by Γ, can be defined as the flux of the vorticity vector through any cross section of the vortex
tube, or equivalently (in view of Stokes’ theorem) as the circulation of the velocity along any
closed curve enclosing that tube. The ratio α = Γ/ν of the total circulation to the kinematic
viscosity is a dimensionless quantity, sometimes referred to as the circulation Reynolds number,
which measures the strength of the vortex and plays a crucial role in stability issues.

Since vortex filaments have no endpoints, they must either extend to the fluid boundary,
or to infinity, or form closed curves. In the simple situation, already considered in [24], where
all vortex lines are straight and parallel to each other, the velocity and vorticity fields take the
particular form

u(x, t) =





u1(x1, x2, t)
u2(x1, x2, t)

0



 , ω(x, t) =





0
0

ω(x1, x2, t)



 , (1.3)

where x = (x1, x2) ∈ R
2 and ω = ∂1u2 − ∂2u1. Here the coordinates have been chosen so that

the third axis coincides with the direction of the vortex filaments. The evolution equation for
the scalar vorticity ω(x, t) is

∂tω(x, t) + u(x, t) · ∇ω(x, t) = ν∆ω(x, t) , (1.4)

where u = (u1, u2) satisfies ∂1u1+ ∂2u2 = 0. If the vorticity distribution is sufficiently localized,
the two-dimensional velocity field u(x, t) is given by the 2D Biot-Savart law

u(x, t) =
1

2π

∫

R2

(x− y)⊥

|x− y|2 ω(y, t) dy , (1.5)

where x⊥ = (−x2, x1) and |x|2 = x21 + x22. Eq. (1.4) is just an advection-diffusion equation for
the scalar quantity ω, hence (by the maximum principle) no amplification of vorticity can occur
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in the two-dimensional case. As a consequence, all localized vortex structures will eventually
spread out and decay, since there is nothing to counterbalance the effect of viscosity. A typical
example is provided by the Lamb-Oseen vortex, an exact self-similar solution to (1.4) of the form

ω(x, t) =
Γ

νt
G
( x√

νt

)

, u(x, t) =
Γ√
νt

vG
( x√

νt

)

, (1.6)

where the vorticity and velocity profiles are explicitly given by

G(ξ) =
1

4π
e−|ξ|2/4 , vG(ξ) =

1

2π

ξ⊥

|ξ|2
(

1− e−|ξ|2/4
)

, ξ ∈ R
2 . (1.7)

Note that
∫

R2 G(ξ) dξ = 1, so that
∫

R2 ω(x, t) dx = Γ for all t > 0, in agreement with the general
definition of the total circulation Γ. The Lamb-Oseen vortex plays a distinguished role in the
dynamics of the two-dimensional vorticity equation (1.4), for two main reasons. First, it deserves
the name of fundamental solution, in the sense that it is the unique solution of (1.4) with initial
data ω0 = Γδ0, where δ0 denotes the Dirac measure at the origin. Next, it describes to leading
order the long-time asymptotics of all solutions of (1.4) with integrable initial data and nonzero
circulation [19]. If self-similar variables are used, the Lamb-Oseen vortex becomes a stationary
solution of some rescaled equation, and its stability properties can then be studied using spectral
theory and other standard techniques. This analysis is presented in Section 2 below, and serves
as a model for further existence and stability results in more complex situations.

Another relatively simple and mathematically tractable situation is the axisymmetric case
without swirl, where the velocity field is invariant under rotations about a given axis, and under
reflections by any plane containing the axis. Here all vortex lines are circles centered on the
symmetry axis and normal to it. Using cylindrical coordinates (r, θ, z), so that r represents the
distance to the symmetry axis and z the position along the axis, the velocity and vorticity fields
are given by

u(x, t) = ur(r, z, t) er + uz(r, z, t) ez , ω(x, t) = ωθ(r, z, t) eθ , (1.8)

where er, eθ, ez denote unit vectors in the radial, toroidal, and vertical directions, respectively.
As in the two-dimensional case, the vorticity vector has only one nonzero component ωθ, which
satisfies the evolution equation

∂tωθ + u · ∇ωθ −
ur
r
ωθ = ν

(

∆ωθ −
ωθ

r2

)

, (1.9)

where u · ∇ = ur∂r + uz∂z and ∆ = ∂2
r + 1

r∂r + ∂2
z denotes the Laplace operator in cylindrical

coordinates. The velocity u = (ur, uz) can be expressed in terms of the axisymmetric vorticity
ωθ by solving the linear elliptic system

∂rur +
1

r
ur + ∂zuz = 0 , ∂zur − ∂ruz = ωθ , (1.10)

in the half-plane Ω = {(r, z) ∈ R
2 | r > 0 , z ∈ R}, with boundary conditions ur = ∂ruz = 0

at r = 0. Explicit formulas for the axisymmetric Biot-Savart law exist, see e.g. [6, 16], but are
more involved than in the two-dimensional case. The analogue of the Lamb-Oseen vortex for
axisymmetric flows is the solution of (1.9) with a vortex filament as initial data. This means
that ωθ(·, ·, 0) = Γδ(r̄,z̄) where δ(r̄,z̄) denotes the Dirac measure located at some point (r̄, z̄) ∈ Ω.
Existence of a global solution to (1.9) with such initial data was recently shown by Feng and
Šverák [6], and uniqueness can be established using, in particular, the approach presented in
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Section 2, see [17]. The reader is referred to Section 3 below for up-to-date results on existence
of axisymmetric vortex rings.

The third and final case considered here is a famous model for vortex filaments in turbulent
flows, originally proposed by Burgers [2]. It is assumed that the velocity field has the form
u(x, t) = us(x) + v(x, t), where us(x) is a stationary straining flow of the form

us(x) =





γ1x1
γ2x2
γ3x3



 = Mx , M =





γ1 0 0
0 γ2 0
0 0 γ3



 , (1.11)

where γ1 + γ2 + γ3 = 0 and γ1, γ2 < 0, γ3 > 0. According to the discussion above, the strain
(1.11) describes to leading order the deformation rate of any smooth, incompressible velocity
field near the origin, at a given time. Burgers’ model is crude in the sense that it assumes that
the strain us(x) is independent of time and extends all the way to infinity in space, which is
certainly not realistic in turbulent flows. Nevertheless, the model is interesting because it clearly
illustrates the vortex stretching effect, which in the present case produces a family of stationary
solutions that can be compared with observations in experiments.

If u(x, t) = us(x) + v(x, t), the vorticity equation (1.1) can be written in equivalent form

∂tω(x, t) + (v(x, t),∇)ω(x, t) − (ω(x, t),∇)v(x, t) = Lω(x, t) , (1.12)

where L is the linear operator defined by

Lω = ν∆ω − (Mx,∇)ω +Mω . (1.13)

As divv = 0 and curlv = ω, the Biot-Savart law (1.2) can be used to reconstruct the time-
dependent velocity field v from the vorticity distribution ω. In addition to the Laplacian, the
linear operator L includes an advection term that depends linearly on the space variable x,
and a zero order term involving the strain matrix M whose main effect is to amplify the third
component ω3 while attenuating ω1 and ω2.

The Burgers vortex is a stationary solution of (1.12) which results from the balance between
the amplification of vorticity due to stretching and the dissipation due to viscosity. In the
axisymmetric case where γ1 = γ2 = −γ/2 and γ3 = γ > 0, it has the explicit form

ω(x) = Γ
γ

ν
G
(

x
√

γ/ν
)

, v(x) = Γ

√

γ

ν
vG

(

x
√

γ/ν
)

, (1.14)

where Γ is the total circulation and

G(ξ) =





0
0

G(ξ)



 , vG(ξ) =
1

2π|ξ|2
(

1− e−|ξ|2/4
)





−ξ2
ξ1
0



 . (1.15)

The striking similarity with the corresponding expressions (1.6), (1.7) for the Lamb-Oseen vortex
is of course not an accident. Indeed, if the pair ω(x, t),v(x, t) is a solution of (1.12) that is
two-dimensional in the sense that ∂3ω = ∂3v ≡ 0 and ω1 = ω2 ≡ 0, then the pair ω(x, t), u(x, t)
defined by Lundgren’s transformation [31]

ω(x, t) =
1

γt
ω3

( x√
γt

,
1

γ
log(γt)

)

, u(x, t) =
1√
γt

v
( x√

γt
,
1

γ
log(γt)

)

, (1.16)

satisfies the two-dimensional vorticity equation (1.4). In other words, the two-dimensional solu-
tions of equation (1.12), which includes an axisymmetric linear straining field, are in one-to-one
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correspondence with those of the two-dimensional vorticity equation (1.4), via a self-similar
change of variables. This observation plays a crucial role both in Section 2, where stability
of the Lamb-Oseen vortex is studied, and in Section 4 where the corresponding results for the
axisymmetric Burgers vortex are presented. There is however an important difference between
both situations : although the Burgers vortex is a two-dimensional stationary solution of (1.12),
there is no reason to restrict the stability analysis to perturbations in the same class. Quite the
contrary, the Burgers vortex can be a relevant model for tubular structures in turbulent flows
only if one can prove stability with respect to general three-dimensional perturbations, and this
is a difficult problem that has no counterpart in the two-dimensional case, see Section 4 for a
detailed discussion.

In the asymmetric case where γ1 6= γ2, Burgers vortices still exist, but their profiles satisfy a
genuinely nonlinear equation and explicit formulas such as (1.14), (1.15) are no longer available.
Thus even existence of such stretched vortices is a challenging mathematical question, which will
also be discussed in Section 4. More generally, all existence, uniqueness, and stability results
available for the axisymmetric Burgers vortex are expected to remain true in the asymmetric
case too, although rigorous proofs are not always available.

Remark 1.1 Although physical constants are useful for dimensional analysis and important for
comparison with experiments, they often hinder the mathematical analysis by making formulas
needlessly complicated. In Sections 2 and 4 below, dimensionless variables and functions are
systematically used, and this amounts to setting ν = γ = 1 in all formulas. In particular, the
total circulation of a vortex coincides with the circulation Reynolds number, and will be denoted
by α.

2 Stability of Lamb-Oseen vortices

This section is devoted to the stability analysis of the family of Lamb-Oseen vortices (1.6). These
are self-similar solutions of the two-dimensional vorticity equation (1.4), and their properties
are most conveniently studied if the equation itself is written in self-similar variables ξ = x/

√
t,

τ = log(t) [18]. Assuming ν = 1 and setting

ω(x, t) =
1

t
w
( x√

t
, log(t)

)

, u(x, t) =
1√
t
v
( x√

t
, log(t)

)

, (2.1)

one obtains for the rescaled vorticity w(ξ, τ) and the rescaled velocity v(ξ, τ) the following
evolution equation

∂τw(ξ, τ) + v(ξ, τ) · ∇w(ξ, τ) = Lw(ξ, τ) , (2.2)

where L is the linear operator defined by

L = ∆+
ξ

2
· ∇+ 1 . (2.3)

The change of variables (2.1) coincides with Lundgren’s transformation (1.16), except that it
is used here in the opposite way : starting from the two-dimensional vorticity ω(x, t) and ve-
locity u(x, t), one obtains the rescaled quantities w(ξ, τ), v(ξ, τ) whose physical meaning is not
immediately obvious. In addition, the rescaled equation (2.2) looks more complicated than the
original vorticity equation (1.4) because the Laplace operator ∆ is replaced by the Fokker-Planck
operator L. However, from a mathematical point of view, the rescaled equation (2.2) has several
advantages which greatly simplify the analysis. In particular, the operator L has (partially) dis-
crete spectrum when considered in appropriate function spaces, and that observation is crucial
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for the stability analysis of the Lamb-Oseen vortex presented below. Moreover, the associated
semigroup eτL has nice confinement properties, as a consequence of which it is possible to use
compactness methods to investigate the long-time behavior of solutions to the rescaled vorticity
equation (2.2), see [19].

Due to scale invariance, the Biot-Savart law (1.5) is not affected by the change of variables
(2.1). This means that the rescaled velocity v(ξ, τ) can be reconstructed from the rescaled
vorticity w(ξ, τ) through the formula

v(·, τ) = K2D ∗ w(·, τ) , where K2D(ξ) =
1

2π

ξ⊥

|ξ|2 . (2.4)

By construction, for any α ∈ R, the Lamb-Oseen vortex w = αG, v = αvG is a stationary
solution of (2.2). The dynamical relevance of this family of equilibria is demonstrated by the
following global convergence result.

