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ABSTRACT. The focusing cubic NLS is a canonical model for the propagation
of laser beams. In dimensions 2 and 3, it is known that a large class of initial
data leads to finite time blow-up. Now, physical experiments suggest that this
blow-up does not always occur. This might be explained by the fact that some
physical phenomena neglected by the standard NLS model become relevant
at large intensities of the beam. Many ad hoc variants of the focusing NLS
equation have been proposed to capture such effects. In this paper, we derive
some of these variants from Maxwell’s equations and propose some new ones.
We also provide rigorous error estimates for all the models considered. Finally,
we discuss some open problems related to these modified NLS equations.

1. INTRODUCTION

The cubic, focusing, nonlinear Schrédinger equation in space dimension d is given
by

i0.v+Av+Pv=0, 7>0, z€R%
v(0,7) = vo(x), z € R™

(1)

It is a canonical model for the propagation of laser beams.

From a result of Ginibre and Velo [15], equation (1) is locally well-posed in
H' = HY(R?) for d = 1,2,3, and thus, for vy € H', there exists 0 < T < 400
and a unique solution v(7) € C([0,T),H"') to (1) and either T = +o0, we say
the solution is global, or T' < +o0 and then lim 7 ||Vo(t)||L2 = 400, we say the
solution blows up in finite time.

The NLS equation (1) also admits the following (formal) conservation laws:

L? —morm : [|v(7)[|72 = [|voll7;

Energy : E(v(r)) = %/|Vu(7’,m)|2dx - i/hj(r, z)|*dz = E(vo);

Momentum :  Im ( / Vou(r, x)v(r,a:)da:) =1Im ( / Vvo(a:)vo(x)dx> .

It is also known that a large group of symmetries leaves the equation invariant: if
v(r, x) solves (1), then ¥(\o, 70, 0, B0, 70) € R x R x R? x R? x R, so does

(2) u(t, ) = Av( N2 4 70, Ao + 20 — Bot)ei%'(zf%o'r)e”“.

The scaling symmetry u(r,z) = Av(\éT, A\oz) leaves the homogeneous Sobolev
space H*®¢(R?) invariant, where s. = % —1.

D. L. acknowledges support from the ANR-13-BS01-0003-01 DYFICOLTI, the ANR BOND..
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Referring to conservation of the L? norm by the flow, (1) is said to be L?—subcritical
if s, < 0, L?—critical if s, = 0 and L?—supercritical if s, > 0. Thus, (1) is
L?—subcritical if d = 1, L?—critical if d = 2, and L?—supercritical if d > 3. In the
subcritical case, global existence (in C([0, o), L?)) holds for arbitrarily large data
in L?. Tt turns out that in this case, global existence (in C([0,00), H')) also holds
for arbitrarily large data in H!, due to the conservation of mass and energy. In
the critical and supercritical cases however, there exist stable finite time blow-up
dynamics. This has been known since the 60ies using global obstructive arguments
based on the virial identity (see e.g. [41]).!

There is however a discrepancy between the blow-up results predicted by (1) and
physical observations. Indeed, while the blow-up signifies a break-down of the solu-
tion v, physical observations show in many cases that lasers begin to focus according
to the scenarios associated to (1) but depart from this behavior slightly before the
focusing time. The reason advanced by physicists is that some physical phenom-
ena that have been neglected to derive (1) become relevant at high intensities, and
therefore near focusing. This phenomenon is called filamentation: defocusing phys-
ical phenomena are triggered at high intensities and halt the collapse of the beam.
This interplay between diffraction, self-focusing, and defocusing mechanisms allow
for the beam to propagate along several times the focusing distance (called Rayleigh
length in optics) and the resulting structure is called filament .

Many variants of (1) have been derived in optics to take into account these
additional physical phenomena and reproduce the filamentation mechanism. In
many cases, it is a mathematical open problem to prove whether these additional
terms prevent focusing or not, and a fortiori to understand the modification of the
dynamics induced by them.

