PROPAGATION OF OSCILLATIONS

NEAR A DIFFRACTIVE POINT
FOR A DISSIPATIVE AND SEMILINEAR
KLEIN-GORDON EQUATION

Eric Dumas
IRMAR, Université Rennes 1, 35 042 Rennes Cédex, FRANCE

dumasOmaths.univ-rennesl.fr

Abstract

We study the propagation of oscillating solutions for a semilinear

dissipative Klein-Gordon equation,
a2 e e 1 e : elp—1¢ £
(1+ 2)0fu® — Ay u® + o +|0u|PT 0 =0 (p > 1),

on a half space Rfll_ = {(z,2) / * > 0,z € R¥'} near the origin, when
incident rays reach the boundary tangentially at this point.

The solution «¢ is then given (via a H'-asymptotics) as a sum of two
oscillating profiles. These incident and reflected profiles are uniquely de-
termined by a mixed system of coupled transport equations. Moreover,
they are supported in a smooth open domain in R}jd, which is delimited

by glancing rays: This emphasizes the ‘shadow region’.



Introduction

We are interested in the propagation of an oscillatory wave, solution of a
Cauchy-Dirichlet problem for a nonlinear and dissipative Klein-Gordon equa-
tion on a half space ]Rfll_, and we look at the interaction with the reflected wave,
when the incidence is supposed to be of diffractive type (see [3]). In this case,
a “singular ray” separates the region reached by bicharacteristic curves and its
complementary, the “shadow region”.

Propagation of singularities for the linear wave equation was studied by
F.G. Friedlander in [2], and R. Melrose gave microlocal parametrices for second
order equations, by means of Fourier-Airy integral operators ([8],[9]).

Rigorous nonlinear geometric optics was initiated by A.J. Majda and M.
Artola (see [7]), in the case of transverse reflection. In the diffractive case, C.
Cheverry treated second order equations with globally Lipschitz nonlinearities:
In [1], he gives first order asymptotics of the solution in H', using the facts that
reflection at the boundary has defocusing properties, and that energy does not
concentrate near the singular ray. In our case (dissipative nonlinearity), we
must avoid his WKB method: It is based on Picard iteration, which destructs
the dissipative structure (see also Remark 0.3).

Concerning the Cauchy problem for a hyperbolic system, Joly, Métivier and

Rauch have studied the caustic crossing by oscillatory waves: At first, Lipschitz



nonlinearities ([4]), and then, dissipative equations ([5]). Their method is based
upon Lagrangian representation of the solutions, for which phases are globally
defined, and on profiles extraction, relatively to each oscillating mode.

In the degenerate cases of gliding and contact of higher order, M. Williams
obtains (see [11]) infinite order asymptotics, giving a precise description of
interaction between elliptic, hyperbolic and glancing boundary layers.

We first explain the method we will use and describe the results. Our

Klein-Gordon equation is a semilinear one (p > 1), with variable coefficients:

1
(0.1) (14 2)0fu® — A, u® + —u® + |0 [P~ O’ = 0,

22
on a half space D := {(t,z,2) / t € R,z > 0,z € R}, for initial data

= ug ~ eg(z, Z)GZ“”i(_T’m’Z)/E,

(0.2)

10i(=T,z,z) /e
>

Opui__, = uj ~10wpi(=T,x,2)g(x,z)e

and null boundary condition
(0.3) uj,_, =0.

Here, g € Hg(R%) (vanishing for = 0 in order to satisfy the boundary
condition (0.3)) has compact support, because we look at u® only on a neigh-
bourhood of the origin. Equivalences in (0.2) have the following meaning (the

difference of functions tends to zero in the appropriate space):



- for ug (~ in Hl(Ri)):

(0.4)
% . gei(p,‘/s — 30 and Ha <u5 _ a’;‘gei%‘/s) ‘ —0
€ 2 50 ## A0 L2 .40
the second condition being equivalent to H@I,Z‘ug - i(ax72€]‘9i)g€iwi/e L2 ;; U

- for uy (~ in LQ(Ri)):

(0.5) | uj — i(@tc,oi)gewi/e

—0.
L? e—0

Remark 0.1.

i) The function @, is the incident phase, according to which the initial data
(ug, u1) oscillate. These data have a particular form (the time derivative of ¢;
is present): They are polarized, so that the nonvanishing oscillating part of the
incident wave oscillates with @;, and not with the second characteristic phase
generated by o, (=T, .).

ii) The choice of an amplitude of size ¢ when the frequency is 1/ corresponds

to the so-called weakly nonlinear geometric optics regime.