Theorem 2.1 ([19]) For any initial data w0 ∈ L1(R2), the rescaled vorticity equation (2.2)
has a unique global solution w ∈ C0([0,∞), L1(R2)). This solution satisfies ‖w(τ)‖L1(R2) ≤
‖w0‖L1(R2) for all τ ≥ 0, and

lim
τ→∞

‖w(τ) − αG‖L1(R2) = 0 , where α =

∫

R2

w0(ξ) dξ . (2.5)

Theorem 2.1 shows that Lamb-Oseen vortices describe, to leading order, the long-time be-
havior of all solutions of the two-dimensional Navier-Stokes equations with integrable initial
vorticity and nonzero total circulation α. Similar conclusions were previously obtained for small
solutions [22], and for large solutions with small circulation [3]. The first step in the proof con-
sists in showing that the original vorticity equation (1.4) is globally well-posed in L1(R2), that
the L1 norm of the solutions is nonincreasing in time, and that the total circulation α =

∫

R2 ω dx
is a conserved quantity [1]. Since the change of variables (2.1) leaves the L1 norm invariant,
the same conclusions hold for the rescaled vorticity equation (2.2) too. Then, in view of the
confinement properties of the linear semigroup eτL, one can show that the solutions of (2.2) are
not only bounded, but also relatively compact in the space L1(R2). Finally, using appropriate
Lyapunov functions [19] or monotonicity properties based on rearrangement techniques [8], one
can prove that the omega-limit set in L1(R2) of any solution of (2.2) is included in the family
of Lamb-Oseen vortices. As the total circulation is conserved, the omega-limit set is in fact
reduced to the singleton {αG}, which proves (2.5). The interested reader is referred to [19, 23]
for details.

The global convergence result (2.5) is very general, but the proof sketched above is not
constructive, and does not yield any estimate on the time needed to reach the asymptotic
regime described by the Lamb-Oseen vortex. Explicit estimates of the convergence time can
however be obtained if the vorticity has a definite sign [19] or is strongly localized [15]. In the
rest of this section, emphasis is put on local stability results, for which explicit bounds are also
available.

2.1 Local stability results

Theorem 2.1 strongly suggests, but does not really prove, that the Lamb-Oseen vortex αG is
a stable equilibrium of the rescaled vorticity equation (2.2) for any α ∈ R. Stability can be
established by considering solutions of the form w = αG + w̃, v = αvG + ṽ. The perturbations
satisfy the evolution equation

∂τ w̃ + ṽ · ∇w̃ = (L− αΛ)w̃ , (2.6)
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where L is given by (2.3) and Λ is the nonlocal linear operator defined by

Λw̃ = vG · ∇w̃ + ṽ · ∇G , with ṽ = K2D ∗ w̃ . (2.7)

It is possible to prove that the perturbation equation (2.6) is globally well-posed in the space
L1(R2), and that the origin w̃ = 0 is a stable equilibrium, but at this level of generality little can
be said about the long-time behavior of the solutions. However, more precise stability results
can be obtained if one assumes that the vorticity is sufficiently localized in space.

Given m ∈ [0,∞], let ρm : [0,∞) → [1,∞) be the weight function defined by

ρm(r) =











1 if m = 0 ,

(1 + r
4m )m if 0 < m < ∞ ,

er/4 if m = ∞ .

(2.8)

Perturbations will be taken in the weighted L2 space

L2(m) =
{

w ∈ L2(R2)
∣

∣

∣
‖w‖2L2(m) =

∫

R2

ρm(|ξ|2)|w(ξ)|2 dξ < ∞
}

, (2.9)

which is a (real) Hilbert space equipped with the scalar product

〈w1 , w2〉L2(m) =

∫

R2

ρm(|ξ|2)w1(ξ)w2(ξ) dξ . (2.10)

Elements of L2(m) are square integrable functions with algebraic decay at infinity if 0 < m < ∞,
and Gaussian decay if m = ∞. Hölder’s inequality implies that L2(m) →֒ L1(R2) if m > 1. In
that case, it is useful to introduce the closed subspace

L2
0(m) =

{

w ∈ L2(m)
∣

∣

∣

∫

R2

w(ξ) dξ = 0
}

, (2.11)

which happens to be invariant under the action of both linear operators L and Λ.

To study the stability of the origin w̃ = 0 for the perturbation equation (2.6), it is useful
to compute the spectrum of the linearized operator L− αΛ in the (complexified) Hilbert space
L2(m). In the simple case where α = 0, the spectrum is explicitly known :

Proposition 2.2 ([18]) For any m ∈ [0,∞], the spectrum of the linear operator (2.3) in the
weighted space L2(m) defined by (2.8), (2.9) is

σm(L) =
{

λ ∈ C

∣

∣

∣
Re(λ) ≤ 1

2
− m

2

}

∪
{

−k

2

∣

∣

∣
k ∈ N

}

. (2.12)

Moreover, if m > k + 1 for some k ∈ N, then λk = −k/2 is an isolated eigenvalue of L, with
(algebraic and geometric) multiplicity k + 1.

It follows in particular from Proposition 2.2 that L has purely discrete spectrum in L2(m)
when m = ∞. This is easily understood if one observes that ρ∞(|ξ|2) = e|ξ|

2/4 = (4π)−1G(ξ)−1,
and that

G−1/2 L G1/2 = ∆ − |ξ|2
16

+
1

2
. (2.13)

The formal relation (2.13) implies that the operator L in L2(∞) is unitarily equivalent to the
harmonic oscillator ∆− |ξ|2/16+1/2 in L2(R2), the spectrum of which is the sequence (λk)k∈N,
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where λk = −k/2 has multiplicity k + 1. If m < ∞, the discrete part of the spectrum persists
because the corresponding eigenfunctions decay rapidly at infinity. In addition, any λ ∈ C such
that Re(λ) < (1−m)/2 is an eigenvalue of L in L2(m) with infinite multiplicity [18], hence the
spectrum σm(L) also includes the closed half-plane Hm = {λ ∈ C | Re(λ) ≤ (1−m)/2}.

In the more interesting case where α 6= 0, the spectrum of L − αΛ in L2(m) cannot be
computed explicitly. However, upper bounds on the real part of the spectrum are sufficient
for the stability analysis, and such estimates can be obtained by combining the following three
observations.

Observation 1 : The operator Λ is a relatively compact perturbation of L in L2(m), for any
m ∈ [0,∞]. This is intuitively obvious, because Λ is a first-order differential operator whose
coefficients decay to zero at infinity, whereas L involves in particular the Laplace operator ∆.
By Weyl’s theorem, the essential spectrum [25] of L−αΛ in L2(m) does not depend on α, hence
coincides with the closed half-plane Hm = {λ ∈ C | Re(λ) ≤ (1 −m)/2} by Proposition 2.2. It
thus remains to locate isolated eigenvalues of L− αΛ outside Hm.

Observation 2 : The isolated eigenvalues of L − αΛ in L2(m) do not depend on m. Indeed,
if w ∈ L2(m) satisfies (L − αΛ)w = λw for some λ ∈ C \ Hm, one can show that w decays
sufficiently fast at infinity so that w ∈ L2(∞) [19]. This means that isolated eigenvalues of
L − αΛ can be located by considering the particular case m = ∞, where the spectrum is fully
discrete and consists of a sequence of eigenvalues (λk(α))k∈N with Re(λk(α)) → −∞ as k → ∞.

Observation 3 : The operator Λ is skew-symmetric in L2(∞), namely

〈Λw1 , w2〉+ 〈w1 , Λw2〉 = 0 , for all w1, w2 ∈ D(Λ) ⊂ L2(∞) , (2.14)

where D(Λ) ⊂ L2(∞) is the (maximal) domain of the operator Λ, and 〈· , ·〉 denotes the scalar
product in L2(∞), which (up to an irrelevant factor) can be written in the form

〈w1 , w2〉 =

∫

R2

G(ξ)−1w1(ξ)w2(ξ) dξ . (2.15)

To prove (2.14) one decomposes Λ = Λ1+Λ2, where Λ1w = vG ·∇w and Λ2w = (K2D ∗w) ·∇G.
If w1, w2 ∈ L2(∞) belong to the domain of Λ, then

〈Λ1w1, w2〉+ 〈w1,Λ1w2〉 =

∫

R2

G−1
(

w2 v
G · ∇w1 + w1 v

G · ∇w2

)

dξ

=

∫

R2

G−1 vG · ∇(w1w2) dξ = 0 ,

because the vector field G−1vG is divergence-free. Moreover using the identity ∇G = −1
2ξG and

the Biot-Savart law (2.4), one obtains

〈Λ2w1, w2〉+ 〈w1,Λ2w2〉 = −1

2

∫

R2

(

(ξ · v1)w2 + (ξ · v2)w1

)

dξ

= − 1

4π

∫

R2

∫

R2

{

ξ · (ξ − η)⊥

|ξ − η|2 + η · (η − ξ)⊥

|ξ − η|2
}

w1(η)w2(ξ) dη dξ = 0 ,

because the last integrand vanishes identically. This proves (2.14). One can also show that the
operator Λ is not only skew-symmetric, but also skew-adjoint in L2(∞), see [34].

The observations above lead to the following spectral stability result for the Lamb-Oseen
vortex in the space L2(m).
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Proposition 2.3 ([19]) For any α ∈ R and any m ∈ [1,∞], the spectrum of the linearized
operator L− αΛ in the space L2(m) satisfies

σm(L− αΛ) ⊂
{

λ ∈ C

∣

∣

∣ Re(λ) ≤ 0
}

. (2.16)

Moreover, if m ≥ 2, then

σm(L− αΛ) ⊂ {0} ∪
{

λ ∈ C

∣

∣

∣ Re(λ) ≤ −1

2

}

. (2.17)

Finally, if m ≥ 3, then

σm(L− αΛ) ⊂ {0} ∪
{

−1

2

}

∪
{

λ ∈ C

∣

∣

∣ Re(λ) ≤ −1
}

. (2.18)

Proof. As before let Hm = {λ ∈ C | Re(λ) ≤ (1 −m)/2}. By Observation 1 above, if m ≥ 1,
the essential spectrum of L−αΛ is included in the half-space H1. Assume that λ ∈ C \H1 is an
isolated eigenvalue of L− αΛ, and let w ∈ L2(m) be a nontrivial eigenfunction associated with
λ. Then w ∈ L2(∞) by Observation 2, and using Observation 3 one finds

Re(λ)〈w,w〉 = Re〈(L− αΛ)w,w〉 = 〈Lw,w〉 ≤ 0 , (2.19)

because L is a nonpositive self-adjoint operator in L2(∞) and Λ is skew-symmetric. This contra-
dicts the assumption that Re(λ) > 0, hence the whole spectrum of L−αΛ in L2(m) is contained
in the half-space H1, as asserted in (2.16).

As LG = ΛG = 0, it is clear that 0 is an eigenvalue of L−αΛ for any m ≥ 0 and any α ∈ R.
If m > 1, one can write L2(m) = RG⊕L2

0(m), where L2
0(m) is the hyperplane defined in (2.11),

and this decomposition is left invariant by both operators L and Λ. Now, the same argument as
above shows that, if m ≥ 2, the spectrum of the operator L− αΛ acting on L2

0(m) is contained
in the half-plane H2, because L ≤ −1/2 on L2

0(∞). This proves (2.17).

Finally, it is easy to verify that L(∂iG) = −1
2∂iG for i = 1, 2, and differentiating the identity

vG · ∇G = 0 one finds that Λ(∂iG) = 0 for i = 1, 2. This means that −1/2 is an eigenvalue of
L−αΛ for any m ≥ 0 and any α ∈ R. As above, if m > 2, one has the invariant decomposition

L2(m) = {αG |α ∈ R} ⊕ {β1∂1G+ β2∂2G |β1, β2 ∈ R} ⊕ L2
00(m) ,

where

L2
00(m) =

{

w ∈ L2
0(m)

∣

∣

∣

∫

R2

ξiw(ξ) dξ = 0 for i = 1, 2
}

. (2.20)

As L ≤ −1 on L2
00(∞), the same argument shows that the spectrum of the operator L − αΛ

acting on L2
00(m) is contained in the half-plane H3, if m ≥ 3. This proves (2.18). �

The linear operator L−αΛ is the generator of a strongly continuous semigroup in the space
L2(m) for any α ∈ R and any m ∈ [0,∞] [18]. The following linear stability result is a natural
consequence of Proposition 2.3 and its proof.

Proposition 2.4 ([19]) For any α ∈ R and any m > 1, there exists a positive constant C such
that

‖eτ(L−αΛ)‖L2(m)→L2(m) ≤ C , for all τ ≥ 0 . (2.21)

Moreover, if m > 2, then

‖eτ(L−αΛ)‖L2
0(m)→L2

0(m) ≤ C e−τ/2 , for all τ ≥ 0 . (2.22)

Finally, if m > 3, then

‖eτ(L−αΛ)‖L2
00(m)→L2

00(m) ≤ C e−τ , for all τ ≥ 0 . (2.23)
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When studying the stability of the Lamb-Oseen vortex, there is no loss of generality in
considering perturbations with zero total circulation. Indeed, if w = αG+w̃ for some w̃ ∈ L2(m)
with m > 1, then defining α̃ =

∫

R2 w̃(ξ) dξ one can write w = (α + α̃)G + (w̃ − α̃G), where by
construction w̃−α̃G ∈ L2

0(m). Thus perturbations with nonzero circulation of the vortex αG can
be considered as perturbations with zero circulation of the modified vortex (α+α̃)G. As the total
circulation is a conserved quantity, the subspace L2

0(m) is invariant under the evolution defined
by the full perturbation equation (2.6). By Proposition 2.4, the linear semigroup eτ(L−αΛ) is
exponentially decaying in L2

0(m) if m > 2, and using that information it is routine to deduce
the following asymptotic stability result, which is the main outcome of this section.