Rather than adding as usual ad hoc modifications to (1) in order to take new
physical effects into account, we choose here to rigorously derive such modifications
from Maxwell’s equations. We then comment on some of the most physically rele-
vant open mathematical problems that these modified equations raise and that are
natural milestones towards the understanding of filamentation. These variants can
roughly be classified into two groups, depending on whether they take ionization
processes into account or not.

Notation 1.1. In the brief presentation below, we denote by z the direction of
propagation of the laser, by X, = (x,y) the transverse variables, and by A} =
02 + 83 the transverse Laplace operator. In dimension d = 2, the variable y is
omitted (and hence A | = §2), while in dimension d = 1, functions depend only on
z (so that A, = 0).

MODELS WITHOUT IONIZATION PROCESSES

We give below a family of variants to (1) that incorporate many physical phenomena
neglected by (1). It is of course possible to look at one or several of these additional
effects simultaneously. We state the equations in their most general form, starting
with a family of scalar NLS equations, and then give the corresponding vectorial —
and more general — form of these equations. Let us therefore consider

(3) iPy(eV)Drv+ (AL + 1 02)v +icov+ (1 +icas - V) [(1+ f(e7|v]?)) |v]*v] =0,

IMuch more is known about the finite time blow up dynamics for the focusing NLS and we
refer the interested reader to [38] [26] [27] [28] [29] [30] [31] [32] and references therein.
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where v is a complex-valued function. Here, £ > 0 is a (small) parameter; Py(¢V)
is a second (at most) order, self-adjoint, positive operator; a; = 0,£1; ay > 0;
az € RY; f:RT — R is a smooth mapping vanishing at the origin, and r > 0. The
physical meaning of these terms is commented below:

(1) Nonlinearity. The cubic nonlinearity in (NLS) corresponds to a first order
approximation of the nonlinear optical phenomena. At high intensities,
it is often worth including some next order terms captured here by the
additional term f(¢"|v|?). We consider here three situations:

(a) Cubic nonlinearity: f = 0.

(b) Cubic/quintic nonlinearity: f(r) = —r.

(c) Saturated nonlinearity: f is a smooth function on R* vanishing at the
origin and such that (1+ f(r))r is bounded on R* (e.g. f(r) = —15).

(2) Group velocity dispersion (GVD). The coefficient «; accounts for the dis-
persion of the group velocity and three different situations are possible:

(a) No GVD: ay = 0.

(b) Anomalous GVD: o1 = 1.

(¢) Normal GVD: o = —1.

(3) Damping. The coefficient ay accounts for damping phenomena:

(a) No damping: as = 0.

(b) Damping: as > 0.

(4) Off-axis variations of the group velocity. The operator P»(¢V) is here to
account for the fact that self-focusing pulses become asymmetric due to
the variation of the group velocity of off-axis rays®. The operator Py(¢V)
is a second order, self-adjoint, and positive operator in the sense that
(P2(eV)u,u) > Clul?, with |u? > |ul3. The norm |- |. may also control
derivatives of u; we consider three cases:

(a) No off-axis dependence: P»(eV) =1, and therefore |- [, = |- |2.

(b) Full off-axis dependence: the norm |- |, controls all first order deriva-
tives, |u|? ~ |u|3 + 2|Vul3.

(¢c) Partial off-axis dependence: the norm |- |. controls some but not all
first order derivatives. More precisely, there exists j (j < d) linearly
independent vectors v; € R? such that |u|? ~ |u|3+e2 Y% _, [vi-Vul3.

(5) Self-steepening of the pulse. The operator (1 + icag - V) in front of the
nonlinearity accounts for off-axis dependence of the nonlinearity, responsi-
ble for the possible formation of optical shocks. Various cases are considered
here:

(a) No self-steepening. This corresponds to az = 0 and to the usual
situation where the nonlinearity does not contain any derivative.

(b) Longitudinal self-steepening. When as is colinear to e, there is a
derivative in the nonlinearity along the direction z of propagation of
the laser.

(c¢) Transverse self-steepening. When a3 # 0 and a3 - e, = 0, there is
a derivative in the nonlinearity along a direction orthogonal to the
direction of propagation.

