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Abstract. We describe and rigorously justify the nonlinear interaction of

highly oscillatory waves in nonlinear Schrödinger equations, posed on Eu-

clidean space or on the torus. Our scaling corresponds to a weakly nonlinear
regime where the nonlinearity affects the leading order amplitude of the solu-

tion, but does not alter the rapid oscillations. We consider initial states which

are superpositions of slowly modulated plane waves, and use the framework
of Wiener algebras. A detailed analysis of the corresponding nonlinear wave

mixing phenomena is given, including a geometric interpretation on the res-

onance structure for cubic nonlinearities. As an application, we recover and
extend some instability results for the nonlinear Schrödinger equation on the

torus in negative order Sobolev spaces.

1. Introduction

1.1. Physical motivation. The (cubic) nonlinear Schrödinger equation (NLS)

(1.1) i∂tu+
1
2

∆u = λ|u|2u,

with λ ∈ R∗, is one of the most important models in nonlinear science. It describes
a large number of physical phenomena in nonlinear optics, quantum superfluids,
plasma physics or water waves, see e.g. [30] for a general overview. Independent
of its physical context one should think of (1.1) as a description of nonlinear waves
propagating in a dispersive medium. In the present work we are interested in
describing the possible resonant interactions of such waves, often referred to as wave
mixing. The study of this nonlinear phenomena is of significant mathematical and
physical interest: for example, in the context of fiber optics, where (1.1) describes
the time-evolution of the (complex-valued) electric field amplitude of an optical
pulse, it is known that the dominant nonlinear process limiting the information
capacity of each individual channel is given by four-wave mixing, cf. [16, 32]. Due
to its cubic nonlinearity, (1.1) seems to be a natural candidate for the investigation
of this particular wave mixing phenomena. Similarly, four wave mixing appears
in the context of plasma physics where NLS type models are used to describe
the propagation of Alfvén waves [28]. Moreover, recent physical experiments have
shown the possibility of matter-wave mixing in Bose–Einstein condensates [12]. A
formal theoretical treatment, based on the Gross–Pitaevskii equation (i.e. a cubic
NLS describing the condensate wave function in a mean-field limit), can be found
in [31, 17]. Finally, we also want to mention the closely related studies on so-called
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auto-resonant solutions of NLS given in [13] where again wave mixing phenomena
are used as a method of excitation and control of multi-phase waves.

Due to the high complexity of the problem most of the aforementioned works are
restricted to the study of small amplitude waves, representing, in some sense, the
lowest order nonlinear effects in systems which can approximately be described by a
linear superposition of waves. In addition a slowly varying amplitude approximation
is usually deployed. By doing so one restricts himself to resonance phenomena
which are adiabatically stable over large space- and time-scales. We shall follow
this approach by introducing a small parameter 0 < ε � 1, which represents the
microscopic/macroscopic scale ratio, and consider a rescaled version of (1.1):

(1.2) iε∂tu
ε +

ε2

2
∆uε = λε|uε|2uε.

This is a semi-classically scaled NLS [6] representing the time evolution of the
wave field uε(t, x) on macroscopic length- and time-scales. In the following we
seek an asymptotic description of uε as ε → 0 on space/time-intervals, which are
independent of ε. Note that due to the small parameter ε in front of the nonlinearity,
we consider a weakly nonlinear regime. This means that the nonlinearity does not
affect the geometry of the propagation, see §1.2 below. Technically, it does not
show up in the eikonal equation, but only in the transport equations determining
the modulation of the leading order amplitudes. In view of these remarks, the sign
of λ (focusing or defocusing nonlinearity) turns out to be irrelevant.

1.2. A general formal computation. In order to describe the appearance of
the wave mixing in solutions to (1.6), we follow the Wentzel-Krammers-Brillouin
(WKB) approach, as first rigorously settled by Lax [23]. Consider approximate
solutions of (1.2) in the form of high-frequency wave packets, such as

(1.3) a(t, x)eiφ(t,x)/ε.

For such a single mode to be an approximate solution, it is necessary that the rapid
oscillations are carried by a phase φ which solves the eikonal equation (see [6], where
also other regimes, in terms of the size of the coupling constant, are discussed):

(1.4) ∂tφ+
1
2
|∇φ|2 = 0.

Nonlinear interactions of high frequency waves are then found by considering su-
perpositions of wave packets (1.3). By the cubic interaction, three phases φ1, φ2

and φ3 generate
φ = φ1 − φ2 + φ3.

The corresponding term is relevant at leading order if and only if this new phase φ
is characteristic, i.e. solves the eikonal equation (1.4) while also each φj , j = 1, 2, 3
does so. More generally, we will have to construct a set of phases {φj}j∈J , for some
index set J ⊂ Z, such that each φj is characteristic, and the set is stable under the
nonlinear interaction. That is, if k, `,m ∈ J are such that φ = φk − φ` + φm is
characteristic, then φ ∈ {φj}j∈J . Given some index j ∈ J , the set of (four-wave)
resonances leading to the phase φj is then

Ij =
{

(k, `,m) ∈ J3 ; φk − φ` + φm = φj
}
.

One of the tasks of this work to study the structure of Ij . A first important step is
obtained by plugging φ = φk − φ` + φm into (1.4), since then, an easy calculation
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shows that φ is characteristic if and only if the following resonance condition is
satisfied:

(1.5) (∇φ` −∇φm) · (∇φ` −∇φk) = 0.

Obviously this is a quite severe restriction in one spatial dimension, while in higher
dimensions there are many possibilities to satisfy (1.5). In order to gain more
insight we shall restrict ourselves from now on to the case of plane waves (i.e.
linear phases, see §2.1), This choice allows for a more detailed mathematical study
and is also the most important case from the physical point of view, cf. [31, 13].
The precise mathematical setting is then as follows.

1.3. Basic mathematical setting and outline. In the following the space vari-
able x ∈M will either belong to the whole Euclidean spaceM = Rd, or to the torus
M = Td (we denote T = R/2πZ), for some d ∈ N. The latter can be motivated by
the fact that numerical simulations of (1.6) are mainly based on pseudo-spectral
schemes and thus naturally posed on Td, see e.g. [2, 3]. We then consider the initial
value problem for the slightly more general NLS

(1.6) iε∂tu
ε +

ε2

2
∆uε = λε|uε|2σuε ; uε(0, x) = uε0(x),

where σ ∈ N∗. Although we obtain the most precise results (concerning the geom-
etry of resonances, in particular) in the case of the cubic nonlinearity (σ = 1), we
are in fact able to rigorously justify WKB asymptotics also for higher order nonlin-
earities. We assume that (1.6) is subject to an initial data uε0, which is assumed to
be close (in a sense to be made precise in §6) to superposition of highly oscillatory
plane waves, i.e.

(1.7) uε0(x) ≈
∑
j∈J0

αj (x) eiκj ·x/ε,

where J0 ⊆ Z is a (not necessarily finite) given index set. In the Euclidean case
we allow for wave vectors κj ∈ Rd, whereas on M = Td we impose κj ∈ Zd.
Moreover, in the latter case, we choose αj to be independent of x ∈ Td, so that (1.7)
corresponds to an expansion in terms of Fourier series (with ε−1 ∈ N). The case
of x-dependent αj ’s on Td could be considered as well, by reproducing the analysis
on Rd. We choose not to do so here, since it brings no real new information.

In particular, for x ∈ T (the one-dimensional torus), our analysis leads to a
remarkably simple approximation.

Theorem 1.1. For x ∈ T, consider (1.6) with σ = 1. Suppose that the initial data
are of the form (1.7) with κj ≡ j ∈ Z and (αj)j ∈ `1(Z).

Then for all T > 0, there exist C = C(T ) and ε0 > 0, such that for all ε ∈]0, ε0],
with 1/ε ∈ N∗, it holds

sup
t∈[0,T ]

∥∥uε(t)− uεapp(t)
∥∥
L∞(T)

6 Cε,

where the approximate solution uεapp is given by

uεapp(t, x) =
∑
j∈Z

αje
−iλt(2M−|αj |2)ei(jx−

1
2 j

2t)/ε, and M =
∑
k∈Z
|αk|2.
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We see that at leading order, the nonlinear interaction shows up through an
explicit modulation at scale O(1). It is well known that the one-dimensional cubic
Schrödinger equation is completely integrable (see [18, 24] for the periodic case).
However, this aspect does not play any role in the proof of Theorem 1.1, which in
itself can be seen as a consequence of the more general result stated in Theorem 6.5.
On the other hand, several aspects in the discussion on possible phase resonances
and the creation of amplitudes seem to be specific to both properties d = 1 and
σ = 1 (see §2 and §3).

In order to prove Theorem 6.5, and henceforth also Theorem 1.1, we need to
set up a rigorous multiphase WKB approximation for solutions to (1.6). To this
end, there are essentially two steps needed in our analysis. First, we detail the
approach sketched above by examining the possible resonances between the phases,
and analyzing the evolution and/or the creation of the corresponding profiles aj .
The second step then consists in making this approach rigorous: we construct the
profiles aj , and show that the obtained ansatz is a satisfactory approximation of
the exact solution uε, up to O(ε) in a space contained in L∞(M). As it is standard,
we prove in fact a stronger stability result: Starting from any approximate solution
uεapp constructed on profiles, we show that, for any initial data close (as ε goes to
zero) to uεapp|t=0, there exists an exact solution which is close to uεapp, on some time
interval independent of ε (which, for ε small enough, may be chosen as any finite
time up to which uεapp is defined).