Proposition 2.5 ([19]) Fix α ∈ R and m ∈ (2,∞]. There exist positive constants ǫ and C
such that, for all w̃0 ∈ L2

0(m) satisfying ‖w̃0‖L2(m) ≤ ǫ, the rescaled vorticity equation (2.2) has
a unique global solution w ∈ C0([0,∞), L2(m)) with initial data w0 = αG + w̃0. Moreover, the
following estimate holds

‖w(τ) − αG‖L2(m) ≤ C‖w0 − αG‖L2(m) e
−τ/2 , τ ≥ 0 . (2.24)

If m > 2, the codimension 3 subspace L2
00(m) is also invariant under the evolution defined

by the full perturbation equation (2.2). As a consequence, if w̃0 ∈ L2
00(m), the solution of (2.2)

given by Proposition 2.5 satisfies w(τ)− αG ∈ L2
00(m) for all τ ≥ 0. If m > 3, one can then use

(2.23) to conclude that

‖w(τ) − αG‖L2(m) ≤ C‖w0 − αG‖L2(m) e
−τ , τ ≥ 0 .

As is shown in [19, 11], if α 6= 0, the assumption that w0 has vanishing first order moments
does not really restrict the generality, because this condition can always be met by a suitable
translation of the initial data.

Remark 2.6 If m = ∞, one can show that the Lamb-Oseen vortex αG is uniformly stable for
all α ∈ R in the sense that the constants ǫ and C in Proposition 2.5 do not depend on α [11].
This is in sharp contrast with what happens for shear flows, such as the Poiseuille flow in a
cylindrical pipe or the Couette-Taylor flow between two rotating cylinders. In such examples,
the laminar stationary flow undergoes an instability, of spectral or pseudospectral nature, when
the Reynolds number is sufficiently large. In contrast, a fast rotation has rather a stabilizing
effect on vortices, as the analysis below reveals.

2.2 Large Reynolds number asymptotics

Proposition 2.3 above gives uniform estimates on the spectrum of the linearized operator L−αΛ,
which are sufficient to prove stability of the Lamb-Oseen vortex for all values of the circulation
parameter α ∈ R. However, such estimates do not describe how the spectrum changes as the
circulation parameter varies. The most relevant regime for turbulent flows is of course the high
Reynolds number limit where |α| → ∞, which deserves a special consideration. As the essential
spectrum of L − αΛ in the space L2(m) does not depend on m, it is most convenient to work
in the limiting space X = L2(∞), equipped with the scalar product (2.15). In that space,
as was already mentioned, the spectrum of L − αΛ is discrete, and consists of a sequence of
eigenvalues (λk(α))k∈N with Re(λk(α)) → −∞ as k → ∞. It follows from Proposition 2.2 that
λk(0) = −k/2, for any k ∈ N, and the goal of this section is to investigate the behavior of the
real part of λk(α) as |α| → ∞.
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The starting point of the analysis is the determination of the kernel of the skew-symmetric
operator Λ. Let X0 ⊂ X denote the closed subspace containing all radially symmetric functions.
If w ∈ X0, the associated velocity field v = K2D ∗ w satisfies ξ · v(ξ) = 0, and it follows that
Λw = 0, hence X0 ⊂ ker(Λ). On the other hand, it was already observed that Λ(∂iG) = 0 for
i = 1, 2. The following result asserts that the kernel of Λ does not contain any more elements :

Lemma 2.7 ([34]) ker(Λ) = X0 ⊕ {β1∂1G+ β2∂2G |β1, β2 ∈ R}.

In view of Lemma 2.7, the subspace ker(Λ) ⊂ X is invariant under the action of both
operators L and Λ, and the orthogonal complement ker(Λ)⊥ is invariant too because L is self-
adjoint and Λ is skew-adjoint. Inside ker(Λ), the spectrum of L − αΛ ≡ L does not depend
on the circulation parameter α, and consists of all negative integers in addition to the double
eigenvalue −1/2. In fact, for any n ∈ N, the eigenfunction corresponding to the eigenvalue −n
is the radially symmetric Hermite function ∆nG. The only difficult task is therefore to study
the spectrum of L⊥ − αΛ⊥, which is defined as the restriction of L − αΛ to the orthogonal
complement ker(Λ)⊥. That spectrum does depend in a nontrivial way upon the parameter α.
It happens that the real parts of all eigenvalues converge to −∞ as |α| → ∞, which is of course
compatible with the uniform bounds given by Proposition 2.3. This phenomenon illustrates the
stabilizing effect of fast rotation on Lamb-Oseen vortices.

Two natural quantities can be introduced to accurately measure the effect of fast rotation.
For any α ∈ R, one can define the spectral lower bound

Σ(α) = inf
{

Re(z)
∣

∣

∣ z ∈ spec(−L⊥ + αΛ⊥)
}

,

or the pseudospectral bound

Ψ(α) =
(

sup
λ∈R

‖(L⊥ − αΛ⊥ − iλ)−1‖X→X

)−1
.

In the definition of Σ(α), the sign of the linearized operator has been changed to obtain a positive
quantity. Although the spectral and pseudospectral bounds are of rather different nature, there
is a simple one-sided relation between them :

Lemma 2.8 For any α ∈ R one has Σ(α) ≥ Ψ(α) ≥ 1.

Proof. Fix α ∈ R. By Lemma 2.7, one has ker(Λ)⊥ ⊂ L2
00(m), hence Σ(α) ≥ 1 by (2.18).

On the other hand, if (L − αΛ + λ)w = 0 for some λ ∈ C and some w ∈ ker(Λ)⊥ such that
〈w,w〉 = 1, then (L− αΛ + i Im(λ))w = −Re(λ)w, hence

Re(λ) ≥ ‖(L⊥ − αΛ⊥ + i Im(λ))−1‖−1 ≥ Ψ(α) .

This proves that Σ(α) ≥ Ψ(α). Finally, the proof of Proposition 2.3 shows that the operator
L⊥ − αΛ⊥ + 1 is m-dissipative [26]. This in particular implies that ‖(L⊥ − αΛ⊥ − iλ)−1‖ ≤ 1
for all λ ∈ R, hence Ψ(α) ≥ 1. �

The stabilizing effect in the large Reynolds number limit is qualitatively illustrated by the
following result :

Proposition 2.9 ([34]) One has Ψ(α) → ∞ and Σ(α) → ∞ as |α| → ∞.
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The proof given in [34] actually shows that Σ(α) → ∞ as |α| → ∞, but can be easily
modified to yield the stronger conclusion that Ψ(α) → ∞. For the stability analysis of the
Lamb-Oseen vortex αG, the divergence of the spectral bound means that the decay rate in time
of perturbations in ker(Λ)⊥ becomes arbitrarily large as |α| → ∞. On the other hand, using
the divergence of the pseudospectral bound, one can show that the basin of attraction of the
Lamb-Oseen vortex, in the weighted space L2(∞), becomes arbitrarily large as |α| → ∞. It
should be emphasized, however, that the argument used in [34] is nonconstructive and does not
provide any explicit estimate on the quantities Ψ(α) or Σ(α) for large |α|.

In fact, there are good reasons to conjecture that Σ(α) = O(|α|1/2) and Ψ(α) = O(|α|1/3)
as |α| → ∞. First of all, extensive numerical calculations performed by Prochazka and Pullin
[40, 41] indicate that Σ(α) = O(|α|1/2) as |α| → ∞. Next, the conjecture is clearly supported by
rigorous analytical results on model problems [9]. In particular, for the simplified linear operator
L− αΛ1 where the nonlocal part Λ2 has been omitted, it can be proved that Ψ(α) = O(|α|1/3)
as |α| → ∞ [4]. The same result holds for the full linearized operator L − αΛ restricted to
a smaller subspace than ker(Λ)⊥, where a finite number of Fourier modes with respect to the
angular variable in polar coordinates have been removed [5]. The general case is still under
investigation [7].

Assuming that the conjecture above is true, it is worth noting that the pseudospectral bound
Ψ(α) and the spectral bound Σ(α) have different growth rates as |α| → ∞. This reflects the
fact that the linearized operator L − αΛ becomes highly non-selfadjoint in the fast rotation
limit. Indeed, for selfadjoint or normal operators, it is easy to verify that the spectral and
pseudospectral bounds always coincide.

2.3 Lamb-Oseen vortices in exterior domains

As was already mentioned, the Lamb-Oseen vortex plays a double role in the dynamics of the
Navier-Stokes equations in the whole space R2 : it is the unique solution of the system when the
initial vorticity is a Dirac measure, and it describes the long-time asymptotics of all solutions
for which the vorticity distribution is integrable and has nonzero total circulation. The proofs
given in [19] demonstrate that both properties are closely related, due to scale invariance. Now,
if the fluid is contained in a two-dimensional domain Ω ⊂ R

2, and satisfies (for instance) no-slip
boundary conditions on ∂Ω, scale invariance is broken and there is no simple relation anymore
between the Cauchy problem for singular initial data and the long-time asymptotics of general
solutions. Both questions are interesting and, at present time, largely open. In this section, the
relatively simple case of a two-dimensional exterior domain is considered, where a few results
concerning the long-time behavior of solutions with nonzero circulation at infinity have been
obtained recently.

Let Ω ⊂ R
2 be a smooth exterior domain, namely an unbounded connected open set with

a smooth compact boundary ∂Ω. The Navier-Stokes equations in Ω with no-slip boundary
conditions can be written in the following form :







∂tu+ (u · ∇)u = ∆u−∇p , div u = 0 , for x ∈ Ω , t > 0 ,
u(x, t) = 0 , for x ∈ ∂Ω , t > 0 ,
u(x, 0) = u0(x) , for x ∈ Ω ,

(2.25)

where p denotes the ratio of the pressure to the fluid density. The vorticity ω = ∂1u2−∂2u1 still
satisfies the simple evolution equation (1.4) (with ν = 1), but the assumption that u = 0 on ∂Ω
translates into a nonlinear, nonlocal boundary condition for ω, which is very difficult to handle.
So, whenever possible, it is preferable to work directly with the velocity formulation (2.25).
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If the initial velocity u0 belongs to the energy space

L2
σ(Ω) =

{

u ∈ L2(Ω)2
∣

∣

∣
div u = 0 in Ω , u · n = 0 on ∂Ω

}

,

where n denotes the unit normal on ∂Ω, it is well known that system (2.25) has a unique global
solution satisfying the energy identity

1

2
‖u(·, t)‖2L2(Ω) +

∫ t

0
‖∇u(·, s)‖2L2(Ω) ds =

1

2
‖u0‖2L2(Ω) , t ≥ 0 .

That solution converges to zero in L2
σ(Ω) as t → ∞ [38], which means that the long-time behavior

of all finite energy solutions is trivial. However, as in the whole plane R2, one can consider flows
with nonzero circulation at infinity :

α = lim
R→∞

∮

|x|=R
(u1 dx1 + u2 dx2) 6= 0 ,

in which case the kinetic energy is necessarily infinite and the long-time behavior may be non-
trivial.

To construct such solutions, it is convenient to introduce a smooth cut-off function χ : R2 →
[0, 1] such that χ vanishes in a neighborhood of R2 \Ω and χ(x) = 1 whenever |x| is sufficiently
large. For technical reasons, one also assumes that χ is radially symmetric and nondecreasing
along rays. The truncated Oseen vortex

uχ(x, t) =
1

2π

x⊥

|x|2
(

1− e
−

|x|2

4(1+t)

)

χ(x) , x ∈ R
2, t ≥ 0 , (2.26)

is a divergence-free velocity field which vanishes identically in a neighborhood of R2 \ Ω and
coincides with the Lamb-Oseen vortex (with unit circulation) far away from the origin. In
particular uχ /∈ L2(Ω). The corresponding vorticity distribution ωχ = ∂1u

χ
2 − ∂2u

χ
1 reads :

ωχ(x, t) =
1

4π(1 + t)
e
− |x|2

4(1+t) χ(x) +
1

2π

1

|x|2
(

1− e
− |x|2

4(1+t)

)

x · ∇χ(x) , (2.27)

and satisfies
∫

Ω ωχ(x, t) dx = 1 for all t ≥ 0. Of course the velocity field uχ is not an exact
solution of the Navier-Stokes equations (2.25) (unless Ω = R

2 and χ ≡ 1), but the following
result shows that it is a globally stable asymptotic solution.

Theorem 2.10 ([14, 35]) Fix q ∈ (1, 2], and let µ = 1/q − 1/2. There exists a constant ǫ > 0
such that, for all initial data of the form u0 = αuχ(·, 0)+v0 with |α| ≤ ǫ and v0 ∈ L2

σ(Ω)∩Lq(Ω)2,
the Navier-Stokes equations (2.25) have a unique global solution which satisfies

‖u(·, t) − αuχ(·, t)‖L2(Ω) + t1/2‖∇u(·, t) − α∇uχ(·, t)‖L2(Ω) = O(t−µ) , (2.28)

as t → +∞. Moreover, if q = 2, then ‖u(·, t) − αuχ(·, t)‖L2(Ω) → 0 as t → +∞.