2This phenomenon is often referred to in optics as space-time focusing [35]; we do not use
this terminology here because this would be misleading. Indeed, physicists usually take z as the
evolution variable and treat ¢t as a space variable. This amounts to permuting ¢ and z in (3) and
elsewhere.
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(d) Oblique self-steepening. When a3 is neither colinear nor orthogonal
to e,.

Remark 1.1. The standard Schrodinger equation (1) is obtained with Py(eV) = 1,
as =0, a3 =0, f =0, and oy = 1. Using the above terminology, it corresponds to
a cubic nonlinearity, without damping terms, off-axis variation of the group velocity
and self-steepening, and with anomalous GVD.

As previously said, (3) stems from a more general vectorial equation. For the
sake of simplicity, we give here the equation corresponding to the cubic case (or

f=0in (3)):

1
(3) veet z'P2(sV)@Tv+(AL+a16§)v+ia2v+§(l+isa3~V) [(v-v)v+2[v]*v] =0,
where v is now a C2-valued function.

Remark 1.2. Equation (3) is in fact a particular case of (3)yeet corresponding to
initial data living on a one-dimensional subspace of C2. Indeed, if the initial con-
dition to (3)vect has the form v| _ = v%(z)vo with vy € R? and v” a scalar-valued
function, then the solution to (3)yect takes the form v(r,x) = v(r, x)vo, where v

solves (3) with initial condition v°.

MODELS WITH IONIZATION PROCESSES

In addition to the physical phenomena taken into account in (3), it is necessary at
high intensities to include ionization processes for a correct description of the laser
pulse. The reason why this phenomenon is singled out here is because a system of
two equations must be considered instead of the single equation (3). In the most
simple case (i.e. Po =1, f =0, as = 0, az = 0; for a more general model, see
(50)), this system is given by

) {i(@t + g0 )u+ (AL +10%)u + e(ul? — p)u = —iec(aq|ul* "%u + azpu),

Op = eaylul*™ + easplul?,

(4

with ay, a5 > 0, ¢ > 0, and where p is the density of electrons created by ionization,
while ¢, = c4e; is the group velocity associated to the laser pulse.

The system (4) does not directly compare to (3) and (3)yect; indeed, (4) is written
in the fixed frame of the laboratory, while (3) and (3)yect are written in a frame
moving at the group velocity ¢, = c4e. and with respect to a rescaled time 7 = t.
Rather than (4), the NLS equation with ionization used in the physics community
is its version written in the same variables as (3) and (3)yect. More precisely, if we
set

u(t, X1, z) =v(et, X,z —c4t), p(t, X 1,2) =plet, X1,z — c4t),
and T = et, the equations (4) are approzimated ® by the following ones,
(5) { 00+ (AL + 102+ (o] = p)v = —ie(oulo" 20+ aspv),
—cy0,p = eay|v|* + casplv]?.

The ionization processes taken into account by the systems (4) and (5) are:

3The approximation lies in the equation on p. In the new variables, the second equation of (4)
is given by
~ P 2K S12
€0rp — cg0.p = eaq|v|*™ + easplv]”.
In the physics literature, the term €07 is neglected, and this corresponds to (5).
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(1) Photo-ionization. This corresponds to ay > 0 and K > 0 (K is the number
of photons necessary to liberate one electron).

(2) Collisional ionization. When a5 > 0, a term corresponding to collisional
ionization is added to the evolution equation on p.

Remark 1.3.
(1) The coupling with p can of course be added to any equation of the family (3).
(2) A vectorial variant of (4) and (5) can also be derived in the same lines as (3)vect-
(2) When oy = a5 = 0 and p|,_, = 0 (respectively lim., ., p = 0) one recovers (3)
from (4) (respectively (5)).