In the case of a single oscillation only, it suffices to multiply uε by e−iφ/ε to
filter out rapid oscillations, see [6]. In the case where several phases are present,
this strategy obviously fails. To overcome this issue, a fairly general mathematical
approach, which has proved efficient in several contexts (see e.g. [15, 27, 26]),
consists in working in rescaled Sobolev spaces, usually denoted by Hs

ε , for s > 0.
These are the usual Sobolev spaces, where derivatives are scaled by ε, in order to
account for the spatial oscillations at scale ε. More precisely, if s ∈ N,

‖f‖2Hsε :=
∑
|α|6s

‖(ε∂)αf‖2L2 .

However, due to the negative power of ε in the associated Gagliardo–Nirenberg in-
equalities, this technique usually demands to construct approximate solution with
a high order of precision (see [14] for a closely related study on the interaction
of high-frequency waves in periodic potentials). Another, more sophisticated, ap-
proach consists in filtering out the rapid oscillations in terms of the free evolution
group, as in [29]. In the present work though, we shall use a simpler approach, which
allows us to justify the multiphase weakly nonlinear WKB analysis in a remark-
ably straightforward way. This approach relies on the use of Wiener algebras, as
introduced in [20], and further developed in [22, 4, 9]. This analytical framework is
particularly convenient in the case of plane waves, but could probably be extended
to more general situations, up to some geometric constraints on the phases. How-
ever, the first step of the analysis, i.e. describing all possible resonances, becomes
much more intricate, see e.g. [21, 19].

As well shall see during the course of the proof, the use of Wiener algebras has
several advantages on the technical level. We point out that this framework makes
it possible to justify the WKB approximation with an error estimate of order O(ε)
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without constructing correctors (which would have to be of order ε or even smaller,
when working in Hs

ε spaces, see e.g. [15, 27], or [7, 14] in the NLS case).

1.4. An application to instability. As an application of the semi-classical anal-
ysis for (1.6), we recover the main result in [8] (see also [5]), concerning NLS in
the periodic case. This result has been established in the case d = 1, and is hereby
extend to higher dimensions. We also propose a variation on a result in [25] (see
assertion 3 in the theorem below).

Theorem 1.2. Let d > 1, σ ∈ N∗ and λ ∈ {±1}. Fix s < 0.
1. For all ρ > 0, we can find a solution u to

(1.8) i∂tu+
1
2

∆u = λ|u|2σu, x ∈ Td,

with ‖u(0)‖Hs(Td) < ρ, such that for all δ > 0, there exists ũ solution to (1.8) with

‖u(0)− ũ(0)‖Hs(Td) < δ,

and

sup
06t6δ

∣∣∣∣∫
Td

(u(t, x)− ũ(t, x)) dx
∣∣∣∣ > cρ,

for some constant c > 0 independent of ρ and δ. In particular, the solution map
fails to be continuous as a map from Hs(Td) to Hk(Td), no matter how close to
−∞ the exponent k may be.
2. Suppose σ > 2. For any ρ > 0 and δ > 0 there exist smooth solutions u, ũ of
(1.8) such that u(0)− ũ(0) is equal to a constant of magnitude at most δ, and

‖u(0)‖Hs(Td) + ‖ũ(0)‖Hs(Td) 6 ρ ; sup
06t6δ

∣∣∣∣∫
Td

(u(t, x)− ũ(t, x)) dx
∣∣∣∣ > cρ,

for some constant c > 0 independent of ρ and δ.
3. For any t 6= 0, the flow-map associated with (1.8) is discontinuous as a map from
L2(Td), equipped with its weak topology, into the space of distributions

(
C∞(Td)

)∗
at any constant α0 ∈ C \ {0} ⊂ L2(Td).

We show in §7 that the above instability result can be viewed as a consequence
of multiphase weakly nonlinear geometric optics. The first two assertions are an
extension of the results in [8], so we shall not comment on their meaning, and refer to
the discussion in [8]. We invite the reader to consult [25] for a stronger instability
result in the one-dimensional case: indeed, when d = σ = 1, the author shows
the third point in the above statement for any α0 ∈ L2(T) \ {0}, not necessarily
constant.

1.5. Structure of the paper. We first study in detail the case of the cubic nonlin-
earity (σ = 1). In §2, we consider the set of resonant phases, and in §3, we analyze
the corresponding amplitudes. The case of higher order nonlinearities is treated
in §4. In §5, we set up the analytical framework, with which a general stability
result (of which Theorem 1.1 is a straightforward consequence) is established in §6.
Theorem 1.2 is proved in §7. Finally, in an appendix, we sketch how the previous
semi-classical analysis can be adapted to more general sets of initial plane waves
(including generic finite sets of wave vectors).

Acknowledgments. The first author wishes to thank Thierry Colin and David Lannes
for preliminary discussions on this subject.
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2. Analysis of possible resonances in the cubic case

In this section, we show that when σ = 1, the set of relevant phases can be
described in a fairly detailed way.

2.1. General considerations. We seek an approximation of the form

uε(t, x) ≈
∑
j∈J

aj(t, x)eiφj(t,x)/ε,

where here and in the following J ⊂ Z denotes the index set of relevant phases
φj (yet to be determined). Note that using J is only a renumbering, so that
j 6= k ⇒ φj 6= φk. In the case x ∈ Td, one simply drops the dependence of aj upon
x. In general J0 ( J , i.e. we usually need to take into account more phases in (2.1)
than we are given initially.

As a first step we need to determine the characteristic phases φj(t, x) ∈ R. For
plane-wave initial data of the form (1.7) we are led to the following initial value
problem

∂tφj +
1
2
|∇φj |2 = 0 ; φj(0, x) = κj · x,

the solution of which is explicitly given by

(2.1) φj(t, x) = κj · x−
t

2
|κj |2.

Recall that for x ∈ Rd, we assume κj ∈ Rd, whereas in the case x ∈ Td, we restrict
ourselves to κj ∈ Zd. Of course, these phases φj remain smooth for all time, i.e.
no caustic appears.

In the cubic case σ = 1, the set of resonances leading to the phase φj is therefore
given by

Ij = {(k, `,m) ∈ J3 ; κk − κ` + κm = κj , |κk|2 − |κ`|2 + |κm|2 = |κj |2},

and the corresponding resonance condition (1.5) becomes

(2.2) (κ` − κm) · (κ` − κk) = 0.

As we shall see, this condition provides several insights on the structure of four-wave
resonances.

2.2. The one-dimensional case. For d = 1 the condition (2.2) implies that if
(k, `,m) ∈ Ij , then κ` = κm, or κ` = κk. Therefore, when d = 1, the set Ij is fully
described by:

Ij = {(j, `, `), (`, `, j) ; ` ∈ J},

no new phase can be generated by a cubic interaction.

In higher dimensions, however, the situation is much more complicated and
heavily depends on the number of initial modes.

2.3. Multi-dimensional case d > 2. We start with the simplest multiphase situ-
ation and proceed from there to more complicated cases. Eventually we shall arrive
at a geometric interpretation for the generic case.
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2.3.1. One or two initial modes. If we start from only two initial modes, ]J0 = 2,
the resonance condition (2.2) implies that the cubic interaction between these two
phases cannot create a new characteristic phase. In other words, uε exhibits at
most two rapid oscillations at leading order. Recalling that φ = 0 is an admissible
phase, the case of a single initial phase ]J0 = 1, is therefore included (if one of the
initial amplitudes is set equal to zero). We want to emphasize that the case of at
most two initial phases is rather particular, since (2.2) implies that the situation is
the same for all spatial dimensions d > 1.

Remark 2.1. In addition, the fact that two phases cannot create a new one extends
also to higher order (gauge invariant) nonlinearities f(z) = λ|z|2σz, for σ ∈ N,
σ > 2, see §4.

2.3.2. Three or four initial modes. This case can be fully understood by the follow-
ing geometric insight, already noticed in [10]:

Lemma 2.2. Let d > 2, and k, `,m belong to J . Then, (κk, κ`, κm) ∈ Ij pre-
cisely when the endpoints of the vectors κk, κ`, κm, κj form four corners of a non-
degenerate rectangle with κ` and κj opposing each other, or when this quadruplet
corresponds to one of the two following degenerate cases: (κk = κj , κm = κ`), or
(κk = κ`, κm = κj).

Remark 2.3. In the degenerate cases, no new phase is created.

Proof. We recall the argument given in [10], by first noting that the relations be-
tween (κj , κk, κ`, κm) formulated in (2.1), are equivalently fulfilled by (κk −κ, κ`−
κ, κm − κ, κj − κ), for any κ ∈ Rd (resp. κ ∈ Zd). This is easily seen by ex-
panding the second relation in (2.1) and inserting the first one. Thus, choosing
κ = κj , it therefore suffices to prove this geometric interpretation for κj = 0, which
consequently shows: κk +κm = κ` such that κk ·κm = 0, by the law of cosines. �

In summary, we conclude that three initial (plane-wave) phases create at most
one new phase, such that the corresponding four wave vectors form a rectangle.
When the initial wave vectors {κj}j∈J0 are chosen such that their endpoints form
the four corners of a rectangle, no new phase can be created by the cubic nonlin-
earity and uε exhibits only four rapid oscillations. We close this subsection with
two illustrative examples.

Example 2.4. Let d = 2. Consider κ1 = (0, 1), κ2 = (1, 1) and κ3 = (1, 0). The
cubic interaction creates the zero mode φ4 ≡ 0.