Some notations:



Notation 0.1. We will use the following functions and operators:

F(v) = [v]'o, Yo e C,
P(9) = (14 )07 = A+ )
P(0):=(1+2)0? — A,
r.6.C) = (142 — € — [P — 1, ¥(r,6,0) € R
1.(0) = (14 )00k — () D wilh 5 € ().

Thanks to dissipativity of equation (0.1), we know (cf. [6], and Para-

graph 2) that (0.1), (0.2) has a unique solution, satisfying (0.3). We prove the

following result:

Theorem 0.1. Let u® be the unique solution of (0.1), (0.2). Then, there exist

unique U;, U, € LPTY(Qrp) = LPY(] — T, T[x]0,z[x B(0,1)), which satisfy

(0.6) u ~ e (Uie®e 4 U, er/?) in H'(Qr), i
L (e 1 U —0
) 12 e—0
(0.7) wnd
[ Vus — i (Vi) Uie'/* + (Vo)UY ||, — 0.
e—

The functions U; and U, have support in the “illuminated zone” delimited by

S, the surface generated by glancing rays.

Remark 0.2.
i) Equivalences really mean, in L, that the difference between the two terms
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goes to zero. The definition (given in the theorem) extends to H' in the fol-
lowing sense: First, the difference tends to zero in cL*, but in addition, we
only need a L? function to describe a function and its gradient.

ii) Our approzimation of the exact solution has only one term, because of the
reqularity of u®, which one can differentiate only once in L*.

i) The “shadow zone” makes sense here, even if the H' asymptotics allows
one to neglect a (arbitrary small) neighbourhood of the singular ray S, because
the approxzimation is given by profiles U; and U, vanishing “beyond S7, where

rays do not pass.

Our strategy is simple.

First, we define the incident and reflected phases ¢; and ¢, in the illumi-
nated zone 7 (Paragraph 1). Then, we extract from u® incident and reflected
profiles U;, U, € LPTY(T), i.e. (Paragraph 2): There exists an extraction, still

denoted by u®, such that

Va € LQ(T),/EEG_W’“/E% Uya,
5

e—0

(0.8) /@wusae_wk/e—> (0, 0k )Ura, and

e—0

Ya € Ll“/p(’f),/@tufae‘wk/f — i(Owpr)Ura.
e—

In the same way, we extract profiles F, F, € L'*Y/?(T) from F(9u®). The

problem (0.1), (0.2) imposes to these profiles to satisfy the following transport



equations:
1

2T, (9)U; — P(@i)Ui+ =F;=0on T;
2

1
2T, (0)U, — P(e,)U. + =F.=0o0n 7,
(0.9) !

In order to deduce the H'-asymptotics of the theorem from this weak limits
(Paragraph 5), we construct, by means of cut-off and regularization of profiles,
an approximate solution v® (paragraph 4) so that its difference with u® con-

verges strongly to zero: With Q, :=] — T',¢[x]0,z[x B(0,r),

(0.10)
H\/1+—xat(u5 — UE)H;,Z@ + |02 (u® — vf)y@%z (1)

1 e 112 e e 1
+ e =l (1) + el|d” — o [jasspm

€ € 2 € € 1 € €
< [VIFwow = )| @+ 10w = o), () + 5 0 = o (@)

z,z

+2Re [ (F(0) — F(0:07)) Oy(wF —vF)

Q¢

2 1
= |V a0 = o)|| | (1) + 1uaw = o), (=T + 5 u = v}, (=)

z,z

+2Re [ (PP(uf — v%) + F(dw®) — F(On°)) 0,(wF = v°),

Q¢



and we write out the last integral as

/Q (P*v® + F(0°)) 0h(ur — v°) = / (P*v° + F(p/e)) 0w = %)

Q¢

(0.11) T / (E(p/2) — Flo)e)) =)

+ [ (Plow) = £/ nT=),

each term going to zero by definition of v®:
- for the first one, P*v® + F(¢/¢) ;; 0 in LYtY/?P and 0¢(u® — v*) is bounded
in [P+
- for the second one, we recall that d;(u® — v®) has null profiles;
- for the third one, we show (Paragraph 3) that the difference F/(0;v°) —E(p/e)
has no oscillation propagated by P°.