The rest of the paper is as follows. In section 2, we recall the Maxwell equations,
we give an abstract formulation and we discuss the spaces of initial data used for
the Cauchy problem. In section 3, we prove our main result about the rigorous
derivation of general abstract versions of the models (3), (3)vect, and (4), (5). In
section 4, we analyze the role of the various parameters in (3) and (4) or (5) In
particular, we consider whether they indeed prevent the breakdown in finite time
or not. We also formulate a number of interesting open problems for these modified
NLS equations. Finally, an appendix contains explicit computations for a physically
relevant system of Maxwell equations which show that the abstract models derived
in Section 3 take indeed the form of (3), (3)vect, and (4).

1.1. Notations. We denote by

- Fu(§) = u(§), the Fourier transform of w with respect to the space variables
r € R4

- Fru(w), the Fourier transform of u with respect to the time variable ¢.

- f(D), the Fourier multiplier with symbol f(£): f(D)u(&) = f(&)u().

- f(Dy), Fourier multipliers with respect to time.

- A = (1 — A)Y/2 the Fourier multiplier with symbol (1 + |£])/2.

2. THE MAXWELL EQUATIONS AND AN ABSTRACT MATHEMATICAL
FORMULATION

2.1. The Maxwell equations. The Maxwell equations in a non magnetizable
medium are a set of two equations coupling the evolution of the magnetic field B
to the electric induction D,

0¢B + curl E =0,

1
(6) ;D — —curl B = —1J,
Ho

where D is given in terms of the electric field E and a polarization P — modeling
the way the dipole moment per unit volume depends on the strength of the electric
field — by the relation

(7) D = ¢E + P,

and where we used standard notations ey and pg for the electric permittivity and
magnetic permeability in vacuum. The evolution equations (6) go along with two
constitutive laws,

(8) V-D=p, V-B=0,
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where p is the electric charge density.
As a consequence of the relation V -D = p and the second equation of (6) we get
the continuity equation coupling p to the current density J,
(9) Op+V-J=0.
Introducing the speed of light in vacuum
1
Veoko
the equations (6) can also be rewritten as a set of two evolution equations on the
magnetic field B and the electric field E,

CcC =

0¢B + curl E = 0,
1 1
(10) OE — Pcurl B= ——§,P — —1J.
€0 €0
In order to get a closed system of equations, we still need two physical informations:

(1) A description of the polarization response to the electric field E.
(2) A description of the current density J.

We first address the description of the polarization response in absence of current
density and then proceed to describe the modification to be made when current
density is included.

2.1.1. The polarization response to the electric field. Throughout this section, we
assume that there is no charge nor current density (p = 0, J = 0). The general case
will be handled in §2.1.2 below.

There exist various ways to describe the polarization P; we use here a simple
and natural model called “nonlinear anharmonic oscillator”, according to which
the polarization is found by solving the second order ODE

(11) 2P + 0P + Q2P — VVn1(P) = €olE,

where b € R is a coupling constant and g, > 0 are frequencies, and where Vi,
accounts for nonlinear effects. When such effects are neglected, the description (11)
goes back to Lorentz [23] and expresses the fact that electrons are bound to the
nucleus by a spring force. Nonlinearities have been added to this description by
Bloembergen [5] and Owyyoung [34] and the mathematical investigation of their
influence was initiated by Donnat, Joly, Métivier and Rauch [11, 16] (see also [20]).

Remark 2.1. In physics books, the polarization P is often sought as an expansion
P= €O[X1[E] +X2[E7E] +X3[E7E3E] + .. ']7

where the operator ! is called the linear susceptibility of the material, while for
j > 1, the operators x’ are the j-th order nonlinear susceptibilities. It is easy to
check that the linear susceptibility corresponding to (11) is given by the nonlocal
(in time) operator
b
1 1 . 1

El = D,)E ith W)= ——5——F—""""
KIE =X (DJE with () = s

where we used the Fourier multiplier notation,
Filx' (Dy)E|(w) = x' (@) FEw).
Ezample 2.1. Typical examples for Vy,(P) are
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(i) Cubic nonlinearity:
Vnr(P) = %|P\4 and therefore  VVyr(P) = a3|P|?P
(ii) Cubic/quintic nonlinearity:
Vnir(P) = %|P|4 - %\PP and therefore  VVyr(P) = a3|P|?P — a5|P|*P.