Example 2.5. Again let d = 2, with now κ1 = (1, 1), κ2 = (1, 2) and κ3 = (3, 2). In
this case, we create a non-zero phase φ4, with corresponding wave vector κ4 = (3, 1).

The geometric insight gained above then directly leads us to the following de-
scription of the resonant set Ij in the general case.

2.3.3. The general case. We are given a countable (possibly finite) number of initial
phases {φj}j∈J0 with corresponding wave vectors {κj}j∈J0 . From the discussion of
the previous paragraph it is clear that there are two possible situations:

(a) Either, it is impossible to create a new rectangle from any possible subset
J̃0 ⊂ J0, such that ]J̃0 = 3. If so, then no new phase can be created. This
is the generic case.
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(b) Or, starting from an initial (finite or countable) set S0 = {κj}j∈J0 , we may
obtain a first generation S1 = {κj}j∈J1 with J0 ⊂ J1 (i.e. S0 ⊂ S1) in
the following way: we add to S0 all points κ ∈ Rd, such that there exist
J̃0 ⊂ J0 with ]J̃0 = 3, and such that {κj}J̃0

∪{κ} is a rectangle. Note that,
if J0 ⊂ Zd, then J1 ⊂ Zd. By a recursive scheme, we are led to a (finite
or countable) set S which is stable under the completion of right-angled
triangles formed of points from this set, into rectangles. Furthermore, if
S0 ⊂ Zd, then S ⊂ Zd.

Example 2.6. As already seen, the simplest examples for possibility (a) are the cases
]J0 6 3 when the triangle formed by the endpoints of the considered wave vectors
has no right angle, or ]J0 = 4, where the four initial phases are chosen such that
their corresponding wave vectors {κj}j∈J0 already form the corners of a rectangle.

From a finite number of initial phases, possibility (b) may lead to a finite as well
as to an infinite set J . Even for d = 2, we have:

Example 2.7. In the plane R2, start with

J0 = {(−1, 1), (0, 1), (0, 0), (1, 0)}.

The first generation is then

J1 = {(−1, 1), (0, 1), (1, 1), (−1, 0), (0, 0), (1, 0)} = J0 ∪ {(1, 1), (−1, 0)},

and the second one is
J2 = J1 ∪ {(0, 2), (0,−1)}.

One easily sees that this generates J = Z2.

As a conclusion, the set of phases {φj}j∈J may be finite or infinite, but has the
following property.

Proposition 2.8. Let σ = 1, and consider any triplet of wave vectors from S =
{κj}j∈J . Then, either the corresponding triangle has no right angle, or the fourth
corner of the associated rectangle belongs to S.

3. Analysis of the amplitude system in the cubic case

From the previous section, in general we have to expect the generation of new
phases by the four-wave resonance. However, it may happen that not all of them are
actually present in our approximation (2.1), since the corresponding profile aj(t, x)
has to be non-trivial.

Indeed, if we plug the ansatz (2.1) into (1.6) the terms of order O(1) are iden-
tically zero since all the φj ’s are characteristic. For the O(ε) term, we project on
the oscillations associated to φj , which yields the following system of transport
equations:

(3.1) ∀j ∈ J, ∂taj + κj · ∇aj = −iλ
∑

(k,`,m)∈Ij

aka`am ; aj(0, x) = αj(x),

with obviously ∇aj = 0 in the case where x ∈ Td. In the following we will perform
a qualitative analysis of the system (3.1), postponing the rigorous existence and
uniqueness analysis to §5.4. Having in mind the discussion from §2 we distinguish
the case d = 1 from the case d > 2.
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3.1. The case d = 1. Let j ∈ J , and recall that Ij is particularly simple in d = 1:

Ij = {(j, `, `), (`, `, j) ; ` ∈ J}.

Using this, (3.1) simplifies to

(3.2) (∂t + κj∂x) aj = −2iλ
∑
`∈J

|a`|2aj + iλ|aj |2aj ; aj(0, x) = αj(x).

In particular, the evolution of a zero profile αj ≡ 0 is necessarily trivial, that is
aj(t, x) ≡ 0. This non-generation of profiles leads to the same conclusion as §2.2:
No new mode can be created, if it is not present initially (and the reason is the
same as in §2.2: aj factors out in (3.2) just because for any (`1, `2, `3) ∈ Ij , we
have `1 = j or `3 = j). We shall see that the multi-dimensional situation is quite
different but first examine the situation for x ∈ T and x ∈ R in more detail.

3.1.1. The case x ∈ T. In this case, we readily obtain that |aj |2 does not depend on
time. This is due to the fact that (3.2) yields: i∂taj ∈ Raj and hence ∂t|aj |2 = 0,
for all j ∈ Z. In particular we get that

M = ‖uε(0)‖2L2 =
∑
j∈J
|αj |2 = ‖uε(t)‖2L2 , ∀t ∈ R.

The conserved quantity M corresponds to the total mass of the exact solution uε.
Using this, we rewrite (3.2) as

d

dt
aj = −iλ

(
2M − |αj |2

)
aj ,

which yields an explicit formula for the (global in time) solution

aj(t) = αje
−iλt(2M−|αj |2).

We observe that in the case of the one-dimensional torus, the interaction of the
profiles aj is particularly simple. Nonlinear effects lead to phase-modulations only.

3.1.2. The case x ∈ R. Here, in contrast to the situation on T, the modulus of aj
is no longer conserved, since we can only conclude from (3.2) that

(∂t + κj∂x) |aj |2 = 0,

and thus
|aj(t, x)|2 = |αj(x− tκj)|2.

In particular we readily see that for all j ∈ J we have

(3.3) ‖aj(t)‖L2 = ‖αj‖L2 , ∀t ∈ R.

Moreover, we still have an explicit representation for the solution of (3.2) in the
form

(3.4) aj(t, x) = αj(x− tκj)eiSj(t,x),

for some real-valued phase Sj , yet to be computed. In view of the identity

(∂t + κj∂x) aj(t, x) = iαj(x− tκj)eiλSj(t,x) (∂t + κj∂x)Sj(t, x),
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equation (3.2) implies

((∂t + κj∂x)Sj(t, x))αj(x− tκj) =λ

(
−2
∑
`∈J

|α`(x− tκ`)|2 + |αj(x− tκj)|2
)

× αj(x− tκj).
One easily sees that it is sufficient to impose

∂t (Sj(t, x+ tκj)) = −2λ
∑
`∈J

|α`(x+ t(κj − κ`))|2 + λ|αj(x)|2,

which yields

(3.5)
Sj(t, x) = −2λ

∫ t

0

 ∑
`∈J\{j}

|α`(x+ (τ − t)κj − τκ`))|2dτ


− tλ|αj(x− tκj)|2.

This formula, together with (3.4) describes the modulation of the profile aj(t, x).
As in the case of the torus, amplitudes are transported linearly. Only the (slow)
phases Sj undergo nonlinear effects, which are more complicated as before but still
explicitly described in terms of the initial data.

3.2. The case of one or two modes for d > 1. We have already seen in §2.3.1
that the case of two initial modes is special, since we get a closed system for all
d > 1. Indeed if we start from two phases and two associated profiles, say aj and
a`, the system (3.1) simplifies to:

∂taj + κj · ∇aj = −iλ
(
|aj |2 + 2|a`|2

)
aj , ; aj(0, x) = αj(x),

∂ta` + κ` · ∇a` = −iλ
(
2|aj |2 + |a`|2

)
a`, ; a`(0, x) = α`(x).

Note that if initially one of the two profiles is identically zero, it remains zero for
all times and hence, we are back in the situation of a usual single-phase WKB
approximation. In particular we compute explicitly for:

• Two modes, on Td:

aj(t) = αje
−iλt(2|α`|2+|αj |2) ; a`(t) = α`e

−iλt(2|αj |2+|α`|2).

• Two modes, on Rd:

aj(t, x) = αj(x− tκj)e−iλ(2
R t
0 |α`(x+(τ−t)κj−τκ`)|2dτ+t|αj(x−tκj)|2),

a`(t, x) = α`(x− tκ`)e−iλ(2
R t
0 |αj(x+(τ−t)κ`−τκj)|2dτ+t|α`(x−tκ`)|2).

Again, these solutions exhibit (nonlinear) self-modulation of phases only, and exist
for all times t ∈ R, a property which is a-priori not clear in the general case.

3.3. Creation of new modes when d > 2. A basic difference between the one-
dimensional case and the multidimensional situation is that the conservation law
(3.3) does not remain valid when d > 2. However, we are still able to prove that
the total mass is conserved.

Lemma 3.1. For any solution to (3.1) it holds

(3.6)
d

dt

∑
j∈J
‖aj(t)‖2L2 = 0.
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Proof. The assertion follows from the more general identity∑
j∈J

(∂t + κj · ∇) |aj |2 = 0,

since, by definition we have

∑
j∈J

(∂t + κj · ∇) |aj |2 = Im

λ∑
j∈J

∑
(k,`,m)∈Ij

ajaka`am

 .

This sum is zero by symmetry, since for each quadruplet (j, k, `,m) ∈ J4 of indices
the quadruplet (j,m, `, k) is also present, as well as the other six obtained by
circular permutation (at least in the nondegenerate case mentioned in Lemma 2.2;
adaptation to the degenerate case is obvious). These are the only occurrences of
the corresponding rectangle of wave numbers, and they produce the sum

2 (ajaka`am + aka`amaj + a`amajak + amajaka`) = 8 Re (ajaka`am) ,

which is real. We consequently infer

∂t
∑
j∈J
|aj(t, x+ tκj)|2 = 0,

and thus also
d

dt

∑
j∈J
‖aj(t, ·+ tκj)‖2L2 =

d

dt

∑
j∈J
‖aj(t, ·)‖2L2 = 0.