Several comments are in order. Existence and uniqueness of global solutions to the Navier-
Stokes equations (2.25) for a class of infinite-energy initial data including those considered
in Theorem 2.10 were established by Kozono and Yamazaki in [27]. The novelty here is the
description of the long-time asymptotics for a specific family of solutions, corresponding to
spatially localized perturbations of the truncated Oseen vortex. Theorem 2.10 is a global stability
result, in the sense that arbitrary large perturbations v0 of the vortex can be considered. There
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is, however, a limitation on the size of the circulation parameter α, which is probably of technical
nature. To remove that restriction it seems rather natural to use the vorticity formulation and
the nice properties of the linearized operator established in Section 2.1, but this is difficult in the
present case because the boundary condition for the vorticity is very awkward. The parameter q
in Theorem 2.10 measures the spatial decay of the initial perturbations v0 to the Oseen vortex,
and is directly related to the decay rate in time (called µ) of the corresponding solutions. If
q < 2, then µ > 0 and it is shown in [14] that the constant ǫ depends only on q, and not on the
domain Ω. The limiting case where q = 2 was treated in [29, 35].

The main original ingredient in the proof of Theorem 2.10 is a logarithmic energy estimate
that is worth discussing briefly. For solutions of the Navier-Stokes equations (2.25) of the form
u(x, t) = αuχ(x, t) + v(x, t), the perturbation v satisfies

∂tv + α(uχ,∇)v + α(v,∇)uχ + (v,∇)v = ∆v + αRχ −∇q , div v = 0 , (2.29)

where the source term Rχ = ∆uχ − ∂tu
χ measures by how much the truncated vortex uχ fails

to be an exact solution of (2.25). Taking into account the uniform bounds

‖∇uχ(·, t)‖L∞(R2) ≤ b

1 + t
, ‖Rχ(·, t)‖L2(R2) ≤ κ

1 + t
,

which hold for some positive constants b, κ depending only on the cut-off χ, a standard energy
estimate yields the differential inequality

1

2

d

dt
‖v(t)‖2L2(Ω) + ‖∇v(t)‖2L2(Ω) ≤ b|α|

1 + t
‖v(t)‖2L2(Ω) +

κ|α|
1 + t

‖v(t)‖L2(Ω) , (2.30)

which predicts a polynomial growth of the L2 norm ‖v(t)‖L2(Ω). This naive estimate can be
substantially improved if one observes that the truncated Oseen vortex uχ decays like |x|−1 as
|x| → ∞, and thus nearly belongs to the energy space. The optimal result is :

Proposition 2.11 There exists a constant K > 0 such that, for any α ∈ R and any v0 ∈ L2
σ(Ω),

the solution of (2.29) with initial data v0 satisfies, for all t ≥ 1,

‖v(t)‖2L2(Ω) +

∫ t

0
‖∇v(s)‖2L2(Ω) ds ≤ K

(

‖v0‖2L2(Ω) + α2 log(1 + t) + α2 log(2 + |α|)
)

. (2.31)

In the proof of Theorem 2.10, the logarithmic bound (2.31) is combined with standard energy
estimates for a fractional primitive of the velocity field to prove that v(·, t) converges to zero
in L2(Ω) as t → ∞, see [14, 12]. The optimal decay rate in (2.28) is then obtained by a direct
study of small solutions to the perturbation equation (2.29).

Although Theorem 2.10 is established using the velocity formulation of the Navier-Stokes
system, it is instructive to see what it implies for the vorticity distribution ω. Assume for
instance that the initial vorticity ω0 = ∂1(u0)2 − ∂2(u0)1 is sufficiently localized so that

∫

Ω
(1 + |x|2)m|ω0(x)|2 dx < ∞ ,

for some m > 1. By Hölder’s inequality this implies that ω0 ∈ L1(Ω). Then denoting v0 =
u0−αuχ(·, 0) where α =

∫

Ω ω0(x) dx, it follows that v0 ∈ L2
σ(Ω)∩Lq(Ω)2 for any q ∈ (1, 2) such

that q > 2/m [18]. In particular, if |α| ≤ ǫ, the conclusion of Theorem 2.10 holds. Moreover,
the vorticity satisfies

∫

Ω
|ω(x, t)− αωχ(x, t)|dx = O(t−µ log t) , as t → ∞ , (2.32)
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where ωχ(x, t) is defined in (2.27), see [12]. In both convergence results (2.28), (2.32), one can
replace the truncated Oseen vortex by the original Lamb-Oseen vortex for which χ ≡ 1, because
the additional error converges to zero like O(t−1) as t → ∞.

3 Axisymmetric vortex rings and filaments

When restricted to axisymmetric flows without swirl, the three-dimensional Navier-Stokes equa-
tions bear some similarity with the two-dimensional situation considered in the previous section.
The only nonzero component of the vorticity vector satisfies Eq. (1.9), which can be written in
the equivalent form

∂tωθ + ∂r(urωθ) + ∂z(uzωθ) = ν
(

(∂2
r + ∂2

z )ωθ + ∂r
ωθ

r

)

. (3.1)

The analogy is most striking if one introduces the related quantity η = ωθ/r, which satisfies the
advection-diffusion equation

∂tη + u · ∇η = ∆η +
2

r
∂rη , (3.2)

where u ·∇ = ur∂r +uz∂z and ∆ = ∂2
r +

1
r∂r +∂2

z . Equation (3.2) is considered in the half-plane
Ω = {(r, z) ∈ R

2 | r > 0 , z ∈ R}, with homogeneous Neumann boundary conditions on ∂Ω.

It is clear from (3.2) that η(r, z, t) obeys the parabolic maximum principle, and this provides
a priori estimates on the solutions which imply that the Cauchy problem for the axisymmetric
Navier-Stokes equations is globally well-posed, without any restriction on the size of the initial
data. The first results in this direction were obtained by Ladyzhenskaya [30] and by Ukhovskii
and Yudovich [45], for finite energy solutions. Recently, it was shown in [16] that the vorticity
equation (3.1) is globally well-posed in the scale invariant space L1(Ω,dr dz), equipped with the
norm

‖ωθ‖L1(Ω) =

∫

Ω
|ωθ(r, z)|dr dz =

∫

Ω
|η(r, z)| r dr dz .

The proof follows remarkably the same lines as in the two-dimensional case, and in particular
uses very similar function spaces. Solutions constructed in this way have infinite energy in
general, but if the initial vorticity ω0

θ decays somewhat faster at infinity than what is necessary
to be integrable, the velocity field becomes square integrable for all positive times.

It is also possible to solve the Cauchy problem for Eq. (3.1) in the more general situation
where the initial vorticity is a finite measure. Global existence and uniqueness are established
in [16] assuming that the total variation norm of the atomic part of the initial vorticity is
small compared to the viscosity parameter. The general case is open to the present date,
but interesting results have been obtained for circular vortex filaments, which correspond to the
situation where the initial vorticity is a Dirac measure. The resulting solutions can be considered
as the analogue of the family of Lamb-Oseen vortices in R

2. These solutions cannot be written
in explicit form, but small-time asymptotic expansions can be computed which involve the two-
dimensional profiles G and vG defined in (1.7). If the circulation parameter Γ is small compared
to the viscosity ν, the results of [16] imply the existence of a unique global solution to (3.1) with
initial vorticity ω0

θ = Γδ(r̄,z̄), for any (r̄, z̄) ∈ Ω. For larger circulations, the following existence

result was recently established by Feng and Šverák :

Proposition 3.1 ([6]) Fix Γ > 0, (r̄, z̄) ∈ Ω, and ν > 0. Then the axisymmetric vorticity
equation (3.1) has a nonnegative global solution such that ωθ(t) ⇀ Γδ(r̄,z̄) as t → 0. Moreover,
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this solution satisfies, for all t > 0,

∫

Ω
ωθ(r, z, t) dr dz ≤ Γ ,

∫

Ω
r2ωθ(r, z, t) dr dz = Γ r̄2 . (3.3)

Needless to say, the assumption Γ > 0 does not restrict the generality, because the corre-
sponding result for Γ < 0 can be obtained by symmetry. Proposition 3.1 is proved by a very
general approximation argument, which provides global existence without any restriction on the
size of the circulation parameter, but does not imply uniqueness and does not give any precise
information on the qualitative behavior of the solution for short times. Using more sophisticated
techniques, a more accurate result can be established :

Theorem 3.2 ([17]) Fix Γ ∈ R, (r̄, z̄) ∈ Ω, and ν > 0. Then the axisymmetric vorticity
equation (3.1) has a unique global mild solution ωθ ∈ C0((0,∞), L1(Ω) ∩ L∞(Ω)) such that

sup
t>0

‖ωθ(t)‖L1(Ω) < ∞ , and ωθ(t) ⇀ Γ δ(r̄,z̄) as t → 0 . (3.4)

In addition, there exists a constant C > 0 such that the following estimate holds :

∫

Ω

∣

∣

∣ωθ(r, z, t) −
Γ

4πνt
e−

(r−r̄)2+(z−z̄)2

4νt

∣

∣

∣dr dz ≤ C |Γ|
√
νt

r̄
log

r̄√
νt

, (3.5)

as long as
√
νt ≤ r̄/2.

Since the existence of a global solution to (3.1) satisfying (3.4) is already asserted by Propo-
sition 3.1, the main contributions of Theorem 3.2 are the uniqueness of that solution and its
asymptotic behavior as t → 0, as described in (3.5). The first step in the proof is a localization
estimate, which can be established using a Gaussian upper bound on the fundamental solution
of the “linear” equation (3.1) for ωθ, where the velocity field u = (ur, uz) is considered as given.
It is found that, for any ǫ > 0, there exists a constant Cǫ > 0 such that

|ωθ(r, z, t)| ≤
Cǫ|Γ|
νt

exp
(

−(r − r̄)2 + (z − z̄)2

(4 + ǫ)νt

)

, (r, z) ∈ Ω , t > 0 . (3.6)

Moreover
∫

Ω ωθ(r, z, t) dr dz converges to Γ as t → 0. The second step consists in introducing
self-similar variables, in the spirit of (2.1). The rescaled vorticity f and velocity v are defined
by

ωθ(r, z, t) =
Γ

νt
f
(r − r̄√

νt
,
z − z̄√

νt
, t
)

, u(r, z, t) =
Γ√
νt

v
(r − r̄√

νt
,
z − z̄√

νt
, t
)

,

and the following dimensionless quantities are introduced :

R =
r − r̄√

νt
, Z =

z − z̄√
νt

, ǫ =

√
νt

r̄
, α =

Γ

ν
.

The evolution equation for the new function f(R,Z, t) reads

tft + α
(

∂R(vRf) + ∂Z(vZf)
)

= Lf + ǫ∂R

( f

1 + ǫR

)

, (3.7)

where as in (2.3)

L = ∂2
R + ∂2

Z +
R

2
∂R +

Z

2
∂Z + 1 .
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Note that equation (3.7) lives in the time-dependent domain where 1 + ǫR > 0, but using the
homogeneous Dirichlet boundary condition one can extend the rescaled vorticity by zero outside
that domain and consider it as defined on the whole plane R

2. In the small time limit ǫ → 0,
the system formally reduces to the equation for perturbations around Oseen’s vortex, which
was studied in detail in Section 2.1, and the proof of Theorem 3.2 consists in showing that this
intuition is indeed correct. The Gaussian bound (3.6) provides a uniform control on the solution
of (3.7) in the weighted space Xt defined by the norm

‖f(t)‖2Xt
=

∫

1+ǫR>0
f(R,Z, t)2 e(R

2+Z2)/4 dRdZ , t > 0 ,

which coincides when t = 0 with the norm of the space L2(∞) introduced in (2.9). A compactness
argument, as in the proof of Theorem 2.1, can then be invoked to show that f(R,Z, t) necessarily
converges to the Oseen vortex profile as t → 0 :

lim
t→0

‖f(t)− ΓG‖Xt = 0 , where G(R,Z) =
1

4π
e−(R2+Z2)/4 . (3.8)

The final step is an energy estimate which shows that, for some positive constants C and δ,

t
d

dt
‖f(t)‖2Xt

≤ −δ‖f(t)‖2Xt
+ Cǫ2| log ǫ|2 , (3.9)

when t > 0 is sufficiently small. The differential inequality (3.9) relies on the spectral properties
of the linear operator L in the space L2(∞), which were established in Section 2.1. As Xt →֒
L1(R2), it immediately implies estimate (3.5) in Theorem 3.2. Moreover, a similar argument
applied to the difference f1 − f2 of two solutions of (3.1) satisfying (3.4) leads to the conclusion
that f1 ≡ f2, which yields uniqueness.