/

iii) Saturated nonlinearity: there exists a function vy, : Rt — R, with v
sat

and v, bounded on R* and such that

1
Vnir(P) = §vsat(\P|2) and therefore  VVyp(P) = vl (|P|?)P;
for instance, one can take

2

. (r)_ag T
sat - 5 ’
2 1+ 2%y

in which case VVy(P) = a3|P|?P — a5|P|*P + h.o.t, and is therefore the
same at the origin as in (ii) above, up to higher order terms (seventh order
terms here).

We show in Appendix A.1 that Maxwell’s equations can be put under the fol-
lowing dimensionless form* for all the nonlinearities considered in Example 2.1,

0¢B+ curl E =0,
1
OE — curl B+ gﬁQﬁ =0,

1
O + e — ~(VAE — woPf) = £ Ty (L4 f(PF)2)) [PA[PF,
0

1
OiPF — —woQ* =0,
9

where v, wp, w1, 7 and p are constants, 0 < € < 1 is a small parameter (the ratio of
the duration of an optical cycle over the duration of the pulse, see Appendix A.1),
while f is a smooth function vanishing at the origin.

2.1.2. The case with charge and current density. The main mechanism at stake in
laser filamentation is certainly the local ionization of the medium: once a power-
ful self-focusing laser beam reaches high enough intensities, it ionizes the medium
around itself. It leaves behind a narrow channel of plasma, hereby causing local
defocusing that prevents blowup.

Taking current density into account, we come back to the set of equations (10)-(11),
and a physical description of the current density J is needed. This current density
has the form

(13) J=Jc+ 3,

where J, and J; are respectively the free electron and ionization current densities.
- Free electron current density. Partial ionization of the material medium by the
laser generates free electrons, with charge ¢.(= —1.6 x 10719C). This induces a
free electron current density Jo = ¢epeve, Where p, is the electron density, and v, is

4The constitutive laws (8) are omitted because they are propagated by the equations if they
are initially satisfied.
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the electron velocity. A rough®, but standard model in nonlinear optics is to take
(see [4] and references therein),

(14) E(t,X) ~ Eoi (t, X)e'®MX=wit) L ¢

where k; and w) are the laser wave number and pulsation respectively, with |0; Eo1 | <
lwiEo1| (slowly varying envelope approximation); the polarization current is then
taken under the form

2

(15) Jo ~ Joi(t, X)e®X=wt) L e with  Jo = i—2— p,Eoy,
w1Mme

where m, is the electron mass. The drawback of this model is that it assumes that
the electric field and the current density field can be written at leading order as
wave packets (i.e. are given under the form (14)-(15)). In particular, it does not
provide any relation between the current density J and the electric field E that could
be used in Maxwell’s equations (10). We therefore propose here such a relation,

namely,
2 k
Je = de H (k; . D) (peE)7
1

WiMme

where k) = |kj|, and H is the regularization of the Hilbert transform given by the
Fourier multiplier

V2iD,

(16) HD:) = i

Quite obviously, this is consistent with the usual model (15) since this latter is
recovered at leading order when the electric field is a wave packet under the form
(14).

Finally, the evolution of the electron density p. is given by a source term S
representing external plasma sources. Taking into account photo-ionization and
collisional ionization, but neglecting electron recombination (see for instance [3] for
richer models), we have

o
S = W(I)(pnt - pe) + Upe—[a
i
where the intensity is I = |E|? and py is the constant density of neutral species.
In the regime considered hereS, p. is negligible compared to py; and the photo-
ionization rate W (I) takes the form

W(I) = oxI*F,

for some constant coefficient o > 0 and with K > 1 the number of photons
needed to liberate one electron. The collisional ionization cross-section o depends

5This approximation can be deduced formally by assuming that ions are at rest and that
electron motion is described by the compressible Euler system (see for instance [3]). Neglecting

electron collisions, such a model yields 0tJe = i—ipeE which formally yields (15) assuming that E
is as in (14) and that pe is not oscillating at leading order. It would of course be interesting to
provide a rigorous justification to these approximations.