�

Let us now turn to the possibility of creating new profiles by nonlinear inter-
actions (note however that the conservation law (3.6) gives a global constraint on
this process). To simplify the presentation, we assume d = 2. The creation of
new oscillations in the general case d > 2 then follows by completing elements in
R2 with (0, . . . , 0) ∈ Rd−2 and analogously for the situation on Td. Consider the
geometry associated to Example 2.4: We thus have (on Td or Rd)

i∂ta0 = λ
∑

(k,`,m)∈I0

aka`am.

Recall that (k, `,m) ∈ I0 if and only if

κk − κ` + κm = 0 ; |κk|2 − |κ`|2 + |κm|2 = 0,

which obviously implies κk · κm = 0. Such a possibility occurs in two cases:

• κk = 0 or κm = 0.
• (κk, κm) = (κ1, κ3) or (κk, κm) = (κ3, κ1) and hence κ` = κ2.

From these various cases, we infer

i∂ta0 = λ
(
|a0|2 + 2|a1|2 + |a2|2 + 2|a3|2

)
a0 + 2a1a2a3.

Consider three non-vanishing initial oscillations, such that a1a2a3|t=0 6= 0. Thus,
even if a0|t=0 = 0, we have ∂ta0|t=0 6= 0, and this (non-oscillating) fourth mode is
instantaneously non-vanishing.
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4. Higher order nonlinearities

4.1. Analysis of possible resonances. So far we were only concerned with four-
wave interactions corresponding to cubic nonlinearities, i.e. σ = 1 in (1.6). In
general though, the set of resonances associated to a (gauge invariant) nonlinearity
of the form f(z) = λ|z|2σz, σ ∈ N, are defined by

Iσj =
{

(`1, . . . , `2σ+1) ∈ J2σ+1;
2σ+1∑
k=1

(−1)k+1κ`k = κj ,

2σ+1∑
k=1

(−1)k+1|κ`k |2 = |κj |2
}
.

As in Section 2, the set of wave vectors {κj}j∈J is constructed by induction, starting
from an a finite or countable set {κj}j∈J0 , to which we first add a vector κ when
there exist κ`1 , . . . , κ`2σ+1 ∈ J0 such that

(4.1)
2σ+1∑
k=1

(−1)k+1|κ`k |2 =

∣∣∣∣∣
2σ+1∑
k=1

(−1)k+1κ`k

∣∣∣∣∣
2

;

we then set κ =
∑2σ+1
k=1 (−1)k+1κ`k . The same iterative procedure as in §2.3.3 leads

to the following analogue to Proposition 2.8:

Proposition 4.1. Let σ > 2, and consider any (2σ + 1)-tuple (κ`1 , . . . , κ`2σ+1) of
wave vectors from S = {κj}j∈J . Then, either the relation (4.1) is not satisfied, or
the vector κj =

∑2σ+1
k=1 (−1)k+1κ`k belongs to S.

Remark 4.2. It is worth noting that, even if we only have very poor information
on the set of wave vectors {κj}j∈J , it is however a subset of the group generated
by the initial set {κj}j∈J0 .

The profile equations, analogue to (3.1), are then, for all j ∈ J :

(4.2) ∂taj + κj · ∇aj = −iλ
∑

(`1,...,`2σ+1)∈Ij

a`1a`2 . . . a`2σ+1 ; aj(0, x) = αj(x).

4.2. The case of two modes. Similar to the situation for σ = 1, the case of
only two initial modes is rather special. Indeed, the fact that two phases cannot
create a new one extends also to higher order nonlinearities. In order to explain the
argument, consider first a quintic nonlinearity, corresponding to σ = 2. To obtain
a nonlinear resonance, the wave vectors need to satisfy

κk − κ` + κm − κp + κq = κj ,

|κk|2 − |κ`|2 + |κm|2 − |κp|2 + |κq|2 = |κj |2,
where k, `,m, p, q ∈ {j1, j2}, j1, j2 ∈ J . First, if j1 (or j2) appears at least twice on
the left hand side, with at least one plus and one minus, then the cancellation re-
duces the discussion to the one we had about the cubic nonlinearity. Hence, no new
resonant phase can be created in this case. The complementary case corresponds,
up to exchanging j1 and j2, to

κk = κm = κq = κj1 and κ` = κp = κj2 .

The above relations yield

3κj1 − 2κj2 = κj ; 3|κj1 |2 − 2|κj2 |2 = |κj |2.
Squaring the first identity and comparing with the second one, we infer

6|κj1 − κj2 |2 = 0.
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Therefore, no new resonant phase can be created by the quintic interaction of two
initial resonant plane waves.

Consider now the general case where σ > 2: The same argument as above shows
that the only new case is the one where all the plus signs correspond to one phase,
and all the minus signs to the other:

(σ + 1)κj1 − σκj2 = κj ; (σ + 1)|κj1 |2 − σ|κj2 |2 = |κj |2.

Squaring the first identity and comparing with the second one, we infer

σ(σ + 1)|κj1 − κj2 |2 = 0.

We conclude as above, and obtain the following result:

Proposition 4.3. Let σ ∈ N∗, and let κ1, κ2 ∈ Rd be such that κ1 6= κ2. To these
wave vectors are associated the characteristic phases

φj(t, x) = κj · x−
t

2
|κj |2, j = 1, 2.

Then, these two phases can not create no new phase by (2σ+1)th-order interaction:
the set {

κ ∈ Rd | ∃(`1, . . . , `2σ+1) ∈ {1, 2}2σ+1, κ =
2σ+1∑
k=1

(−1)k+1κ`k

and |κ|2 =
2σ+1∑
k=1

(−1)k+1|κ`k |2)
}

is reduced to {κ1, κ2}.

In view of Proposition 4.3, the system (4.2) becomes a system of two equations,
which can be integrated explicitly, as in [8, Remark 3.1]:

(4.3)

∂taj + κj · ∇aj = −iλ
σ∑
n=0

(
σ + 1
n

)(
σ
n

)
|aj |2σ−2n|a`|2naj ,

∂ta` + κ` · ∇a` = −iλ
σ∑
n=0

(
σ + 1
n

)(
σ
n

)
|a`|2σ−2n|aj |2na`.

In the case of Td, we find for instance

(4.4)

aj(t) = αj exp

(
−iλt

σ∑
n=0

(
σ + 1
n

)(
σ
n

)
|αj |2σ−2n|α`|2`

)
,

a`(t) = α` exp

(
−iλt

σ∑
n=0

(
σ + 1
n

)(
σ
n

)
|α`|2σ−2n|αj |2n

)
.

In the case of Rd, the formula is more intricate and we shall omit it.

Apart from the two-phase situation, the results for of Section 2.3.3 on resonances
do not carry over to the general case σ > 2 in any straightforward manner. Even in
space dimension d = 1, the resonant sets cease to be as simple for σ > 2, provided
that one starts with at least three modes.
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Example 4.4. Consider the quintic case σ = 2 in d = 2 spatial dimensions. As we
have seen above a resonance for such a quintic nonlinearity appears if and only if

κk − κ` + κm − κp + κq = κj ,

|κk|2 − |κ`|2 + |κm|2 − |κp|2 + |κq|2 = |κj |2.

We can pick for instance three initial phases of the form

κ1 = (−1, 0) ; κ2 = (0, 0) ; κ3 = (2, 0).

For k = 1, ` = p = 2, m = q = 3, we have a resonance, creating κ4 = (3, 0), whereas
in the case σ = 1, no resonance occurs between the phases with wave vectors κ1,
κ2 and κ3. This example shows that the geometric characterization of four-wave
resonances given in §2.3.2 does not export to the case of six-wave resonances: κ1,
κ2, κ3 and κ4 all belong to the line x2 = 0.

Example 4.5. Consider the same example as above in d = 1. i.e. pick three initial
phases of the form

κ1 = −1 ; κ2 = 0 ; κ3 = 2
and create a resonance κ4 = 3 for k = 1, ` = p = 2, m = q = 3. This is in sharp
contrast to the case σ = 1, where no new phases can be created in d = 1. Moreover,
a non-vanishing amplitude a4 is effectively generated:

(∂t + κ4∂x)a4 =− 3iλ
(
|a1|4 + |a3|4 + |a3|4 + 4(|a1|2|a2|2 + |a2|2|a3|2 + |a3|2|a1|2)

)
a4

− i6λa1a2
2a2

3 − 6iλa1|a2|2a3.

We see that we may have a4|t=0 = 0, but

(∂ta4)|t=0 =
(
−i6λa1a2

2a2
3 − 6iλa1|a2|2a3

)
|t=0
6= 0,

showing the appearance of a non-trivial a4 for t > 0.

Despite this lack of knowledge concerning the precise structure of possible res-
onances for higher order nonlinearities, we shall see that we are able to prove the
validity of WKB approximation even in this case.

5. Analytical framework

We now present the analytical framework needed for the rigorous justification of
a multiphase WKB approximation.

5.1. Wiener algebras. On M = Td, we consider the usual Wiener algebra of
functions with absolutely summable Fourier series:

Definition 5.1 (Wiener algebra on M = Td). Functions of the form

f(y) =
∑
k∈Z

bke
iκk·y, with κk ∈ Zd and bk ∈ C,

belong to W (Td) if and only if (bk)k∈Z ∈ `1(Z). We denote

‖f‖W =
∑
k∈Z
|bk|.