This strong convergence allows us to identify in the system (0.9) the profiles
Fi, with the nonlinearities Ex(U;,U,), so that this system inherits the dissipa-
tivity properties of (0.1): We deduce from this uniqueness of the profiles, and

validity of the asymptotics (0.6) for the whole sequence u®.

Remark 0.3.

i) In [1], Cheverry first defines the system of profile equations, and then solves
it, quite easily, because of the sublinear property of the nonlinearities. Here,
we cannot obtain existence of solutions to (0.9) with Fy, = Ex(U;,U,) through
Picard iteration, which destructs the dissipative structure. This is one advan-

tage of our method, where profiles are defined first, and then, nonlinearities

are identified.



ii) This technique may also apply to the case of higher (finite) order tangen-
tial rays, when there are no gliding points in T*(0D): Once the phases and
domains are fived (see Remark 1.1,1ii)), we only use cut-offs and energy esti-
mates to prove the approzimation (0.6).

i) In the non-dispersive case of a wave equation ((1 + z)0fu® — A, u® +
F(0w®) =0), it is necessary to take care of harmonics in the approzimate so-
lution. The profiles then become functions U;(t,z,z,0), U (t,z,2,0) on T x T

(periodic w.r.t. 0) such that, for all a € C3°(T x T?),

/Tfa (th % "°—> s (U(6:) + U, (6,))a(6:,6,)

€ €/ 20 Jryr2

—see [10], [5] for extraction of such profiles.

Contents
1-Phases
2-Definition of profiles and first equations
3-Nonlinear operations on profiles
4-Construction of the approximate solution

5-Asymptotics of u®



1 Phases

The only propagated oscillations for the equation (0.1) are the characteris-
tic ones (¢f. Paragraph 3), i.e. the ones associated to phases satisfying the

following eikonal equation:
(L.1) plde) = (1 +2)(0rp)* = |0s200|" = 1 = 0.

The corresponding characteristic variety, {p(7, &, () = 0}, is shown on Figure 1

(with (O7) a revolution axis).

Figure 1: Characteristic variety of (0.1).

We will first consider the phases generated by the Cauchy-Dirichlet problem
(0.1), (0.2), (0.3) by propagation of initial data and reflection at the boundary:
Existence and regularity of such diffractive phases, as well as their transver-
sality and nonresonance properties.
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In our context, every glancing point in dT*D (where D is the half space
R x R%), i.e. every zero of p in T*(dD), is in fact a diffractive point (cf. [3]).
Thus these points exactly compose the set of ((¢,0, z), (£(¢),0,¢)), (¢, z) € RY,
¢ € R4! using the usual notation (¢) := W We will see that only one
such point can belong to each bicharacteristic curve (these curves foliate the
graphs of our phases’differentials); in addition, the problem is invariant under
(t, z)-translation, so we decide there is a diffractive point above the origin
(t,z = 0), associated to a covector such that 7 > 0. The bicharacteristic curve

through this point is described by the Hamiltonian equations

t=2(14a)r

= —=2¢

z=-2(
(1.2)

T=0

11



with (t,2,2,7,€,()},_, = (0,0,0,(¢),0,¢), so we have got the parametrization

(1.3)

We denote by S the set of glancing rays (rays are projections of bicharacteristic
curves on the space of configurations (¢, z,z)); we call it the “singular ray” by
analogy with the one-dimensional case (Figure 2). The shadow region, Schad,

is the open domain “beyond” S in D (see notation 1.1).

The phases are defined by:

Proposition 1.1. There exist z,r,T > 0 and phases ¢; and @, such that

@i - is defined on T;, open subset of D\ Schad, whose closure is a neighbour-
hood of the origin in D\ Schad and contains {=TY} x [0, 2] x B(0,r)
(i is in fact regularly defined on a neighbourhood of the origin in R1*¢);
- is a C* solution of (1.1) on T;;

- satisfies VQOZ'(O) = (82992'(0)7 0, <82992(0)>)}

12
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Figure 2: The singular ray near the origin.

©r - is defined on T, open subset of D\ Schad, whose closure is a neighbour-

hood of the origin in D\ Schad and contains a neighbourhood of the origin

in {x =0} \ Schad;
- is a C' solution of (1.1) on T, (C*° on T, );

- satisfies on {x = 0}: @, = ¢;, Opp, = —0pp;.
We denote by T the union T; U T,.

The form of domains 7; et 7, is given on Figure 3.