For higher intensities, electrons can tunnel out the Coulomb barrier of atoms, and W (I) is
modified.
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on the laser frequency, and Uj is the ionization potential. Summing up, we get the
following expression for the free electron current J, and p = pe,

2
dc k
Jo = H -D E),
(17) wirme (’f? ) (6E)

g
Op = orput|[E*K + ﬁP\EF-

- lTonization current density. It is also necessary to take into account losses due to
photo-ionization. We therefore introduce a ionization current density J; such that
J; - E represents the energy lost by the laser to extract electrons (per time and
volume unit). More precisely, J; - E is equal to the energy necessary to extract one
electron (given by the ionization potential U;) multiplied by the number of electrons
per time and volume unit (given by d;p). Using the second equation of (17), this
gives

Ji - E = Uiog put[E[*E + op|E[.
We therefore take
(18) Ji = (UiO'Kpnt|E|2K72 + Up)E.

We show in Appendix A.2 that after nondimensionalization, the set of equations
(10)-(13)-(11)-(17)-(18) (for the nonlinearities considered in Example 2.1) becomes,

0B+ curl E =0,
1 k
OE — curl B+ E\FyQﬁ = —57%(5? - D) (pE) — eco(c1|E[** 72 + e2p)E,

T (14 f(e"[PH))) P 2PE,

1
(19) § O+ Pwi @ — —(VIE —woPf) = —
0

1
81513‘i - gonﬂ = Oa

dip = ec1 |[E[*E + ecoplE)?,

with the same notations as in (12) for the constants 7, wp, w1, r and p, the small
parameter €, and the function f. In addition, we have here constants cg, c1,co > 0,
and we also recall that the definition of the regularized Hilbert transform H is given
in (16).

2.2. Abstract formulations.

2.2.1. The case without charge nor current density. We show in Appendix A.1 that
the Maxwell equations can be put under the dimensionless form (12), which itself
has the form

1
(20) o, U+ A(0)U + gEU + TP AU = eF(,U),

where U is a R™ (n > 1) valued function depending on the time variable ¢ and the
space variable x € R? (d > 1),

U: (t,z) €R xR = R™
The operator A(9) is defined as

d
A(0) = Aj0;,
j=1
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where 0; is the differentiation operator with respect to the j-th space coordinate.
The matrix Ag has size n X n, p is a positive number, and the following assumption
is made on the matrices A; and E, and on the nonlinearity F'.

Assumption 2.1.
(i) The matrices A; (j =1,...,d) are constant coefficient n x n, real valued, sym-
metric matrices.
(ii) The matriz E is a constant coefficient nxn, real valued, skew symmetric matriz.
(iii) There exists a smooth mapping f : RT — R wvanishing at the origin, a real
number r > 0, a quadratic form @Q : C* — R* and a trilinear symmetric mapping
T:(C")? — C" (with T(R" x R™ x R") C R") such that

VU eC”,  F(e,U) = (1+ f(e"Q(U))) T(U,U,U).

Remark 2.2. There exist of course situations where the leading order of the non-
linearity is not cubic (it can be quadratic for non centro-symmetric crystals for
instance) or not of this form; since we are interested here in deriving variants of
the standard cubic nonlinear Schrodinger equation, we restrict ourselves to this
framework for the sake of simplicity.

Ezample 2.2. As previously said, the dimensionless version (12) of the Maxwell
equations can be put under the form (20) and they satisfy Assumption 2.1 with
n =12, U = (B,E,Q* P¥)”. See Appendix B for more details.

2.2.2. The case with charge and current density. As shown in Appendix A.2, the
system (19) of Maxwell’s equations with partial ionization can be put under the
general form

o,U + A(0)U + lpu + e TPA U =
(21) eF(e,U) —eH (#; : D) (WCTCU) — ec CTG(CLU, W),
5‘tW = €G(ClU, W) . ClU,

where, as in § 2.2.1, U is a R"-valued function, whereas W is an R-valued function
of (t,x) € R x R%. The matrices A; and E, as well as the nonlinearity F', satisfy
Assumption 2.1. Concerning the other coefficients of the system, we assume the
following.