In the sequel, when x ∈ Td, we consider initial data for (1.6) which are of the
form f(x/ε), with f ∈W (Td) and ε−1 ∈ N∗.
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Lemma 5.2. Let f belong to W (Td). Then, for all ε > 0 such that ε−1 ∈ N∗, we
have f(·/ε) ∈W (Td), and

‖f(·/ε)‖W = ‖f‖W .
For M = Rd, the framework is a bit different. Define the Fourier transform by

Ff(ξ) = f̂(ξ) =
1

(2π)d/2

∫
Rd
f(x)e−ix·ξdx.

With this normalization, we have F−1f(x) = Ff(−x). Following [20] and [9], we
use on Rd two different Wiener-type algebras: For the exact solution we use W (Rd),
i.e. the space of functions with Fourier transform in L1(Rd), and for the profiles,
we use A(Rd), the space of almost periodic W (Rd)-valued functions on Rd, with
absolutely summable Fourier series. We also set A(Td) = W (Td), equipped with
the same norm.

Definition 5.3 (Wiener algebra on M = Rd). We define

W (Rd) =
{
f ∈ S ′(Rd; C), ‖f‖W := ‖f̂‖L1(Rd) <∞

}
.

Functions of the form

f(x, y) =
∑
k∈Z

bk(x)eiκk·y, with κk ∈ Rd and bk ∈W (Rd),

belong to A(Rd) if and only if

‖f‖A :=
∑
k∈Z
‖bk‖W =

∑
k∈Z
‖b̂k‖L1(Rd) <∞.

In the sequel, when x ∈ Rd, we consider initial data for (1.6) which are of the
form f(x, x/ε), with f ∈ A(Rd). Again, we have

Lemma 5.4. Let f ∈ A(Rd) and ε > 0. Then f(·, ·/ε) ∈W (Rd) and

‖f(·, ·/ε)‖W 6 ‖f‖A.
Proof. We simply have, when f(x, y) =

∑
k∈Z bk(x)eiκk·y:

‖f(·, ·/ε)‖W =
∥∥∑
k∈Z

b̂k(·−κk/ε)
∥∥
L1(Rd)

6
∑
k∈Z
‖b̂k(·−κk/ε)‖L1(Rd) =

∑
k∈Z
‖b̂k‖L1(Rd).

The last term is, by definition, ‖f‖A. �

Denote (in the periodic setting as well as in the Euclidean case)

Uε(t) = eiε
t
2 ∆.

The following properties will be useful (see [9], and also [20, 22, 4]).

Lemma 5.5. Let M = Td or Rd.
1. W (M) is a Banach space, continuously embedded into L∞(M).
2. W (M) is an algebra, in the sense that the mapping (f, g) 7→ fg is continuous
from W (M)2 to W (M), and moreover

∀f, g ∈W (M), ‖fg‖W 6 ‖f‖W ‖g‖W .
3. If F : C→ C maps u to a finite sum of terms of the form upuq, p, q ∈ N, then it
extends to a map from W (M) to itself which is uniformly Lipschitzean on bounded
sets of W (M).
4. For all t ∈ R, Uε(t) is unitary on W (M).
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5.2. Action of the free Schrödinger group on W (M). As it is standard for
solutions to the equation

iε∂tw
ε +

ε2

2
∆wε = F ε,

we will consider the corresponding Duhamel’s formula

wε(t, x) = Uε(t)wε(0, x)− iε−1

∫ t

0

Uε(t− τ)F ε(τ, x)dτ.

In view of this representation formula we first need to study the action of the
free Schrödinger group Uε(t) on W (M).

5.2.1. The case M = Td. The action of Uε(t) on Fourier series on Td is well
understood. For

∑
k∈Z bke

iκk·y ∈W (Td):

(5.1) Uε(t)

(∑
k∈Z

bke
iκk·x/ε

)
=
∑
k∈Z

bke
iκk·x/ε−i|κk|2t/(2ε).

In view of Duhamel’s formula, we will use the following

Lemma 5.6. Let T > 0, ω ∈ Z, κ ∈ Zd, and b, ∂tb ∈ L∞([0, T ]). Denote

Dε(t, x) :=
∫ t

0

Uε(t− τ)
(
b(τ)eiκ·x/ε−iωτ/(2ε)

)
dτ.

1. We have Dε ∈ C([0, T ]× Td) and

‖Dε‖L∞([0,T ]×Td) 6
∫ T

0

|b(t)|dt.

2. Assume ω 6= |κ|2. Then there exists C independent of κ, ω and b such that

‖Dε‖L∞([0,T ]×Td) 6
Cε

||κ|2 − ω|
(
‖b‖L∞([0,T ]) + ‖∂tb‖L∞([0,T ])

)
.

Proof. In view of the identity (5.1), we have

Dε(t, x) =
∫ t

0

b(τ)eiκ·x/ε−iωτ/(2ε)e−i|κ|
2(t−τ)/(2ε)dτ

= eiκ·x/ε−i|κ|
2t/(2ε)

∫ t

0

b(τ)ei(|κ|
2−ω)τ/2εdτ.

The first point is straightforward. Integration by parts yields, since by assumption
|κ|2 − ω ∈ Z \ {0}: with φ(t, x) = κ · x− |κ|2t/2,

Dε(t, x) = eiφ(t,x)/ε
(
− 2εi
|κ|2 − ω

b(τ)ei(|κ|
2−ω)τ/2ε

∣∣∣t
0

+
2εi

|κ|2 − ω

∫ t

0

∂tb(τ)ei(|κ|
2−ω)τ/2εdτ

)
.

The lemma then follows easily. �
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5.2.2. The case M = Rd. The Euclidean counterpart of Lemma 5.6 is a little bit
more delicate:

Lemma 5.7. Let T > 0, ω ∈ R, κ ∈ Rd, and b ∈ L∞([0, T ];W (Rd)). Denote

Dε(t, x) :=
∫ t

0

Uε(t− τ)
(
b(τ, x)eiκ·x/ε−iωτ/(2ε)

)
dτ.

1. We have Dε ∈ C([0, T ];W (Rd)) and

‖Dε‖L∞([0,T ];W ) 6
∫ T

0

‖b(t, ·)‖W dt.

2. Assume ω 6= |κ|2, and ∂tb,∆b ∈ L∞([0, T ];W ). Then we have the control

‖Dε‖L∞([0,T ];W ) 6
Cε

||κ|2 − ω|

(
‖b‖L∞([0,T ];W ) + ‖∆b‖L∞([0,T ];W ) + ‖∂tb‖L∞([0,T ];W )

)
,

where C is independent of κ, ω and b.

Proof. By the definition of Uε(t), we have

D̂ε(t, ξ) =
∫ t

0

e−iε(t−τ)|ξ|2/2 b̂
(
τ, ξ − κ

ε

)
e−iωτ/(2ε)dτ.

Setting η = ξ − κ/ε, we have

D̂ε(t, ξ) = e−iεt|η+κ/ε|2/2
∫ t

0

eiετ |η+κ/ε|2/2 b̂ (τ, η) e−iωτ/(2ε)dτ

= e−iεt|η+κ/ε|2/2
∫ t

0

eiτθ/2 b̂ (τ, η) dτ,

where we have denoted

θ = ε
∣∣∣η +

κ

ε

∣∣∣− ω

ε
= ε|η|2 + 2κ · η︸ ︷︷ ︸

θ1

+
|κ|2 − ω

ε︸ ︷︷ ︸
θ2

.

The first point of the lemma is straightforward. To prove the second point, integrate
by parts, by first integrating eiτθ2/2:

D̂ε(t, ξ) = − 2i
θ2
eiτθ/2b̂ (τ, η)

∣∣∣t
0

+
2i
θ2

∫ t

0

eiτθ/2
(
i
θ1

2
b̂ (τ, η) + ∂̂tb (τ, η)

)
dτ.

We infer, if b, ∂tb,∆b ∈ L∞([0, T ];W ):

sup
t∈[0,T ]

‖D̂ε(t)‖L1 .
1
|θ2|

(
‖b̂‖L∞([0,T ];L1) + ‖∆̂b‖L∞([0,T ];L1) + ‖∂̂tb‖L∞([0,T ];L1)

)
.

This yields the second point of the lemma. �

5.3. Construction of the exact solution. As a preliminary step in establishing
a WKB approximation we first need to know that (1.6) is well posed on W (M).

Proposition 5.8. Consider the initial value problem

(5.2) iε∂tu
ε +

ε2

2
∆uε = λε|uε|2σuε ; uε(0, x) = uε0(x),

where σ ∈ N∗, λ ∈ R, and x ∈ M, with either M = Rd, or M = Td, in which
case ε−1 ∈ N∗. If uε0 ∈ W (M), then there exists T ε > 0 and a unique solution
uε ∈ C([0, T ε];W (M)) to (5.2).
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Remark 5.9. At this stage, the dependence of T ε upon ε is unknown. In particular,
T ε might go to zero as ε→ 0. The proof below actually shows that if uε0 is uniformly
bounded in W (M) for ε ∈]0, 1], then T ε > 0 can be chosen independent of ε. This
case includes initial data (1.7) which we consider for the WKB analysis.

Proof. Duhamel’s formulation of (5.2) reads

uε(t) = Uε(t)uε0 − iλ
∫ t

0

Uε(t− τ)
(
|uε|2σuε(τ)

)
dτ.