Theorem 3.2 shows that the two-dimensional Lamb-Oseen vortex naturally appears in the
axisymmetric case too, where it describes the short time behavior of solutions arising from vortex
filaments as initial data, see (3.5). However, the long-time asymptotics are very different in both
situations, as can be seen from the following result :

Proposition 3.3 ([16]) Assume that the initial vorticity ω0
θ ∈ L1(Ω) is nonnegative and has

finite impulse :

I =

∫

Ω
r2ω0(r, z) dr dz < ∞ . (3.10)

Then the unique global solution of (3.1) satisfies

lim
t→∞

sup
(r,z)∈Ω

∣

∣

∣

∣

t2ωθ(r
√
t, z

√
t, t)− I

16
√
π
r e−

r2+z2

4

∣

∣

∣

∣

= 0 . (3.11)

In particular ‖ωθ(t)‖L∞(Ω) = O(t−2) as t → ∞.

Proposition 3.3 applies in particular to the vortex rings constructed in Proposition 3.1 and
Theorem 3.2. It shows that the long-time asymptotics are described, to leading order, by a
self-similar solution of the linearized equation obtained by setting u = 0 in (3.1). This is in
sharp contrast with what happens in the two-dimensional case.
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4 Existence and stability of Burgers vortices

As was mentioned in the introduction, the Burgers vortex is a simple but important model in
fluid mechanics, describing the balance between the dissipation due to the viscosity and the
vorticity stretching through the action of a background straining flow. By rescaling variables in
a suitable manner (see, e.g. [20]), one can assume without loss of generality that the rates of
the linear strain in (1.11) have the following form

γ1 = −1 + λ

2
, γ2 = −1− λ

2
, γ3 = 1 . (4.1)

Here λ ∈ [0, 1) is a free parameter that represents the asymmetry of the strain, and the case λ = 0
corresponds to an axisymmetric strain. The Burgers vortex with circulation α and asymmetry
λ is a two-dimensional stationary vorticity field of the form ωλ,α = (0, 0, ωλ,α)

⊤. In view of
Eq. (1.12)–(1.13), this means that the third component ωλ,α depends only on the horizontal
variable x = (x1, x2) ∈ R

2 and satisfies the following elliptic problem in R
2 :

Lλω − (v,∇)ω = 0 , v = K2D ∗ ω ,

∫

R2

ω dx = α , (4.2)

where K2D(x) = x⊥/(2π|x|2) and Lλ is the two-dimensional differential operator defined by

Lλ = ∆+
1 + λ

2
x1∂1 +

1− λ

2
x2∂2 + 1 = L+ λM , M =

x1
2
∂1 −

x2
2
∂2 . (4.3)

When λ = 0, Eq. (4.2) has the explicit solution ω = αG, which is the classical axisymmetric
Burgers vortex [2] with circulation α. Note that αG is in fact the unique solution of (4.2) in
the space L1(R2), as can be deduced from Theorem 2.1. Due to its simple explicit expression,
the axisymmetric Burgers vortex is often used for comparison with experiments. However, the
vortex tubes observed in real flows or numerical simulations usually exhibit an elliptical core
region, rather than a circular one, because the local strain due to the background flow is not
axisymmetric in general. It is therefore important to propose a model which takes into account
the asymmetry of the strain in an appropriate way, and allows one to understand its influence
on the shape of the vortex tubes. This motivates the study of the Burgers vortex in the general
case where the asymmetry parameter λ is nonzero [39, 41, 42]. In that situation, solutions of
(4.2) cannot be written in explicit form, and have to be constructed by a rigorous mathematical
argument. The aim of this section is to give an overview of the mathematical results available
by now about the existence of asymmetric Burgers vortices (Section 4.1) and their stability with
respect to two or three-dimensional perturbations (Sections 4.2 and 4.3).

4.1 Existence and uniqueness of asymmetric Burgers vortices

Since an explicit representation is no longer available for asymmetric Burgers vortices, existence
of such solutions is the first question to address. One of the key observations is that, as the
asymmetry parameter λ in (4.1) is increased, the localizing effect due to the linear strain becomes
weaker in the x2 direction. This phenomenon is illustrated by the shape of the function

Gλ(x) =

√
1− λ2

4π
e−

1+λ
4

x2
1−

1−λ
4

x2
2 , x ∈ R

2 , (4.4)

which solves the equation LλGλ = 0 in R
2 with

∫

R2 Gλ dx = 1. The form of Gλ indicates that
asymmetric Burgers vortices, if they exist, still have a Gaussian decay at infinity, but with a
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rate that becomes slower as λ increases. Therefore, the function space L2(∞) defined in (2.9)
has to be modified in an appropriate way to allow for a general asymmetry parameter λ ∈ [0, 1).
In view of (4.4) it is rather natural to introduce the function

Gλ(x) =
1− λ

4π
e−

1−λ
4

|x|2 , x ∈ R
2 , (4.5)

and the weighted L2 spaces

L2(∞;λ) =
{

f ∈ L2(R2)
∣

∣

∣ ‖f‖2L2(∞;λ) :=

∫

R2

|f(x)|2 dx

Gλ(x)
< ∞

}

, (4.6)

L2
0(∞;λ) =

{

f ∈ L2(∞;λ)
∣

∣

∣

∫

R2

f dx = 0
}

, (4.7)

together with the associated weighted Sobolev space W 1,2(∞;λ) equipped with the norm

‖f‖W 1,2(∞;λ) = ‖ρf‖L2(∞;λ) + ‖∇f‖L2(∞;λ) , ρ(x) = (1 + |x|2) 1
2 . (4.8)

When λ = 0 these spaces are simply denoted by L2(∞), L2
0(∞), and W 1,2(∞), respectively.

In the analysis of the Burgers vortex, the linear operators Lλ in (4.3) and Λf defined by

Λf ω =
(

K2D ∗ f,∇
)

ω +
(

K2D ∗ ω,∇)f (4.9)

play essential roles. The operator Λf naturally appears as the linearization of the quadratic term
(v,∇)ω in (4.2) around a given vorticity profile f . Note that ΛG is nothing but the operator Λ
defined in (2.7), but in the present section the general notation ΛG will be preferred in order to
emphasize the dependence upon G. The operators Lλ (when λ = 0) and Λf (when f is radially
symmetric) are invariant under rotations about the origin in R

2. It is thus natural to use polar
coordinates (r, θ) in the plane and to expand all functions in Fourier series with respect to the
angular variable θ. In this way, one can introduce the projections Pn (n ∈ Z) defined by

(Png)(r, θ) = gn(r)e
inθ , gn(r) =

1

2π

∫ 2π

0
g(r cos θ, r sin θ) e−inθ dθ , (4.10)

and the projected spaces PnX = {Png | g ∈ X} for any function space X such as L2(∞;λ). By
construction the projections Pn commute with both operators L and ΛG.

As long as the asymmetry parameter λ lies in [0, 1), the linear strain (4.1) localizes the
vorticity in the horizontal directions, because γ1 < 0 and γ2 < 0. Starting from this observation
and relying on numerical calculations, Robinson and Saffman [42] conjectured the existence of
asymmetric Burgers vortices, i.e., solutions to (4.2), for all values of the parameters λ ∈ [0, 1)
and α ∈ R, at least in the regime where λ

1+|α| is small enough. This fundamental question has
been settled by now as follows.

Theorem 4.1 (Existence) For all λ ∈ [0, 1) and all α ∈ R, there exists at least one asymmet-
ric Burgers vortex ωλ,α ∈ L2(∞;λ) satisfying (4.2).

This existence result is established in [21] when 0 ≤ λ ≪ 1
2 and α ∈ R, in [20] when

λ ∈ [0, 1) and |α| ≤ κ(λ) ≪ 1, and in [32] when λ ∈ [0, 12) and |α| ≥ R(λ) ≫ 1. Here κ(λ)
and R(λ) are positive numbers satisfying κ(λ) → 0 as λ → 1 and R(λ) → ∞ as λ → 1/2. The
proofs in [20, 21, 32] are based on a detailed analysis of some linearized operators, and existence
of solutions to (4.2) is established using the Banach fixed point theorem, which also provides
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uniqueness in a suitable class of functions, see Theorem 4.3 below. In contrast, the general
existence result for all λ ∈ [0, 1) and all α ∈ R established in [33] relies on the Leray-Schauder
fixed point theorem, which does not give any information about uniqueness.

Since Burgers vortices are used to model tubular structures in turbulent flows, it is highly
interesting to study their asymptotic shape as |α| → ∞ in the presence of asymmetric linear
strains. Numerical calculations by Prochazka and Pullin [40, 41] and by Robinson and Saffman
[42] indicate that a large circulation α has a symmetrizing effect on the vortex, so that the
leading order of the flow in a bounded fluid region is the axisymmetric Burgers vortex αG, even
when λ 6= 0. Using formal asymptotic expansions, Moffatt, Kida, and Ohkitani [39] explained
this phenomenon analytically and obtained for the Burgers vortex ωλ,α an expression of the form

ωλ,α = αG+Wλ +Rλ,α , as |α| → ∞ , (4.11)

where Wλ is independent of α and Rλ,α = O(|α|−1) as |α| → ∞. The second order term Wλ

in (4.11) is especially relevant, since it describes how the asymmetry of the background flow
modifies the shape of the vortex.

Inserting the formal expansion (4.11) into (4.2) and using the cancellation (K2D∗G,∇)G = 0,
one obtains the relation

Lλ

(

αG+Wλ +Rλ,α) = αΛGWλ +O(1) , as |α| → ∞ . (4.12)

Since LλG = (L+ λM)G = λMG, the terms proportional to α in both sides of (4.12) are equal
if and only if Wλ = λw∞, where w∞ satisfies

ΛG w∞ = MG. (4.13)

Eq. (4.13) is derived and studied numerically in [39], and discussed in [21] within a rigorous
functional framework. More precisely, it is shown in [21, Proposition 3.1] that there exists a
unique w∞ in P2W

1,2(∞) + P−2W
1,2(∞) solving (4.13), while the expansion (4.11) has been

mathematically verified as follows.

Theorem 4.2 (Large circulation asymptotics) For any λ ∈ [0, 1), there exists R0(λ) > 0
such that, for all α ∈ R with |α| ≥ R0(λ), there exists an asymmetric Burgers vortex ωλ,α ∈
P
eL2(∞;λ) solving (4.2) and satisfying

‖ωλ,α − αG− λw∞‖W 1,2(∞;λ) ≤ λC(λ)

1 + |α| . (4.14)

Here P
e is the even projection defined by P

e = ⊕n∈ZP2n, and the constants R0(λ), C(λ) satisfy

lim
λ→1

R0(λ) = lim
λ→1

C(λ) = ∞ .

The conclusion of Theorem 4.2 was first established in [21] assuming 0 ≤ λ ≪ 1
2 , in which

case estimate (4.14) holds in the stronger norm of W 1,2(∞) and not just in W 1,2(∞;λ). The
result was then extended to the larger range λ ∈ [0, 12) in [32], using again the space W 1,2(∞),
and the general case where λ ∈ [0, 1) was finally settled in [33]. The basic strategy in [21, 32, 33]
is to construct a solution of (4.2) as a perturbation of the leading order approximation αG+λw∞,
in such a way that estimate (4.14) holds. To explain this idea more precisely, it is convenient to
introduce the perturbation w(1) = ωλ,α − αG− λw∞, which has to solve the system

(

Lλ − αΛG − λΛw∞

)

w(1) = (K2D ∗ w(1),∇)w(1) + λfλ ,

∫

R2

w(1) dx = 0 ,

fλ = −Lλw∞ + λ(K2D ∗ w∞,∇)w∞ .

(4.15)
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To show that w(1) is of order O(|α|−1) as |α| → ∞, the key observation is that the source term
fλ in (4.15) also belongs to the range of ΛG. Indeed, a similar argument as in [21, Proposition
3.1] implies the existence of a unique hλ ∈ (I − P0)P

eW 1,2(∞) satisfying ΛGhλ = fλ. Then fλ
is decomposed as

fλ = ΛGhλ = − 1

α

(

Lλ − αΛG − λΛw∞

)

hλ +
1

α

(

Lλ − λΛw∞

)

hλ ,

and Eq. (4.15) can thus be reduced to the following system for w(2) = w(1) + λ
αhλ :

(

Lλ − αΛG − λΛw∞− 1
α
hλ

)

w(2) = (K2D ∗ w(2),∇)w(2) +
λ

α
Fλ,α ,

∫

R2

w(2) dx = 0 ,

Fλ,α =
(

Lλ − λΛw∞

)

hλ +
λ

α
(K2D ∗ hλ,∇)hλ .

(4.16)

It is clear that the source term λ
αFλ,α is of order O( λ

|α|) in L2
0(∞; 0) as |α| → ∞. Since λ

αΛhλ
is

a lower order perturbation that becomes small in the regime where |α| ≫ 1, the crucial step to
establish (4.14) is to prove the invertibility of the operator

Lλ − αΛG − λΛw∞ , in the space L2
0(∞;λ) , (4.17)

together with a uniform estimate for its inverse when |α| ≫ 1.