Assumption 2.2.
(i) The real, constant matriz Cy has size m x n (with m € N).
(ii) The constant c is positive.
(iii) There exists two real, positive constants ¢ and co and an integer K > 1 such
that

VE € C™, Vw € C, G(B,w) = c1|E|*?E + cowE.

Remark 2.3. Asin Remark 2.2 for the case without ionization, we can put Maxwell’s
equation with ionization terms (19) under the abstract form (21). Using the same
notations as in Remark 2.2, the matrix C; is the projection matrix such that C1U =
E, and w = p.
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2.3. The Cauchy problem. We are considering initial conditions that correspond
to laser pulses. In the case without charge nor current density (equation (20)), they
are fast oscillating wave packets slowly modulated by an envelope,

k-x

(22) U),_, =u’(z)e" = +cc,

where k € R? is the (spatial) wave-number of the oscillations. Taking charge and
current density into account (equation (21)), we need to provide initial conditions
for W since we are interested here in the situation where this quantity is created
by the laser when it reaches high intensities near self-focusing, we take these initial
conditions to be initially zero” for the sake of clarity.

(23) Wlt:() = 0

The evolution equation (20) (as well as (21)) being of semilinear nature, it is
natural to work with Banach algebra in view of a resolution by Picard iterations.
Throughout this article, we assume that u° € B, with

B = H"RY", (o > d/2)
or
B=WR)" :={f € S'RN"|f|p = |flpr < oo}

(the so called Wiener algebra, which is better adapted than H'o(R?)" to handle
short pulses, see [9, 21]). In both cases, B is stable by translations in Fourier space
(this ensures that if u’ € B in (22) then U),_, € B) and is a Banach algebra in the
sense that

Vf,9 € B, f-geB and |[f-glp Z|flBl9lB
For all k£ € N, we also define

B® ={feB, VaeN V|a|<k, 0*fcB},

endowed with its canonical norm.

We are interested in deriving asymptotics to the solution formed by (20)-(22),
with initial envelope u’ € B, and more generally (21)-(22)-(23), if we want to
be able to handle ionization processes in nonlinear optics. This requires a further
assumption on the nonlinearity F', namely that F' acts on B and is locally Lipschitz.

Assumption 2.3. In addition to (iii) of Assumption 2.1, the mapping F satisfies,
uniformly with respect to € € [0,1),
(i) For all f € B, one has F(f) € B and

|F'(e, Nle < C(IflB)|fIB
(ii) For all f,g € B, one has
ld¢F(e,)g9ls < C(If|B)l9]B-

Ezample 2.3. When B = H'%(RY)" (t; > d/2), Assumption 2.3 is always satisfied
(by Moser’s inequality); when B = W(R%)", the assumption holds for analytic
nonlinearities.

"One could more generally and without supplementary difficulty consider non-oscillating initial
conditions for the charge density W
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3. DERIVATION OF NLS-TYPE EQUATIONS

The Schrodinger approximation takes into account the diffractive effects that
modify over large times the propagation along rays of standard geometrical optics.
These diffractive effects are of linear nature and are known [11, 17, 16, 36, 20] to
appear for time scales of order O(1/e) for the initial value problem formed by the
linear part of (20) and (22). This is the reason why we are interested in proving
the existence and describing the solutions to the (nonlinear) initial value problem
(20)-(22) over such time scales.

For the sake of simplicity, the initial value problem (20)-(22) (no ionization) is
first considered. Up to minor modifications, the results of §§3.1, 3.2 and 3.3 are
known [9]; we reproduce them here because they are necessary steps to derive the
family of NLS equations (3) and, for the sake of clarity, their proof is sketched in
a few words. The general idea to derive the Schrédinger equations of §3.5 with
improved dispersion was introduced in [9] but the computations are carried further
here. We then derive in §3.6 a new class of models with derivative nonlinearity for
which a local well-posedness result is proved. When applied to Maxwell’s equations,
these derivative nonlinearities yield the so-called self-steepening operators; to our
knowledge, this is the first rigorous explanation of these terms.