Denote by Φε(uε)(t) the right hand side in the above formula. From Lemmae 5.5,
5.6 and 5.7, we have:

‖Φε(uε)(t)‖W 6 ‖u
ε
0‖W + |λ|

∫ t

0

‖uε(τ)‖2σ+1
W dτ,

and if ‖uε‖L∞([0,T ];W ), ‖ũε‖L∞([0,T ];W ) 6 R, then there exists C = C(R) such that

‖Φε(uε)(t)− Φε(ũε)(t)‖W 6 C(R)
∫ t

0

‖uε(τ)− ũε(τ)‖W dτ, ∀t ∈ [0, T ].

A fixed point argument in{
u ∈ C([0, T ];W (M)), sup

t∈[0,T ]

‖u(t)‖W 6 2‖uε0‖W

}
for T = T ε > 0 sufficiently small then yields Proposition 5.8. �

5.4. Construction of the profiles. In order to justify our multiphase WKB anal-
ysis, we first need to establish an existence theory for the system of profile equations.
To this end, for all σ ∈ N∗, we rewrite the system (4.2) in its integral form:

(5.3) ∀j ∈ J, aj(t, x) = aj(0, x− tκj)− iλ
∫ t

0

Nσ(a, . . . , a)j(τ, x+ (τ − t)κj)dτ,

where, for a(1) = (a(1)
j )j∈J , . . . , a(2σ+1) = (a(2σ+1)

j )j∈J , we define the nonlinear
term Nσ by:

∀j ∈ J, Nσ
(
a(1), . . . , a(2σ+1)

)
j

=
∑

(`1,...,`2σ+1)∈Ij

a
(1)
`1
a

(2)
`2
. . . a

(2σ)
`2σ

a
(2σ+1)
`2σ+1

.

It is clearly linear with respect to its arguments with odd exponents, and anti-linear
with respect to the others. We prove in Lemma 5.11 below that it is in fact well
defined and continuous on E(M), for M = Td or M = Rd:

Definition 5.10. Define

E(Rd) = {a = (aj)j∈J | (âj)j∈J ∈ `1(J ;L1(Rd))},

equipped with the norm
‖a‖E(Rd) =

∑
j∈J
‖âj‖L1 .

Set also E(Td) = `1(J), equipped with the usual norm

‖a‖E(Td) =
∑
j∈J
|aj |.
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Note that E simply represents, via an isometric correspondence, the family of
coefficients of functions in A (up to the choice of the wave numbers κj in the case
of Rd):

f(x, y) =
∑
j∈J

aj(x)eiκj ·y ∈ A(Rd) iff a ∈ E(Rd),

and then ‖a‖E = ‖f‖A. The same holds for M = Td.

Lemma 5.11. Let σ ∈ N∗. For M = Rd or M = Td, the nonlinear expres-
sion Nσ defines a continuous mapping from E(M)2σ+1 to E(M), and for all
a(1), . . . , a(2σ+1) ∈ E(M)∥∥∥Nσ (a(1), . . . , a(2σ+1)

)∥∥∥
E
6 ‖a(1)‖E . . . ‖a(2σ+1)‖E .

Proof. We consider the case M = Rd, since M = Td is even simpler. In order to
bound∥∥∥Nσ (a(1), . . . , a(2σ+1)

)∥∥∥
E

=

=
∑
j∈J

∥∥∥∥∥ ∑
(`1,...,`2σ+1)∈Ij

F
(
a

(1)
`1

)
∗ F

(
a

(2)
`2

)
∗ · · · ∗ F

(
a

(2σ+1)
`2σ+1

)∥∥∥∥∥
L1

6
∑
j∈J

∑
(`1,...,`2σ+1)∈Ij

∥∥∥F (a(1)
`1

)
∗ F

(
a

(2)
`2

)
∗ · · · ∗ F

(
a

(2σ+1)
`2σ+1

)∥∥∥
L1
,

we use Young’s inequality and observe that, once j, `1, . . . , `2σ are chosen, `2σ+1

is determined (since κ`2σ+1 = κj −
∑2σ
k=1(−1)k+1κ`k , and n 6= m ⇒ κn 6= κm), so

that∥∥∥Nσ (a(1), . . . , a(2σ+1)
)∥∥∥

E
6

∑
(`1,...,`2σ+1)∈J2σ+1

∥∥∥F (a(1)
`1

)∥∥∥
L1
. . .
∥∥∥F (a(2σ+1)

`2σ+1

)∥∥∥
L1
,

which gives the desired result. �

This consequently yields the following existence result for (5.3), where here and
in the following we denote 〈κ〉2 ≡ 1 + |κ|2.

Proposition 5.12. Let σ ∈ N∗, and M = Rd or M = Td.
For all α = (αj)j∈J ∈ E(M), there exist T > 0 and a unique solution

t 7→ a(t) = (aj(t))j∈J ∈ C([0, T ], E(M))

to the system (5.3), with a(0) = α. Moreover, the following properties hold:
1. If (〈κj〉s αj)j∈J ∈ E(M) for some s ∈ N, then (〈κj〉s aj)j∈J ∈ C([0, T ], E(M)).
2. On M = Rd, if (〈κj〉s ∂βxαj)j∈J ∈ E(Rd), for some β ∈ Nd and s ∈ N, then
(〈κj〉s ∂βxaj)j∈J ∈ C([0, T ];E(Rd)).

Proof. The existence result follows from Lemma 5.11 and the standard Cauchy–
Lipschitz result for ODE’s. Concerning the propagation of moments 〈κj〉s aj , we
again apply a fixed-point argument, estimating nonlinear terms

〈κj〉sNσ(a(1), . . . , a(2σ+1))
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as in the proof of Lemma 5.11, via

〈κj〉2 ≡ 1 + |κj |2 = 1 +
2σ+1∑
k=1

(−1)k+1|κ`k |2

6
2σ+1∑
k=1

〈κ`k〉
2 6 (2σ + 1)

2σ+1∏
k=1

〈κ`k〉
2
,

when (`1, . . . , `2σ+1) ∈ Ij . The last statement of the proposition is concerned with
the smooth dependence upon the parameter x. This follows by commuting (4.2)
with ∂x and using the fact that W (Rd) is an algebra, continuously embedded in
L∞, since then

d

dt
‖∂xa‖E . ‖∂xα‖E + C(‖a‖E)‖∂xa‖E ,

and a Gronwall argument shows that ‖∂xa‖E remains bounded for all t ∈ [0, T ].
Similarly we conclude for the higher order derivatives, possibly multiplied by weights
〈κj〉s. �

For the particular situation for σ = 1, in d = 1 and/or the case of only two initial
phases, we infer a stronger result, thanks to the explicit formulas given in §3.1 and
§3.2.

Corollary 5.13. Under the assumption of Proposition 5.12, in the case σ = 1, if
in addition d = 1, then T can be taken arbitrarily large, with aj(t) explicitly given
by (3.4) and (3.5). Similarly, if ]J0 6 2, then T can be taken arbitrarily large.

Remark 5.14. In the case of higher order nonlinearities, i.e. σ > 2, Equation (4.3)
makes it possible to see, via explicit integration (see (4.4) in the case of the torus),
that if αj , α` ∈W (M), then aj , a` ∈ C([0,∞[,W (M)).

6. Rigorous justification of the multiphase WKB analysis

6.1. Construction of an approximate solution. We start from oscillating ini-
tial data, given by a profile in A(M), with M = Td or Rd:

uεapp(0, x) =
∑
j∈J0

αj(x)eiκj ·x/ε,

with αj(x) = Const. in the case M = Td.

Assumption 6.1. For both M = Rd and M = Td we assume (αj)j∈J0 ∈ E(M).
For M = Rd we assume in addition

∀|β| 6 2, (∂βxαj)j∈J0 ∈ E(Rd), and ∀|β| 6 1, (〈κj〉 ∂βxαj)j∈J0 ∈ E(Rd).

From Proposition 5.12 we know, that these data produce a solution (aj)j∈J ∈
C([0, T ], E(M)) to the amplitude system and we consequently define the approxi-
mate solution uεapp by

(6.1) uεapp(t, x) =
∑
j∈J

aεj(t, x)eiφj(t,x)/ε,

with φj given by (2.1). The sequence (aj)j∈J is such that(
∂βxaj

)
j∈J ∈ C([0, T ], E(M)), |β| 6 2,(

〈κj〉 ∂βxaj
)
j∈J ∈ C([0, T ], E(M)), |β| 6 1.
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We see from equation (5.3) that (∂taj)j∈J ∈ C([0, T ], E(M)). We find (in the sense
of distributions)

iε∂tu
ε
app +

ε2

2
∆uεapp = λε|uεapp|2σuεapp − λεrε1 + ε2rε2,

where

(6.2) rε2 =
1
2

∑
j∈J

eiφj/ε∆aj ,

and the remainder rε1 takes into account the non-characteristic phases created by
nonlinear interaction. This means that it is a sum of terms of the form

a`1a`2 . . . a`2σa`2σ+1e
i(φ`1−φ`2+ ...−φ`2σ+φ`2σ+1 )/ε,

where the rapid phase is given by
2σ+1∑
p=1

(−1)p+1φ`p(t, x) =

(
2σ+1∑
p=1

(−1)p+1κ`p

)
· x− t

2

2σ+1∑
p=1

(−1)p+1|κ`p |2,

and ∣∣∣∣∣
2σ+1∑
p=1

(−1)p+1κ`p

∣∣∣∣∣
2

6=
2σ+1∑
p=1

(−1)p+1
∣∣κ`p ∣∣2 .