13
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Figure 3: The domains 7; and 7.
Proof.
In order to define ¢;, we set its values at ¢ = 0, on a neighbourhood

of 0 in Riz, requiring only regularity and a null z-derivative at the origin.
The classical theory of Hamilton-Jacobi equations then allows us (if necessary
restricting the neighbourhood, i.e. z and r) to construct a unique (smooth)
solution of (1.1) corresponding to this initial data, with d;p;(0) = (9.¢:(0)),
thanks to the flow of (1.2). For T small enough, all projections of integral

curves (rays) reach {t = —T'} and foliate a neighbourhood of 0 in R!*,

The equation (parametrized by o) of the bicharacteristic curve through

14



(to, zo, 20, T, €0, (), with 7 > 0 and (1 + zo)7* — & — [¢([* =1 =10, is

s
Il
[

T=T

5250—120

(1.4)

Z:ZO—ng

T = x9— 260 + 70°

t=1to+2(1 + x9)10 — 260T0* + %f’a?’.

When o is close to zero, t increases with o; the bicharacteristic curve is then
oriented with increasing o € Ry. Restricting if necessary the (x, z)-domain,
we have, in a neighbourhood of the bicharacteristic curve through the origin,

and for t = =T & > 0, and z decreasing with o.

Notation 1.1. There are three cases for rays: They do not reach the bound-
ary, cross it transversally, or touch it at a glancing point. The set of glancing
rays form S. For rays crossing {x = 0}, we only consider the part of the
ray from {t = =T} and “before” the boundary (according to the orientation
of the ray). Those form, together with the nonreflecting rays, the domain T,.
Transverse rays meet the boundary again and foliate, beyond S, the open set
Schad.

Differentiating the eikonal equation with respect to x, and using Oyp(0) =
(0,0(0)) # 0, we see that the gradient 0; ,0-p does not vanish at the origin, so
that the trace of S on {x =0}, i.e. {(t,2z) / 0xp(¢,0,2) = 0}, is a (codimen-

15



ston one) submanifold of {x = 0}, which we denote by So. The surface S is
parametrized by this submanifold, and transversally (see (1.8)) by rays spread-
ing out of it; except at this point, they are contained in {x > 0}, x being a
polynomaal of degree two in the variable o, with mintmum value on Sy. Hence,
S locally separates (in R}fd) Schad and the enlighted zone. The boundary s

separated by Sy into a part included in Schad, and another one, “Lighty”,

defined by d,p; > 0.

The reflected phase , is also constructed thanks to the flow of (1.2), for ini-
tial data (s,0,z, 0wpi(s,0,2), —0.0i(s,0,2),0,0i(s,0,2)), (s,2) € Lighty. The
reflected rays fold in the half-space {x < 0}, but they have defocusing proper-
ties on {x > 0} (see (1.8) below); this allows us to define the following change

of variables:

Lemma 1.1. For T, x andr small enough, reflected rays define an application

Zp: Lighto x Ry — D

(s,y,m) — Z(s,y,m) = (t,z,2)

which - is a local diffeomorphism on Lightyx]0,7];

- is injective and continuous on Z7'({0 < z < z}) = w.

Hence, there is a diffeomorphism from the interior of w onto its image T,
which extends to a homeomorphism from w onto Z,(w) = T,, neighbourhood of

the origin in D\ Schad.

16



Proof.

Begin with a change of coordinates: We know 0;,0,¢,(0) # 0 (Nota-
tion 1.1), so there are local coordinates b = (by, ..., by) such that d,¢;(s,0,y) =
—by. The surface Sy is then represented by b; = 0, and the boundary enlighted

zone Lighty, by by < 0. The equation for the characteristic variety is
(15) Q(rabvﬁ)_§2 :07

or (we set ©;(s,0,y) := @o(b)):

(1.6) (L4 2)(>_ Behbi)* = 1> Brdabi* =1 - € =0.
k k
The reflected rays are given as projections of the integral curves of

= -2
b= dsq(z,b, 3)

(1.7)
é = - zQ(xJ)vﬁ)
B = _abQ(Ia bvﬁ)a

where initially (n = 0): 2o = 0, by o(= bi(n = 0)) < 0, & = —q(0, by, B)"/? =
—1b10l, Bo = Ovpo(bo). Moreover, these rays, coming from {b; < 0}, go to {b; >
0}: Differentiating g(x, b, dyp) — Jxp* = 0 with respect to x and evaluating the

result at © = 0, b = 0, we get

95,4(0,0,9h00(0)) = 9,¢(0,0, Do (0)) = (3.9,b)* > 0,
and in a neighbourhood of the origin,

(1.8) 03,90 := 05,q(0, by, Bo) > 0 (so, using (1.7), by(n) is increasing).