This is an easy task if λ ∈ [0, 12) is small, because one can then work in the space L2
0(∞)

instead of L2
0(∞;λ), and consider the operator in (4.17) as a small perturbation of the more

familiar operator L− αΛG, which has been thoroughly studied in Section 2. As was mentioned
in (2.14), the operator ΛG is skew-symmetric in L2(∞), namely

〈ΛGf, g〉L2(∞) + 〈f,ΛGg〉L2(∞) = 0 , for all f, g ∈ W 1,2(∞) .

Moreover, it follows from (2.13) that −L is a self-adjoint operator in L2(∞) with compact
resolvent, which satisfies the lower bound −L ≥ 0 in L2(∞) and −L ≥ 1

2 in L2
0(∞). These two

observations yield the uniform lower bound

〈
(

− L+ αΛG

)

f, f〉L2(∞) ≥
1

2
‖f‖2L2(∞) , f ∈ L2

0(∞) ∩D(L) , (4.18)

which in turn implies that ‖(−L + αΛG)
−1‖L2

0(∞)→L2
0(∞) ≤ 2 for all α ∈ R. A straightforward

perturbation argument then gives a uniform estimate on (−Lλ +αΛG +λΛw∞)−1 in L2
0(∞) if λ

is sufficiently small, see [21, Proposition 2.1].

For larger values of λ, the term λΛw∞ is not a small perturbation anymore, and the invert-
ibility of the operator Lλ−αΛG−λΛw∞ in L2

0(∞;λ) is not known for arbitrary α ∈ R. However,
if |α| is sufficiently large (depending on λ), one can exploit the stabilizing effect that was already
discussed in Section 2.2 for the simpler operator L−αΛG, see Proposition 2.9. For the modified
operator Lλ − αΛG with λ ∈ [0, 1), one has the following estimates

lim
|α|→∞

‖(I − P0)(−Lλ + αΛG)
−1

P
e‖L2

0(∞;λ)→L2
0(∞;λ) = 0 ,

lim
|α|→∞

‖P0(−Lλ + αΛG)
−1(I − P0)P

e‖L2
0(∞;λ)→L2

0(∞;λ) = 0 ,
(4.19)

which are proved in [32] for λ ∈ [0, 12 ) and in [33] for arbitrary λ ∈ [0, 1). Roughly speaking, this
means that the non-radially symmetric elements of PeL2(∞;λ) are strongly attenuated under
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the action of (−Lλ + αΛG)
−1 when |α| is large. In addition, since the function w∞ belongs to

P2L
2(∞) + P−2L

2(∞), one has the identity

P0Λw∞P0f = 0 hence P0Λw∞f = P0Λw∞(I − P0)f , (4.20)

for all f ∈ P
eW 1,2(∞;λ). Combining (4.19) and (4.20), it is possible to show that λΛw∞ is a

relatively small perturbation of Lλ−αΛG in P
eL2

0(∞;λ) if |α| is sufficiently large (depending on
λ), and this implies the invertibility of Lλ−αΛG+λΛw∞ in P

eL2
0(∞; 0) and provides a uniform

bound for the inverse when |α| ≫ 1.

When λ ∈ [0, 12), the resolvent estimates (4.19) also hold in the smaller space L2
0(∞), instead

of L2
0(∞, λ), and are substantially easier to prove because one can then use the convenient

property that ΛG is skew-symmetric, see [21, 32]. However, when λ ∈ [12 , 1), the Burgers vortex
does not belong to L2(∞) anymore, as can be seen from the shape of the function Gλ in (4.4).
One is then forced to work in a wider space such as L2(∞;λ), where the operator ΛG is no
longer skew-symmetric. The key idea in [33] to overcome this difficulty is to construct explicitly
a bounded and invertible operator T so that ΛGT , the right action of T on ΛG, becomes skew-
symmetric. With this skew-symmetrizer T , the equation (Lλ − αΛG)w = f is written in the
equivalent form

(Lλ − αΛGT )T
−1w = −Lλ(T − I)T−1w + f .

Using the skew-symmetry of ΛGT , one can show that the operator Lλ−αΛGT satisfies resolvent
bounds similar to (4.19), and the additional term Lλ(T − I) can be considered as a relatively
small perturbation. This implies the invertibility of Lλ−αΛGT +Lλ(T −I), hence of Lλ−αΛG.
The argument also yields uniform estimates on the inverse (Lλ−αΛG)

−1, which in turn make it
possible to treat λΛw∞ as a relatively small perturbation when |α| is sufficiently large (depending
on λ), thus concluding the proof of Theorem 4.2.

The uniqueness of asymmetric Burgers vortices in a suitable class of functions is also available
for some range of parameters (λ, α).

Theorem 4.3 (Uniqueness) (i) Case 0 ≤ λ ≪ 1
2 and α ∈ R : There exist λ0 ∈ (0, 12) and

τ0 > 0 such that, if λ ∈ [0, λ0] and α ∈ R, there exists at most one asymmetric Burgers vortex
ωλ,α in the set

{

f ∈ L2(∞) | ‖f − αG‖W 1,2(∞) ≤ τ0
}

.

(ii) Case 0 ≤ λ < 1 and |α| ≪ 1 : For all λ ∈ [0, 1) there exists κ0 = κ0(λ) > 0 such that, for
any α ∈ R with |α| ≤ κ0, there exists at most one asymmetric Burgers vortex ωλ,α in the set
{

f ∈ L2(∞) | ‖f − αGλ‖L2(∞) ≤ κ0
}

.

(iii) Case 0 ≤ λ < 1 and |α| ≫ 1 : For all λ ∈ [0, 1) and all τ > 0 there exists R′(λ, τ) ≥ R0(λ)
such that, for any α ∈ R with |α| ≥ R′(λ, τ), there exists at most one asymmetric Burgers
vortex ωλ,α in the set

{

f ∈ P
eL2(∞, λ) | ‖f − αG − λw∞‖W 1,2(∞;λ) ≤ τ

}

. Here R0(λ) is as in
Theorem 4.2, and R′(λ, τ) satisfies lim

τ→∞
R′(λ, τ) = ∞.

The statement (i) of Theorem 4.3 is proved in [21] using the uniform estimate (4.18) for the
inverse of L − αΛG in L2

0(∞), while (iii) is established in [32, 33] using the stabilization effect
at large circulations described in (4.19). The uniqueness in the case (ii) is obtained in [20] in
the more general framework of the polynomially weighted spaces L2(m). The key point in the
proof of (ii) is an estimate for the inverse L−1

λ in L2
0(m) when m is large enough, which enables

to apply the Banach fixed point theorem when |α| is sufficiently small. Remark that existence
of asymmetric Burgers vortices is also established in [20, 21, 32, 33] for all three cases (i), (ii),
and (iii) above, whereas uniqueness for the parameter regions not covered by Theorem 4.3 is an
interesting but difficult question, which is essentially open.
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4.2 Two-dimensional stability of asymmetric Burgers vortices

In the parameter regions where existence and uniqueness have been established, the next im-
portant issue is stability. Since the Burgers vortex itself is a two-dimensional vorticity field, it
is possible to study its stability within the class of purely two-dimensional flows, and this is
the point of view adopted in this subsection. The axisymmetric case where λ = 0 was already
discussed in detail in Section 2, hence the main focus here will be on the asymmetric case λ 6= 0.

The evolution equations for the perturbations are obtained from system (1.12), where ν = 1
and γ1, γ2, γ3 are as in (4.1), by expanding the vorticity vector ω(x, t) around the stationary
Burgers vortex ωλ,α(x) = (0, 0, ωλ,α(x))

⊤. When the vorticity field w(x, t) = (0, 0, w(x, t))⊤ of
the perturbation is two-dimensional, the problem is reduced to the following equations for the
scalar function w :











∂tw −
(

Lλ − Λωλ,α

)

w + (v,∇)w = 0 , v = K2D ∗ w , t > 0 ,

w|t=0 = w0 ,

∫

R2

w0 dx = 0 .
(4.21)

Here the operators Lλ and Λf are defined by (4.3) and (4.9), respectively. As can be expected,
the properties of the linearized operator Lλ − Λωλ,α

play a crucial role in the stability analysis.
It is not difficult to show that Lλ generates a C0-semigroup in the polynomially weighted space
L2(m) for m < ∞, and an analytic semigroup in the Gaussian weighted space L2(∞;λ). In fact,
the semigroup etLλ has the following explicit representation

(

etLλf
)

(x) =
et

4π
√

aλ(t)a−λ(t)

∫

R2

exp

(

− |x1 − y1|2
4aλ(t)

− |x2 − y2|2
4a−λ(t)

)

f(y1e
1+λ
2

t, y2e
1−λ
2

t) dy ,

where aθ(t) = (1 − e−(1+θ)t)/(1 + θ). Since Λωλ,α
is a relatively compact perturbation of Lλ,

the full linearized operator Lλ−Λωλ,α
is also the generator of a C0 (or analytic) semigroup, and

the main concern is the long-time behavior of that semigroup. The following results have been
established in (essentially) the same parameter regions as in Theorem 4.3.

Proposition 4.4 (Linear stability) (i) Case 0 ≤ λ ≪ 1
2 and α ∈ R : There exists λ1 ∈ (0, 12)

such that, for all λ ∈ [0, λ1] and all α ∈ R,

‖et(Lλ−Λωλ,α
)f‖L2(∞) ≤ C‖f‖L2(∞) e

− 1−λ
2

t , t ≥ 0 , (4.22)

for all f ∈ L2
0(∞). Here C is a universal constant independent of λ ∈ [0, λ1] and α ∈ R.

(ii) Case 0 ≤ λ < 1 and |α| ≪ 1 : For all λ ∈ [0, 1) there exists κ1(λ) > 0 such that, if
|α| ≤ κ1(λ), then

‖et(Lλ−Λωλ,α
)f‖L2(m) ≤ C‖f‖L2(m)e

− 1−λ
2

t , t ≥ 0 , (4.23)

for all f ∈ L2
0(m), m > 3. Here C depends only on λ ∈ [0, 1) and m.

(iii) Case 0 ≤ λ < 1
2 and |α| ≫ 1 : For all λ ∈ [0, 12) there exists R1(λ) ≥ R0(λ) such that, if

|α| ≥ R1(λ), then

‖et(Lλ−Λωλ,α
)
f‖L2(∞) ≤ C‖f‖L2(∞)e

− 1−λ
2

t , t ≥ 0 , (4.24)

for all f ∈ L2
0(∞). Here C depends only on λ and α, while R0(λ) is as in Theorem 4.2.
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The statement (i) of Proposition 4.4 is proved in [21], where Lλ − Λωλ,α
is regarded as a

small perturbation of the simpler operator L−αΛG for which, as recalled in (4.18), the stability
estimate is obtained uniformly in α using the skew-symmetry of ΛG in L2(∞). The case (ii)
follows from the analysis developed in [20]. In fact, as is mentioned in the next subsection, the
three-dimensional stability is the main concern of [20], but the class of perturbations considered
there includes purely two-dimensional flows. In case (ii) the asymmetric Burgers vortex ωλ,α is of
order O(|α|) in L2(∞;λ), and the operator Lλ−Λωλ,α

is handled as a small perturbation of Lλ,
for which complete information on the spectrum and the associated semigroup is available. Case
(iii) is treated in [32], using in an essential way the stabilizing effect at large circulations described
in (4.19). The restriction λ ∈ [0, 12 ) in (iii) is due to the fact that, when λ ≥ 1

2 , the operator
Lλ − Λωλ,α

has to be analyzed in the space L2(∞, λ), where ΛG is no longer skew-symmetric.
So far this difficulty could not be overcome for the stability problem, although existence and
uniqueness of Burgers vortices were established by constructing a suitable skew-symmetrizer, as
explained in Section 4.1.

It should be emphasized here that, in all cases (i), (ii), and (iii), the temporal decay estimate

for the semigroup et(Lλ−Λωλ,α
) involves the exponent −1−λ

2 , which is known to be optimal.
Indeed, by differentiating the identity Lλωλ,α − (K2D ∗ ωλ,α,∇)ωλ,α = 0 with respect to x2,
one observes that ∂2ωλ,α is an eigenfunction of Lλ − Λωλ,α

for the eigenvalue −1−λ
2 . Numerical

results due to Prochazka and Pullin [41] indicate that −1−λ
2 is actually the largest eigenvalue

of Lλ − Λωλ,α
in L2

0(∞, λ) for any λ ∈ [0, 1), but a mathematical proof of this conjecture is still
missing, except in the three cases stated in Proposition 4.4.