In other words, (`1, . . . , `2σ+1) belongs to the non-resonant set

N := J2σ+1 \
⋃
j∈J

Iσj .

With these conventions, we have

(6.3) rε1 =
∑

(`1,...,`2σ+1)∈N

a`1a`2 . . . a`2σ+1e
i(φ`1−φ`2+ ...−φ`2σ+φ`2σ+1 )/ε.

Estimating rε2 in W is straightforward, since (∂βxaj)j∈J ∈ C([0, T ], E) for |β| 6 2:

(6.4) ‖rε2‖W 6
1
2
‖∆a‖E .

Note that r2 simply vanishes if M = Td. In order to estimate rε1, we impose the
following condition on the set of wave numbers {κj}j∈J .

Assumption 6.2. There exists c > 0 such that for all (`1, . . . , `2σ+1) ∈ N ,

δ (`1, . . . , `2σ+1) ≡

∣∣∣∣∣∣
∣∣∣∣∣
2σ+1∑
p=1

(−1)p+1κ`p

∣∣∣∣∣
2

−
2σ+1∑
p=1

(−1)p+1
∣∣κ`p ∣∣2

∣∣∣∣∣∣ > c.
Remark 6.3. (i) This assumption is of course satisfied when only finitely many
phases are created ]J <∞.
(ii) Similarly, this assumption holds for {κj}j∈J ⊂ Zd, since in this case, the
quantity considered is an integer.
(iii) Consider the cubic case σ = 1, and suppose that {κj}j∈J is included in a
rectangular net. Up to translation, this rectangular net has the form

{Am ∈ Rd | m ∈ Zd},
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with A a d×d matrix of the form A = RD, where D is diagonal, and R is a rotation.
Then we have, for all k, l,m ∈ Zd:∣∣∣|Ak −A`+Am|2 − |Ak|2 + |A`|2 − |Am|2

∣∣∣ = |(Ak −A`) · (Ak −Am)|

=
∣∣(k − l) · ((ATA)(k −m)

)∣∣ .
Since TAA = D2, denoting µ2

1, . . . , µ
2
d the squares of the eigenvalues of D, Assump-

tion 6.2 is then satisfied if and only if the group generated by µ2
1, . . . , µ

2
d in R is

discrete, i.e. these numbers are (pairwise) rationally dependent.

The reason for imposing the above assumption is a small divisor problem, as
will become clear from the proof of the following lemma. It is possible to relax
Assumption 6.2 to a less rigid one, to the cost of a more technical presentation.
The latter is sketched in an appendix.

Lemma 6.4. For M = Td or M = Rd, let rε1 be given by (6.3) and denote

(6.5) Rε1(t, x) :=
∫ t

0

Uε(t− τ)rε1(τ, x)dτ, on [0, T ]×M.

Let Assumptions 6.1–6.2 hold. Then, there exists a constant C > 0, such that:

‖Rε1‖L∞([0,T ];W (M)) 6 Cε.

Proof. We only treat the case on M = Rd in detail. The case M = Td can be
treated analogously. We have

Rε1(t, x) =∑
(`1,...,`2σ+1)∈N

∫ t

0

Uε(t− τ)
(

(a`1a`2 . . . a`2σ+1)ei(φ`1−φ`2+···+φ`2σ+1)/ε
)

(τ, x) dτ.

Thus, setting b`1,...,`2σ+1 := a`1a`2 . . . a`2σ+1 , Lemma 5.7 yields

‖Rε1‖L∞([0,T ];W ) . ε
∑

(`1,...,`2σ+1)∈N

1
δ(`1, . . . , `2σ+1)

(
‖b̂`1,...,`2σ+1‖L∞([0,T ];L1)

+ ‖∆̂b`1,...,`2σ+1‖L∞([0,T ];L1) + ‖∂̂tb`1,...,`2σ+1‖L∞([0,T ];L1)

)
. ε

∑
(`1,...,`2σ+1)∈N

(
‖b̂`1,...,`2σ+1‖L∞([0,T ];L1)

+ ‖∆̂b`1,...,`2σ+1‖L∞([0,T ];L1) + ‖∂̂tb`1,...,`2σ+1‖L∞([0,T ];L1)

)
,

where we have used Assumption 6.2. Next, using Young’s inequality, as in the proof
of Lemma 5.11, we get:∑
(`1,...,`2σ+1)∈N

‖b̂`1,...,`2σ+1‖L∞([0,T ];L1) .
∑

(`1,...,`2σ+1)∈N

‖â`1‖L∞T L1 . . . ‖â`2σ+1‖L∞T L1

.
∑

(`1,...,`2σ+1)∈J2σ+1

‖â`1‖L∞T L1 . . . ‖â`2σ+1‖L∞T L1

. ‖(aj)j∈J‖2σ+1
L∞([0,T ];E).

Leibniz formula and Hölder inequality yield similar estimates for ∆̂b`1,...,`2σ+1 and
∂̂tb`1,...,`2σ+1 in L∞([0, T ];L1(M)), and the lemma follows. �
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6.2. Accuracy of the multiphase WKB approximation. With the above re-
sults in hand, we can now prove our main theorem.

Theorem 6.5 (General approximation result). Let σ > 1, M = Td or Rd, and
Assumptions 6.1–6.2 hold. Given an approximate solution uεapp ∈ C([0, T ];W (M))
as in (6.1), we consider a family of initial data (uε0)ε>0 ∈W (M), such that∥∥∥uε0 − uεapp|t=0

∥∥∥
W (M)

6 C0ε,

for some C0 > 0 independent of ε. Then there exists ε0(T ) > 0, such that for
any 0 < ε 6 ε0(T ), the exact solution to the Cauchy problem (5.2) satisfies uε ∈
L∞([0, T ];W (M)). In addition, uεapp approximates uε up to O(ε):∥∥uε − uεapp

∥∥
L∞([0,T ]×M)

6
∥∥uε − uεapp

∥∥
L∞([0,T ];W (M))

6 Cε,

where C is independent of ε.

Obviously the result for x ∈ T, announced in the introduction, can be seen as a
special case of Theorem 6.5.

Proof. From Proposition 5.8, we may consider a solution uε ∈ C([0, T ε],W (M))
to (1.6). We define the difference wε := uε − uεapp. Then wε ∈ C([0, τε],W (M)),
where τε = min(T ε, T ). We prove that for ε sufficiently small, wε may be extended
up to time T , with wε ∈ C([0, T ],W (M)). Take ε0 > 0 so that C0ε0 ≤ 1/2, and
for ε ∈]0, ε0], let

tε := sup
{
t ∈ [0, T ] | sup

t′∈[0,t]

‖wε(t′)‖W (M) 6 1
}
.

We already know that tε > 0 by the local existence result for uε. By possibly
reducing ε0 > 0, we shall show that tε > T . The error term wε solves:

i∂tw
ε +

ε

2
∆wε = λ

(
|uεapp + wε|2σ(uεapp + wε)− |uεapp|2σuεapp

)
+ λrε1 − εrε2,

where rε1, rε2 are given in (6.2)–(6.3). Using Duhamel’s formula we can rewrite this
equation as

wε(t) =Uε(t)wε0 − iλ
∫ t

0

Uε(t− τ)
(
|uεapp + wε|2σ(uεapp + wε)− |uεapp|2σuεapp

)
(τ) dτ

− iλRε1(t) + iε

∫ t

0

Uε(t− τ)rε2(τ) dτ,

where Rε1 is defined in (6.5). Using the fact that Uε(t) is unitary on W (M), and
the estimates given in (6.4) and in Lemma 6.4, we obtain on [0, tε]:

‖wε(t)‖W (M) 6 C1ε+ |λ|
∫ t

0

‖
(
|uεapp + wε|2σ(uεapp + wε)− |uεapp|2σuεapp

)
(τ)‖W (M) dτ

6 C1ε+ C2

∫ t

0

‖wε(τ)‖W (M) dτ,

by the Lipschitz property from Lemma 5.5 . Note that, in view of Lemma 5.2 , resp.
Lemma 5.4, (uεapp)ε>0 is a bounded family in C([0, T ],W (M)), and restricting t to
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[0, tε] ensures that wε(t) stays bounded in W (M). The constants C1, C2 depend
on C0 and uεapp. Now, Gronwall lemma yields

‖wε(t)‖W (M) 6 C1ε

(
1 +

eC2T

C2

)
,

and we may reduce ε0 so that C1ε0

(
1 + eC2T /C2

)
< 1. This shows that tε > T ,

for all ε ∈]0, ε0]. Then, T ε > T follows, as well as the desired approximation of uε

by uεapp, since wε = O(ε) in L∞([0, T ];W ). �

7. Proof of the instability result

This section is devoted to the proof of Theorem 1.2. To this end we essentially
rewrite the proof of M. Christ, J. Colliander, and T. Tao [8] in terms of weakly
nonlinear geometric optics. It then becomes easy to see that the justification given
in the previous paragraph makes it possible to extend the one-dimensional analysis
of [8] in order to infer Theorem 1.2.

Proof of Theorem 1.2. We start with two Fourier modes, one of them being zero:

i∂tu+
1
2

∆u = λ|u|2σu ; u(0, x) = α0 + α1e
iKx1 , K ∈ N.

The fact that we privilege oscillations with respect to the first space variable is
purely arbitrary. Define ũ as the solution to the same equation, with data

ũ(0, x) = α̃0 + α̃1e
iKx1 .