17



The property of being a local diffeomorphism is induced by nonvanishing
of the Jacobian determinant of Z,.. We write the Taylor expansion of (1.7) up

to the order k (with a Oy residual with respect to b,7):

r = 27]|bl70| —|— 03
(1.9)

b = by + 1ndsqo + Os.
Consequently, the Jacobian determinant of Z, is equivalent to 2(|by o|+703,40) >
0 thanks to (1.8).
Continuity on the closure is inherited from the one of the Hamiltonian
bicharacteristic flow.
So as to prove injectivity on w, we assume Z,(bo,n) = Z.(by,n') = (z,b).

The lower order terms of b; read

b o~ bio+ (n—n")0sqo,

and we plug this into the expression for z:

(7 —=n")bro ~n'(n—n")0s, .

Knowing that 1,1’ > 0, b; o < 0 and Jg,go > 0, this is possible only if n = 7/,
which implies by = b}. O

The reflected phase is defined by use of the inverse of 7, on w: ¢.(t,z,z) :=
©-(5,0,y) + 2n. Tts gradient is also transported, so ¢, has regularity C' on

7. O

18



Remark 1.1.

i) This construction clearly shows that the “broken flow” constituted by rays
from {t < 0} and reflecting on the boundary does not reach the shadow region
Schad.

ii) Fven if the gradient of @, continuously extends to T,, the second order
derivatives do not. We recall the form of the singularity of Po, = (14+2)07 ¢, —
Ay pr at the origin, which plays a defocusing role in the equation for the re-
flected profile. This singularity is computed in [1]: Near the origin, in reflected

flow coordinates,

1
20 + 7[b1|’

(1.10) Py,
with v = 1/05,q0 > 0.

iii) In the case of higher finite order glancing (but not gliding) points in
T*(0D), Theorem 24.3.9 in [3] shows that each ray meets the boundary 0D
at most at one point. This monotonicity property is the analogue to (1.8)

needed in the construction of reflected rays. Again, the set of tangential rays

foliate a smooth hypersurface S.

So as to describe influence of nonlinearities, we have to look at interactions,

or more precisely, noninteraction between phases:

Lemma 1.2.

i) The phases @; and @, have noncolinear gradients everywhere in T; N T,.

19



ii) More generally, three waves resonance does not occur for (0.1): If p1 and @2
are two characteristic phases, for all k € 72, |k| # 1 implies k.o 1= k1p1+kapo

ts noncharacteristic.

Proof.
i) If the gradients of ; and ¢, were colinear at one point of 7;N7,, they would
be on the whole associated ray, and hence at x = 0, which is not true.
ii) Let’s assume the linear combination k. is nontrivial (k1ks # 0) and char-

acteristic; we call it p3:

(1.11) kigr + k2o = s,

or equivalently,

(1.12) kipr + ko + kaps = 0,

with ki, k2, ks > 0 (replacing ¢; by —¢; if necessary).
Two gradients Vi, are then on the same part of the characteristic variety

—say, V1 and Vi,. Hence,

k k
k_lv@1 + —2V992
3

1.1: — =
(1.13) Vs "

belongs to the line through Vi, and Vs, and to the same part of the charac-
teristic variety, according to the signs k;/ks > 0. This is inconsistent, because

of strict convexity of this surface. a
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2 Definition of profiles and first equations

We know existence and uniqueness of solutions for (0.1) and (0.2), together

with continuous dependence with respect to the data ([6]):

Theorem 2.1. Ifup € H)(R%) and u; € L*(RY), there exists a unique solu-
tion u® € C([-T, +oo[, H3(R2)), with d,u® € C([—T,4oo[, L*(R%)) N LPT(D),
to

Pouf + F(duf) = 0
(2.1)

0 € - 0 € - .
uj__,. = Uo, @tuh:_T = u;.

In addition, if (vo,v1) are other initial data, we have:
(2.2)

[VIF 2t = o)), + 100000 — o) + 5 ) — (@) + ellOtu — )52

p+1
Lt,x,z

2

1
< 1r(ut0 = vo) 2 + = lluo = woll 3 + VT + (w1 1)

2

Recall that for this result, we only need the following properties of F':

(1) F is continuous from LP*'(D) to L'*Y/?(D).
(2.3)
(17) Vu,u’' € C, Re ((F(u) — F(u’))(m)) > clu — /[Pt
For initial data of the form (0.2), the sequence u® is bounded in the spaces
given by (2.2), and for  bounded in D, u is bounded in H'(§), with u®/e
bounded in L*(Q).