The semigroup et(Lλ−Λωλ,α
) has standard parabolic smoothing properties. Nonlinear stabil-

ity with respect to small initial perturbations can thus be obtained by analyzing the integral
equation associated with (4.21) :

w(t) = et(Lλ−Λωα,λ
)w0 −

∫ t

0
e(t−s)(Lλ−Λωα,λ

)(K2D ∗ w(s),∇
)

w(s) ds , (4.25)

and applying the conclusions of Proposition 4.4. This gives the following result :

Theorem 4.5 (Local 2D stability) (i) Case 0 ≤ λ ≪ 1
2 and α ∈ R : There exists ǫ > 0 such

that, for all λ ∈ [0, λ1] and all α ∈ R, the following statement holds. For all initial data w0 ∈
L2
0(∞) such that ‖w0‖L2(∞) ≤ ǫ, Eq. (4.21) admits a unique solution w ∈ C0([0,∞);L2

0(∞)),
which satisfies

‖w(t)‖L2(∞) ≤ C‖w0‖L2(∞) e
− 1−λ

2
t , t ≥ 0 . (4.26)

Here the constant C is independent of λ ∈ [0, λ1] and α ∈ R, while λ1 is as in Proposition 4.4.

(ii) Case 0 ≤ λ < 1 and |α| ≪ 1 : For all λ ∈ [0, 1) there exists ǫ = ǫ(λ) > 0 such that, for
any α ∈ R with |α| ≤ κ1(λ), the following statement holds. For all initial data w0 ∈ L2

0(m),
m > 3, such that ‖w0‖L2(m) ≤ ǫ, Eq. (4.21) admits a unique solution w ∈ C0([0,∞);L2

0(m)),
which satisfies

‖w(t)‖L2(m) ≤ C‖w0‖L2(m) e
− 1−λ

2
t , t ≥ 0 . (4.27)

Here C depends only on λ and m, while κ1(λ) is as in Proposition 4.4.

(iii) Case 0 ≤ λ < 1
2 and |α| ≫ 1 : For all λ ∈ [0, 12) and any α ∈ R with |α| ≥ R1(λ), there

exists ǫ = ǫ(λ, α) > 0 such that the following statement holds. For all initial data w0 ∈ L2
0(∞)

with ‖w0‖L2(∞) ≤ ǫ, Eq. (4.21) admits a unique solution w ∈ C0([0,∞);L2
0(∞)), which satisfies

‖w(t)‖L2(∞) ≤ C‖w0‖L2(∞) e
− 1−λ

2
t , t ≥ 0 . (4.28)

Here C depends only on λ and α, while R1(λ) is as in Proposition 4.4.
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As in Proposition 4.4, the statement (i) of Theorem 4.5 is proved in [21], while (ii) follows
from the results of [20]. The case (iii) is obtained in [32]. It should be emphasized here that the
basin of attraction in the case (i) is uniform in the circulation number α, as a consequence of
the linear estimate (4.22) in Proposition 4.4.

4.3 Three-dimensional stability of Burgers vortices

The stability analysis becomes more complicated when the perturbations are three-dimensional,
because the vorticity field is no longer a scalar quantity, and vortex stretching terms already
appear in the linearized operator. The problem is highly nontrivial even in the axisymmetric
case λ = 0, where Rossi and Le Dizès [43] have shown that the linearized operator does not have
any eigenfunction with nontrivial dependence upon the vertical variable. Numerical evidence
of linear stability with exponential decay of the perturbations was obtained by Schmid and
Rossi [44], but their analysis also reveals the occurrence of short-time amplification for generic
solutions. A mathematical understanding of the underlying mechanisms, leading to a rigorous
explanation of these observations, is an important and challenging question, for which significant
progress has been made in recent years.

Starting from the vorticity equation (1.12), with ν = 1 and γ1, γ2, γ3 as in (4.1), it is easy to
write the evolution equation for perturbations w = ω − ωλ,α, where ωλ,α = (0, 0, ωλ,α)

⊤ is the
Burgers vortex with circulation α. The result is











∂tw −
(

Lλ −Λωλ,α

)

w + (v,∇)w − (w,∇)v = 0 , v = K3D ∗w , t > 0 ,

w|t=0 = w0 , ∇ ·w0 = 0 ,

∫

R2

w0,3(x, x3) dx = 0 , x3 ∈ R ,
(4.29)

where K3D is the kernel of the Biot-Savart law (1.2). Here the operator Lλ is given by (1.13)
with ν = 1, namely

Lλ =







Lλ + ∂2
3 − x3∂3 − 3+λ

2

Lλ + ∂2
3 − x3∂3 − 3−λ

2

Lλ + ∂2
3 − x3∂3






, (4.30)

and Lλ is the two-dimensional differential operator (4.3). On the other hand, the operator Λωλ,α

is defined by

Λωλ,α
w = (K3D ∗ ωλ,α,∇)w + (K3D ∗w,∇)ωλ,α

− (w,∇)K3D ∗ ωλ,α − (ωλ,α,∇)K3D ∗w .
(4.31)

The divergence-free condition as well as the zero mass condition
∫

R2 w3(x, x3) dx = 0 are pre-
served under the evolution defined by (4.29). Note that, at least formally, a divergence-free
vector field w = (w1, w2, w3)

⊤ always satisfies the identity d
dx3

∫

R2 w3(x, x3) dx = 0. This means

that the condition
∫

R2 w0,3(x, x3) dx = 0 in (4.29) is a natural requirement on the initial data,
which does not restrict the generality; see [13, Section 1] for a detailed discussion.

Since the Burgers vortex itself is essentially a two-dimensional flow, it is natural to choose a
functional setting that allows for purely two-dimensional perturbations, and more generally for
perturbations which do not decay to zero as |x3| → ∞. For this purpose, the following function
spaces are introduced in [20, 13] :

X(m) = BC(R;L2(m)) , X0(m) = BC(R;L2
0(m)) , (4.32)
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as well as X(m) = X(m) × X(m) × X0(m). Here BC(R;L2(m)) denotes the space of all
bounded and continuous functions from R into L2(m), which is a Banach space equipped with
the norm ‖φ‖X(m) = supx3∈R ‖φ(·, x3)‖L2(m), and BC(R;L2

0(m)) is the closed subspace defined
in a similar way. Since the leading order term Lλ in the evolution equation (4.29) contains
the dilation operator −x3∂3, one cannot expect that the solutions will be continuous in time
in the uniform topology of X(m). To restore continuity in time, it is convenient to work in
Xloc(m), which is the very same space X(m) equipped with the weaker topology induced by
the countable family of seminorms ‖φ‖Xn(m) = sup|x3|≤n ‖φ(·, x3)‖L2(m), for n ∈ N. For vector
valued functions, the space Xloc(m) is defined in a similar way by endowing X(m) with the
localized topology.

Using these notations, the local stability results available so far can be summarized as follows.

Theorem 4.6 (Local 3D stability) (i) For all λ ∈ [0, 1) and all µ ∈ (0, 1−λ
2 ) there exist

ǫ = ǫ(λ) > 0 and κ2(λ, µ) ∈ (0, κ1(λ)] such that, for any α ∈ R with |α| ≤ κ2(λ, µ), the following
statement holds. For all initial data w0 ∈ X(m), m > 3, with ∇ ·w0 = 0 and ‖w0‖X(m) ≤ ǫ, Eq.
(4.29) admits a unique solution w ∈ L∞(R+;X(m)) ∩ C0([0,∞);Xloc(m)), which satisfies

‖w(t)‖X(m) ≤ C‖w0‖X(m) e
−µt , t ≥ 0 . (4.33)

Here C depends only on α, and κ1(λ) is as in Proposition 4.4.

(ii) Let λ = 0. For all m ∈ (2,∞] and all α ∈ R there exists ǫ = ǫ(m,α) > 0 such that the
following statement holds. For all initial data w0 ∈ X(m) with ∇ · w0 = 0 and ‖w0‖X(m) ≤ ǫ,
Eq. (4.29) admits a unique solution w ∈ L∞(R+;X(m)) ∩ C0([0,∞);Xloc(m)), which satisfies

‖w(t)‖X(m) ≤ C‖w0‖X(m) e
− t

2 , t ≥ 0 . (4.34)

Here C depends only on m and α.

The statement (i) of Theorem 4.6 is proved in [20], using estimates on the semigroup etLλ

generated by the operator Lλ. In view of (4.30), one has the representation

etLλw =

(

e−
3+λ
2

tetSλw1 , e
− 3−λ

2
tetSλw2 , e

tSλw3

)⊤

, (4.35)

where Sλ is the differential operator defined by Sλ = Lλ + ∂2
3 − x3∂3. Since the operators Lλ

and ∂2
3 − x3∂3 act on different variables, it is possible to obtain the following explicit formula

(

etSλf
)

(x) =
1

√

4πa1(t)

∫

R

exp
(

− |x3e−t − y3|2
4a1(t)

)

(

etLλf (·, y3)
)

(x) dy3 , (4.36)

where a1(t) = (1−e−2t)/2 and etLλ is the two-dimensional semigroup encountered in Section 4.2.
Useful estimates for the semigroup etSλ inX(m) are established in [20], together with elementary
spectral properties of the generator Sλ. Note that it is possible to take µ = 1−λ

2 in estimate
(4.33), as can be shown using some arguments borrowed from [13].

The statement (ii) of Theorem 4.6 is established in [13]. Remarkably, as in the two-
dimensional case, the local stability holds for all values of the circulation number α, and moreover
the rate of convergence e−

t
2 is uniform in α. Although the result of (ii) is stated only in the

purely axisymmetric case λ = 0, by a standard perturbation argument it is also possible to
prove local stability of the asymmetric Burgers vortex ωλ,α if the asymmetry parameter λ is
sufficiently small, depending on |α|. The proof of (ii) in [13] is based on the analysis of the
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linearized operator L − αΛG and its associated semigroup, where L and αΛG are shorthand
notations for the operators Lλ and Λωλ,α

, respectively, when λ = 0. Since ΛG is a lower order

perturbation it is not difficult to construct the semigroup et(L−αΛG) in X(m), but the main
problem is to control the long-time behavior. The following result is the key achievement of [13].

Proposition 4.7 (Axisymmetric linear stability) For all m ∈ (2,∞] and all α ∈ R one
has

‖et(L−αΛG)f‖X(m) ≤ Ce−
t
2‖f‖X(m) , t ≥ 0 , (4.37)

for all f ∈ X(m), where C depends only on m and α. Moreover, if ∇·f = 0 then ∇·et(L−αΛ)f = 0.

The proof of Proposition 4.7 in [13] is based on two important observations :

(I) As an effect of vortex stretching, the vertical derivatives of the velocity and vorticity
fields decay exponentially as t → ∞, so that the long-time asymptotics are governed by a
two-dimensional vectorial system.

(II) When restricted to two-dimensional solutions, the linearized operator L−αΛG has sym-
metry properties which imply uniform stability for all values of the circulation parameter.

In the rest of this section both mechanisms are explained in some detail for the more general
semigroup et(Lλ−Λωλ,α

), where 0 ≤ λ < 1. Proposition 4.7 is stated and proved in [13] in the
axisymmetric case λ = 0, but the arguments are robust and can be used to establish linear
stability in the asymmetric case too.

Property (I) above is due to a very specific dependence of the operator Lλ−Λωλ,α
upon the

vertical variable x3. Indeed, using the definition in (4.30), it is straightforward to verify that
[∂3,Lλ] = −∂3, where [A,B] = AB −BA denotes the commutator of A and B. Moreover, since
the Burgers vortex ωλ,α is a two-dimensional stationary solution, one has [∂3,Λωλ,α

] = 0. At
the level of the semigroup, these identities imply that

∂k
3 e

t(Lλ−Λωλ,α
) = e−kt et(Lλ−Λωλ,α

)∂k
3 , t ≥ 0 , (4.38)

for all integer k ∈ N. Since the semigroup e
t(Lλ−Λωλ,α

)
grows at most exponentially in time, at a

rate that depends only on λ and α, Eq. (4.38) shows that the kth order vertical derivative of any
solution to the linearized equation ∂tw = (Lλ−Λωλ,α

)w decays exponentially as t → ∞, if k ∈ N

is large enough. By a simple interpolation argument, it follows that any expression involving at
least one vertical derivative of the solution becomes negligible in the long-time regime, which
means that one can restrict the analysis to the two-dimensional vectorial system obtained by
disregarding the vertical dependence of all quantities under consideration. More precisely, in
view of (4.31), the operator Λωλ,α

can be decomposed as

Λωλ,α
w = Λ

(1)
ωλ,α

w +Λ
(2)
ωλ,α

w −Λ
(3)
ωλ,α

w −Λ
(4)
ωλ,α

w ,

where, with the notations ∇h = (∂1, ∂2)
⊤ and wh = (w1, w2)

⊤,

Λ
(1)
ωλ,α

w = (K2D ∗ ωλ,α,∇h)w , Λ
(2)
ωλ,α

w = (K3D ∗w,∇)ωλ,α ,

Λ
(3)
ωλ,α

w = (wh,∇h)K3D ∗ ωλ,α , Λ
(4)
ωλ,α

w = ωλ,α∂3K3D ∗w .
(4.39)
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The discussion above motivates the following decomposition of Λωλ,α
into 2D and 3D parts :

Λωλ,α
w =

(

(uλ,α,∇h)wh − (wh,∇h)uλ,α
Λωλ,α

w3

)

+ Rλ,αw ,

Rλ,αw =
(

(K3D ∗w)h −K2D ∗ w3,∇h

)

ωλ,α − Λ
(4)
ωλ,α

w .