The asymptotic description of (21)-(22) (i.e. ionization is now included) is then
addressed in §3.7.

3.1. The profile equation. We show here that under reasonable assumptions on
F, solutions to the initial value problem (20)-(22) exist for times of order O(1/¢)
and that there can be written under a very convenient form using a profile U,

(24) Ult,2) = U (t,ac, kx;”) ,

with U(t, z, ) periodic with respect to 6 and for any w € R, provided that U solves
the profile equation

OU + AU + éE(WD& kDg)U + P AU = eF (e, U),
U\t:o (1’, 9) = UO(m)eiG + c.c..

(25)

Here, we used the notation

E
(26) ,C(L«.}D97 kD@) = —wDy + A(k)De + 7,
with Dy = —idp and A(k) = 3| Ajk;.

Theorem 3.1. Let B = H"*(RY)" or B = W(RY)" and u° € B. Under Assump-
tions 2.1 and 2.3, there exists T > 0 such that for all 0 < ¢ < 1 there exists a
unique solution U € C([0,T/e]; B) to (20)-(22). Moreover, one can write U under

the form
U(t,z) =U (t,x, kaca—wt> ,

where U solves the profile equation (25).

Proof. The proof is a slight adaptation of the one given in [9] in the trilinear case;
consequently, we just give the main steps of the proof. Quite obviously, a solution
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U to (20)-(22) is given by (24) if (25) admits a solution U € C([0,T/¢]; H*(T; B))
(k > 1) where

(27) Hk(T§ B) = {f = aneme’ |flee(r,By < OO}

ne”Z

and with |f|§{’€('JI‘,B) =3zl + 0¥ fu|%. For k > 1, H¥(T,B) is a Banach
algebra; moreover the evolution operator S(t) associated to the linear part of (25),

S(t) = exp (tA(@) — étﬁ(ng, k’Dg))

is unitary on H*(T; B) (thanks to point (i) and (ii) of Assumption 2.1). One can
therefore construct a (unique) solution to (25) by a standard iterative scheme

t
UM (1) = S(U° + 5/ S(t — ) [F(e, U (') — e AoU] ',
0
with U? = Uj,s. Indeed, one has thanks to Assumption 2.3,

t
U ()| e rpy < |U0|Hk(Tr;B)+E/ [P AU | 1 (2, 3)+C (U 1 (r, )N U 1 1,3 )5
0

thanks to the ¢ in front of the integral. An estimate of the same kind is valid for a
difference of iterates, by point (ii) of Assumption 2.3. By a fixed point argument,
this ensures that the sequence converges to a solution on [0,7'/¢] for some T' > 0
independent of €. Uniqueness then follows classically from an energy estimate on
the difference of two solutions. O

3.2. The slowly varying envelope approximation. The slowly varying enve-
lope approximation (SVEA) consists in writing the profile U under the form

(28) U(t,2,0) ~ tens(t,2)e + c.c.

plugging this approximation into the profile equation (25) and keeping only the
first harmonic in the Fourier expansion yields easily (writing © = teny),

Opu + A(Q)u + éﬁ(w, K)u + P Agu = e F" (g, u),

where

1 27 ) )
(29) Fe(e,u) = 2—/ e WF(e,ue + c.c.) db.
0

™
Ezample 3.1. With F(u) = |u|?u, one gets F(u) = (u - u)u + 2|u|?u.
Denoting D = —iV, we observe that
A(0) + gﬁ(w,k) = A(9)+ é(—wld + A(k))
g(—wld + Ak +¢eD))
= gﬁ(w, k+eD),

where the last notation is of course consistent with (26).
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As a consequence of these computations, we see that in order for (28) to hold,
it is necessary that u = u.p, satisfies the envelope equation

(30) Opu + éﬁ(w, k +eD)u + e TP Agu = e F*" (g, u),

_,0
U|t:0 =Uu .

As implicitly assumed by omitting the fast oscillating scale in the argument of
the envelope function uen, (¢, ), the envelope must not contain any fast oscillation.
However,

e The singular part of the linear ter