Let

ε =
1
K2

; uε(t, x) = u

(
t,
x√
ε

)
= u (t,Kx) .

(ε is chosen so that we remain on the torus.) We see that uε solves (1.6) on Td,
with

uε(0, x) = α0 + α1e
ix1/ε.

From Theorem 6.5, we know that there exists T > 0 independent of ε, such that

‖uε − uεapp‖L∞([0,T ]×Td) + ‖ũε − ũεapp‖L∞([0,T ]×Td) = O(ε),

where uεapp is the approximate solution defined by (6.1), and ũεapp is defined simi-
larly. On the other hand, we have

uεapp(t, x) = α0e
−iλtθ0 + α1e

−iλtθ1ei(x1−t/2)/ε,

where, in view of (4.3), θ0 is given by

θ0 =
σ∑
n=0

(
σ + 1
n

)(
σ
n

)
|α0|2σ−2nl|α1|2n.

We infer, uniformly in t ∈ [0, T ],∣∣∣∣∫
Td

(u(t, x)− ũ(t, x))dx
∣∣∣∣ =

∣∣∣α0e
−iλtθ0 − α̃0e

−iλteθ0∣∣∣+O(ε),

with obvious notations.
To prove the first point of Theorem 1.2, set

α0 = α̃0 =
ρ

2
, α1 =

ρ

2Ks
=
ρ

2
K |s|, α̃1 =

√
α2

1 +
1
δ
.
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We infer, for 0 < δ 6 1, ∣∣∣θ0 − θ̃0

∣∣∣ & 1
δ
.

We have ‖u(0)− ũ(0)‖Hs < δ provided K > δ1/s. Since α̃0 = α0, we also have∣∣∣∣∫
Td

(u(t, x)− ũ(t, x))dx
∣∣∣∣ =

∣∣∣∣2α0 sin
(
λt

2

(
θ̃0 − θ0

))∣∣∣∣+O(ε).

We infer that we can find t ∈ [0, δ] so that the right hand side is bounded from
below by ρ/2, provided N is sufficiently large (hence ε sufficiently small).

To prove the second point of Theorem 1.2, set

α0 =
ρ

2
, α̃0 = α0 + δ, α1 = α̃1 =

ρ

2Ks
=
ρ

2
K |s|.

For δ small compared to ρ, we use the same estimate as above,∣∣∣∣∫
Td

(u(t, x)− ũ(t, x))dx
∣∣∣∣ & ∣∣∣∣2α0 sin

(
λt

2

(
θ̃0 − θ0

))∣∣∣∣ ,
for K sufficiently large. We now have∣∣∣θ0 − θ̃0

∣∣∣ & ∣∣|α0|2σ − |α̃0|2σ
∣∣+ |α1|2σ−2

∣∣|α0|2 − |α̃0|2
∣∣

& δ +
(
ρK |s|

)2σ−2

δ.

Now we see that if we assume σ > 2, the left hand side can be estimated from below
by 1/δ, provided N is sufficiently large, and we conclude like for the first point.

To prove the last point in Theorem 1.2, we resume the argument of [25]. Fix
α0 ∈ C \ {0}, and let α1 ∈ C to be fixed later. As K →∞, we have:

u(0, ·) ⇀ α0 =: u(0, ·) weakly in L2(Td) ; ‖u(0)‖2L2 → |α0|2 + |α1|2.

For any t > 0, we have, as K →∞,

u(t, x) ⇀ α0e
−iλtθ0 weakly in L2(Td),

where

θ0 =
σ∑
n=0

(
σ + 1
n

)(
σ
n

)
|α0|2σ−2n|α1|2n.

Note that for any α0 ∈ C \ {0} and any angle θ ∈ [0, 2π[, we can find α1 ∈ C so
that θ0 = θ + |α0|2σ. On the other hand, the solution to (1.8) with initial data α0

is given by

u(t, x) = α0e
−iλt|α0|2σ .

We infer

w − lim
N→∞

u(t, x)− u(t, x) = α0e
−iλt|α0|2σ

(
e−iλtθ − 1

)
.

For all t 6= 0, one can then choose θ so that λtθ 6∈ 2πZ. The discontinuity at α0 of
the map α0 7→ u(t), from L2(Td) equipped with its weak topology into

(
C∞(Td)

)∗,
follows. �
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Appendix A. A more general set of initial phases

We can actually replace Assumption 6.2 with the following more general one:

Assumption A.1. There exist b > 0, c > 0 such that for all (`1, . . . , `2σ+1) ∈ N ,

δ (`1, . . . , `2σ+1) ≡

∣∣∣∣∣∣
∣∣∣∣∣
2σ+1∑
p=1

(−1)p+1κ`p

∣∣∣∣∣
2

−
2σ+1∑
p=1

(−1)p+1
∣∣κ`p ∣∣2

∣∣∣∣∣∣
satisfies:

δ(`1, . . . , `2σ+1) > c 〈κ`1〉
−b
. . .
〈
κ`2σ+1

〉−b
.

In §6, we have considered the case b = 0. However, allowing constants b > 0,
we show that the assumption is satisfied by wave vector sets included in generic
finitely generated nets.

Proposition A.2. For all p ∈ N∗, there exist C, b > 0 and Z ⊂ Rdp with zero
Lebesgue measure such that, for all (κ1, . . . , κp) ∈ Rdp \ Z, the set (κj)j∈J con-
structed from these initial wave vectors {κj}j∈J0 satisfies Assumption A.1.

Proof. We shall prove that the above result holds when Assumption A.1 is replaced
by the stronger one, where N is replaced by J2σ+1.

All the wave vectors we consider belong to the group generated by {κ1, . . . , κp}.
Thus, to each `k ∈ J corresponds (αk,1, . . . , αk,p) ∈ Zp, such that: κ`k = αk,1κ1 +
· · ·+ αk,pκp. With this notation, for all (`1, . . . , `2σ+1) ∈ J2σ+1, we have:

δ(`1, . . . , `2σ+1) =

∣∣∣∣∣∣
∣∣∣ 2σ+1∑
k=1

(−1)k+1

p∑
j=1

αk,jκj

∣∣∣2 +
2σ+1∑
m=1

(−1)m+1
∣∣∣ p∑
j=1

αm,jκj

∣∣∣2
∣∣∣∣∣∣

=

∣∣∣∣∣∣
p∑

i,j=1

2σ+1∑
k,`=1

(−1)k+`αk,iα`,j −
2σ+1∑
m=1

(−1)mαm,iαm,j

κi · κj

∣∣∣∣∣∣ .
Now, a standard Diophantine result (see e.g. [1, 11]) ensures that, for all choice
of (κi · κj)16i,j6p but in some subset of Rp2 with measure zero, we have, for some
b′ > 0 and C ′ > 0:

∀(βi,j)16i,j6p ∈ Zp
2
\ {0},

∣∣∣∣∣∣
p∑

i,j=1

βi,jκi · κj

∣∣∣∣∣∣ > C ′
 p∑
i,j=1

|βi,j |

−b
′

.

Such an estimate is then valid for almost all (κ1, . . . , κp) in (Rd)p. We apply it with

βi,j =
2σ+1∑
k,`=1

(−1)k+`αk,iα`,j −
2σ+1∑
m=1

(−1)mαm,iαm,j ,

so that
p∑

i,j=1

|βi,j | 6 2
2σ+1∑
k,`=1

|αk,·||α`,·|

6 2(2σ + 1)2

p∏
k=1

〈αk,·〉2 .
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Now, choosing κ1, . . . , κp Q-linearly independent (which is true almost surely), we
get that there exists a constant c > 0 such that

∀α ∈ Qp, |α1|+ · · ·+ |αp| 6 c
d∑
j=1

|(α1κ1 + · · ·+ αpκp)j |.

Increasing c if necessary, so that c > 1, we get, when κ`k = αk,1κ1 + · · · + αk,pκp:
〈αk,·〉 6 c 〈κ`k〉. Finally, using the constants b′ and C ′ from above, the desired
estimate follows with b = 2b′ and C = (2(2σ + 1)2c2)−b

′
C ′. �

Under Assumption A.1 (which is fairly general for plane waves, in view of the
above proposition), we can easily adapt the analysis of §6. Essentially, we have to
(possibly) strengthen the assumptions on the initial profile, in the case ofM = Rd,
where we generalize Assumption 6.1 to:

Assumption A.3. On M = Rd, the initial amplitudes satisfy:

∀|β| 6 2, (〈κj〉b ∂βxαj)j∈J0 ∈ E(Rd),

∀|β| 6 1, (〈κj〉1+b
∂βxαj)j∈J0 ∈ E(Rd).

From Proposition 5.12, these data produce a solution (aj)j∈J ∈ C([0, T ], E(M))
to the profile system (5.3). We consequently define the approximate solution uεapp

as before
uεapp(t, x) =

∑
j∈J

aεj(t, x)eiφj(t,x)/ε,

where the sequence (aj)j∈J is now such that(
〈κj〉b ∂βxaj

)
j∈J
∈ C([0, T ], E(M)), |β| 6 2,(

〈κj〉1+b
∂βxaj

)
j∈J
∈ C([0, T ], E(M)), |β| 6 1.

We can then reproduce the analysis of §6: Lemma 6.4 is still valid under Assump-
tion A.1 and A.3, by straightforward verification. Then one just has to notice that
this is the only step where the absence of small divisors plays a role in the proof
of Theorem 6.5. Therefore, Theorem 6.5 remains valid under Assumption A.1 and
A.3.
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