(4.40)

To derive (4.40) one uses the fact that ωλ,α = (0, 0, ωλ,α)
⊤ is a two-dimensional vorticity field,

so that K3D ∗ ωλ,α = (uλ,α, 0)
⊤, with uλ,α = K2D ∗ ωλ,α. The operator Λωλ,α

, defined in (4.9),
is artificially produced by adding and subtracting the term (K2D ∗ w3,∇h)ωλ,α in the right-
hand side. As is shown in [13, Proposition 4.5], all terms in the operator Rλ,α involve at least
one derivative with respect to x3, and hence play a negligible role in long-time asymptotics.
Therefore, the problem is now reduced to the analysis of the simpler operator Lλ,α defined by

Lλ,αw = Lλw −
(

(uλ,α,∇h)wh − (wh,∇h)uλ,α
Λωλ,α

w3

)

= Aλ,αw + (∂2
3 − x3∂3)w ,

where

Aλ,αw =

(

Aλ,α,hwh

Aλ,α,3w3

)

=







(

Lλ − 3+λ
2

)

w1 − (uλ,α,∇h)w1 + (wh,∇h)uλ,α,1
(

Lλ − 3−λ
2

)

w2 − (uλ,α,∇h)w2 + (wh,∇h)uλ,α,2
(

Lλ − Λωλ,α

)

w3






. (4.41)

The crucial observation here is that the (vectorial) operator Aλ,α acts only on the horizontal
variable, so that the semigroup etLλ,α generated by Lλ,α = Aλ,α+ ∂2

3 −x3∂3 can be expressed in
terms of the 2D semigroup etAλ,α in the same way as in (4.36). As a consequence, the long-time

behavior of the semigroup et(Lλ−Λωλ,α
) in X(m) can be deduced from the spectral analysis of the

two-dimensional operator Aλ,α acting on L
2(m) := L2(m)2×L2

0(m). This leads to the following
criterion [13] :

Stability criterion : Let λ ∈ [0, 1), α ∈ R, and m > 2. If the stability estimate

‖etAλ,α‖L2(m)→L2(m) ≤ Ce−µt , t ≥ 0 , (4.42)

holds for some µ ∈ (0, 1−λ
2 ], then ‖et(Lλ−Λωλ,α

)‖X(m)→X(m) ≤ C ′e−µt holds for all t ≥ 0.

The key observation (II) concerns the structure of the 2D operator Aλ,α. From the definition
(4.41) it is apparent that the horizontal component wh = (w1, w2)

⊤ and the vertical component
w3 are completely decoupled under the action of Aλ,α. Furthermore, the third component
Aλ,α,3 = Lλ − Λωλ,α

acting on w3 is exactly the linearized operator at the Burgers vortex
considered in Section 4.2, when only two-dimensional perturbations are allowed. Proposition 4.4
(iii) thus provides the desired stability estimate for the semigroup generated by Aλ,α,3, uniformly
for all α ∈ R if the asymmetry parameter λ is small enough.

One of the main contributions of [13] is the analysis of the horizontal component Aλ,α,h,
which also has a nice structure that allows to obtain a stability estimate for all α ∈ R, at least
if λ = 0. The argument is as follows. Since the operator wh 7→ (wh,∇h)uλ,α − (uλ,α,∇h)wh

is a relatively compact perturbation of the second order operator Lλ, a standard perturbation
argument reproduced in [13, Proposition 3.4] shows that the long-time behavior of the semi-
group etAλ,α,h in L2(m)2 (with m > 1 sufficiently large) is determined by the eigenvalues of the
generator Aλ,α,h in a Gaussian weighted space such as L2(∞;λ)2. As usual, when λ ∈ [0, 12),
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one can use L2(∞)2 instead of L2(∞;λ)2. To locate the eigenvalues of Aλ,α,h, the following
identities play a crucial role :

xh · Aλ,α,hwh = (Lλ − 2)xh ·wh − 2∇h ·wh − λ(x1w1 − x2w2)

− (uλ,α,∇h)xh ·wh + (wh,∇h)xh · uλ,α ,
∇h · Aλ,α,hwh = (Lλ − 1)∇h ·wh − (uλ,α,∇h)∇h ·wh .

(4.43)

Here the notation xh = x = (x1, x2)
⊤ is used. When λ = 0 the two-dimensional velocity field

uλ,α = αvG satisfies xh ·uλ,α = 0, hence the first identity in (4.43) becomes substantially simpler.
If wh ∈ L2(∞)2 ∩D(L) is a nontrivial eigenfunction of Aλ,α,h with eigenvalue µ ∈ C, one has
the obvious relations

µwh = Aλ,α,hwh , µxh ·wh = xh · Aλ,α,hwh , µ∇h ·wh = ∇h · Aλ,α,hwh ,

which can be combined with (4.43) to obtain valuable information on µ. Indeed, assume for
simplicity that λ = 0. If ∇h ·wh 6≡ 0, the identity

µ∇h ·wh = (L− 1)∇h ·wh − α(vG,∇h)∇h ·wh

implies that Re(µ) ≤ −3/2, in view of the spectral properties of L established in Proposition 2.2
and the fact that the operator ω 7→ (vG,∇)ω is skew-symmetric in L2(∞), see (2.14). If
∇h ·wh ≡ 0 and xh ·wh 6≡ 0, one has the relation

µxh ·wh = (L− 2)xh ·wh − α(vG,∇h)xh ·wh ,

which implies that Re(µ) ≤ −2 by the same argument. Finally, if xh · wh ≡ 0, the eigenvalue
equation reduces to

µwh = (L− 3
2)wh − α(vG,∇h)wh + αw⊥

h h , h(xh) =
1

2π|xh|2
(1− e−

|xh|2

4 ) ,

and a simple energy estimate leads to the conclusion that Re(µ) ≤ −3/2 in all cases. As a
consequence, when λ = 0, one has the desired stability estimate

‖etAλ,α,hwh‖L2(m)2 ≤ Cm,α e
− 3

2
t‖wh‖L2(m)2 , t ≥ 0 , (4.44)

for all α ∈ R, if m > 1 is sufficiently large. Note that the constant in (4.44) depends on α and
becomes large as |α| → ∞, which may be related to the short time amplification phenomenon
observed numerically by Schmid and Rossi [44].

By a perturbation argument, it is easy to show that the stability estimate also holds if the
asymmetry parameter λ is nonzero and small, but it is unclear whether the smallness assumption
on λ is uniform with respect to the circulation parameter α. This interesting question is answered
affirmatively by Theorem 4.5 if the perturbations are restricted to purely two-dimensional flows.
In the general case what is missing so far is a precise information on the eigenvalues of the
two-dimensional operator Aλ,α,h, especially in the regime where |α| ≫ 1.

5 Conclusion

As can be seen from the results reviewed in the previous sections, the mathematical theory of
viscous vortices has reached a certain level of maturity, but many interesting questions remain
open to the present date. In the simple case of a single, axisymmetric, straight vortex tube, there
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are explicit formulas for the vorticity and velocity profiles, and the stability with respect to two-
dimensional perturbations is fully understood for all values of the total circulation (Section 2.1),
including the large Reynolds number limit where additional stabilization occurs (Section 2.2).
In presence of a non-axisymmetric strain, existence of stretched vortices is known for all values
of the circulation and asymmetry parameters (Section 4.1), but uniqueness and stability results
are not completely satisfactory, except perhaps in the large circulation limit where asymptotic
symmetrization and stabilization are observed (Section 4.2). When arbitrary three-dimensional
perturbations are allowed, local stability of the axisymmetric Burgers vortex is well understood
for all values of the total circulation (Section 4.3), but less is known in the asymmetric case,
and the question is essentially open for the self-similar Lamb-Oseen vortex, due to the lack of
stretching in the vertical direction.

In real fluids, however, one usually observes the interaction of several vortex tubes, none of
which is perfectly straight, and vorticity is also created near the boundaries. All these discrep-
ancies from the ideal situation considered above give rise to difficult mathematical questions,
which are essentially open. The rigorous theory of curved vortex filaments in viscous flows is
still in its infancy, except perhaps in the axisymmetric case without swirl where existence and
uniqueness of vortex rings can be established (Section 3). Interaction of vortices has been stud-
ied so far only in the weakly coupled regime where the distance between the vortex centers is
much larger than the size of the vortex cores [10, 36, 37]. Stronger interactions, such as vortex
merging (in two dimensions) or reconnection of vortex tubes (in three dimensions), play a crucial
role in the dynamics of turbulent flows, but a rigorous description of these phenomena seems
completely out of reach. Finally, there are no mathematical results yet concerning the interac-
tion of viscous vortices with rigid boundaries, although the existence of self-similar vortices in
two-dimensional exterior domains can be established at least for small values of the circulation
parameter (Section 2.3).

Cross references

• Self-Similar Solutions to the Nonstationary Navier-Stokes Equations

• Large Time Behavior of The Navier-Stokes Flow

• Models and Special Solutions of the Navier-Stokes Equations

• Inviscid Limit and Boundary Layer of the Navier-Stokes Flow

References

[1] M. Ben-Artzi, Global solutions of two-dimensional Navier-Stokes and Euler equations, Arch.
Rational Mech. Anal. 128 (1994), 329–358.

[2] J. M. Burgers, A mathematical model illustrating the theory of turbulence, Adv. Appl.
Mech. 1 (1948), 171–199.

[3] A. Carpio, Asymptotic behavior for the vorticity equations in dimensions two and three,
Comm. Partial Differential Equations 19 (1994), 827–872.

[4] Wen Deng, Resolvent estimates for a two-dimensional non-self-adjoint operator, Commun.
Pure Appl. Anal. 12 (2013), 547–596.

[5] Wen Deng, Pseudospectrum for Oseen vortices operators, Int. Math. Res. Not. IMRN 2013
(2013), 1935–1999.

30
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[28] D. Küchermann, Report on the I.U.T.A.M Symposium on concentrated vortex motion in
fluids, J. Fluid Mech. 21 (1965), 1–20.

[29] D. Iftimie, G. Karch, and C. Lacave, Self-similar asymptotics of solutions to the Navier-
Stokes system in two-dimensional exterior domain, J. Lond. Math. Soc. 90 (2014), 785–806.

[30] O. Ladyzhenskaya, Unique solvability in the large of the three-dimensional Cauchy problem
for the Navier-Stokes equations in the presence of axial symmetry, Zap. Nauchn. Semin.
Leningr. Otd. Mat. Inst. Steklova 7 (1968), 155–177 (in Russian).

[31] T. Lundgren, Strained spiral vortex model for turbulent fine structure, Phys. Fluids 25
(1982), 2193.

[32] Y. Maekawa, On the existence of Burgers vortices for high Reynolds numbers, J. Math.
Anal. Appl. 349 (2009), 181–200.

[33] Y. Maekawa, Existence of asymmetric Burgers vortices and their asymptotic behavior at
large circulations, Math. Models Methods Appl. Sci. 19 (2009), 669–705.

[34] Y. Maekawa, Spectral properties of the linearization at the Burgers vortex in the high
rotation limit, J. Math. Fluid Mech. 13 (2011), 515–532.

[35] Y. Maekawa, On asymptotic stability of global solutions in the weak L2 space for the
two-dimensional Navier-Stokes equations, Analysis 35 (2015), 245–257.

[36] C. Marchioro, On the inviscid limit for a fluid with a concentrated vorticity, Commun.
Math. Phys. 196 (1998), 53–65.

[37] C. Marchioro, Vanishing viscosity limit for an incompressible fluid with concentrated vor-
ticity, J. Mathematical Phys. 48 (2007), 065302 (1-16).

[38] K. Masuda, Weak solutions of Navier-Stokes equations, Tohoku Math. J. 36 (1984), 623–
646.

[39] H. K. Moffatt, S. Kida and K. Ohkitani, Stretched vortices–the sinews of turbulence;
large-Reynolds-number asymptotics, J. Fluid Mech. 259 (1994), 241–264.

[40] A. Prochazka and D. I. Pullin, On the two-dimensional stability of the axisymmetric Burgers
vortex, Phys. Fluids. 7 (1995), 1788–1790.

[41] A. Prochazka and D. I. Pullin, Structure and stability of non-symmetric Burgers vortices,
J. Fluid Mech. 363 (1998), 199–228.

[42] A. C. Robinson and P. G. Saffman, Stability and structure of stretched vortices, Stud. Appl.
Math. 70 (1984), 163–181.

[43] M. Rossi and S. Le Dizès, Three-dimensional temporal spectrum of stretched vortices, Phys.
Rev. Lett. 78 (1997), 2567–2569.

[44] P. J. Schmid and M. Rossi, Three-dimensional stability of a Burgers vortex, J. Fluid Mech.
500 (2004), 103–112.

[45] M. Ukhovskii and V. Yudovich, Axially symmetric flows of ideal and viscous fluids filling
the whole space, J. Appl. Math. Mech. 32 (1968), 52–61.

32