We introduce the following notion of profiles:

Definition 2.1. The index k means 1 or r.

21



i) Let u® be a bounded sequence in H*(Ty), with u®/c bounded in L*(Tk)
and dwu® bounded in LPT(Ty). We say that Uy € LPYY(Ty) is a profile of u®
associated to ¢y, if (extracting a subsequence if necessary —still denoted by u®),
1- ufe*/¢ [ weakly converges to Uy in L?, and
2- Owute r/* weakly converges to i(Oror)Ur in LPT' and 89572'1156_"%/5 to
1(0p k) U in L2,

ii) When F¢ is bounded in L'**Y?(T,), Fy, € L'*TY?(Ty) is a profile of F*
associated to py, if Fee™s/* (or a subsequence) weakly converges to Fy in

L,

Remark 2.1. Fristence and uniqueness of a profile implies convergence of the

whole sequence.

Notation 2.1. In the case of existence of incident and reflected profiles (U;

and U, ), we also call profile the function

(2.4) U(t,z,0) = Ui + U,e'™ € LPYY(T x T?) (with U, extended by 0).
In the same way, we set

(2.5) F(t,z,0):= Fie% + F.e € 'VYP(T x T?) (with F, extended by 0).
We also write (Vo) for (Vi) Use'® + (V,) U, .

In the case we are interested in, thanks to (2.2), we immediately have

existence of profiles for u® and F(u®) (the idea in this definition by duality

22



is to truncate an —arbitrary small- neighbourhood of the singular ray), but in

addition, these profiles must satisfy a system of transport equations:

Proposition 2.1. Let u® be the solution of (0.1), (0.2). For k = u,r, u®
and F(dw?) admit profiles Uy € LPTY(Ty) and Fy, € L'*Y?(T,) which satisfy
(following Notations 0.1):
(1) 2T, (0)U; — P(ei)U; + %FZ =0onT;
(and, in fact, on a neighbourhood of the origin in D)
(2.6) (11) 2T, (8)U, — P(,)U, + %F =0on7,
(127) Ui =9
() Ui+ U), =
Proof.
Begin by testing equation (0.1) against a function @ae~*¢/¢, with a € C3°(T;U

SUSchadJ{t = —=T}). The boundary term at {t = —T'} is well defined because

23



u® and Oyu® are continuous with respect to time:

(2.7)

/Pfufe‘wi/fa =

— / [(1 —|—$)8tuse_w"/55] dxdz

le=—T

+ /(1 + :E)atus (i(aﬂpz)a — at5> e_ivi/s
)

) . 1 .
— /&wus. (3(627724,92-)5 — 81;726) eile 4 —2/u€e_w’/56
€ €

—— / [(1 + x)atuse_w"/sﬁ] dxdz

le=—T

lt=—1
2 N '
- /(1 + z)u’ (wzi;)a + é (2(0ppi)da + (9} pi)a) — @QE) el

i

az‘z i2 —i;
+ /ua <| 752‘9 | a+ . (2(0y,,9i).05,,0 + (Ag pi)a) — ALZa) e~ ivile

1 .
+ —2/'1156_““/56
€

e /(1 + ) {@use_w"/eﬁ + u® <3(8t<pi)5 — atﬁ> e—iw/s} dxdz
€

le=—T

—i [ Lo o1, @)+ Ploa) + ¢ [ Lol opa
€ €
We can then extract from e a subsequence such that this sum of terms

converges to

(2.8) —21 /(1 + )¢ ((@tapi)ﬁ)h:_T drdz —1 / U; (2T,,(0)a+ P(p;)a) .

On the other hand, extracting a new subsequence if necessary, we obtain

(2.9) / F(@tus)e_wi/sa — | Fia,

e—0
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so that
(2.10)

/(Ui (2T,,(9)a + P(p;)a) + iFa) + 2 /(1 + 2)g ((Owpi)a),,__, dedz = 0,

which implies equation (2.6(7)) when Supp a N {t = =T} = 0.

This equation suffices to give sense to traces of U; at t = =T and at * = 0:

Lemma 2.1. If U € LP*Y(D) satisfies (2.6(i)), then U € C([-T,T], L(R%)),
U admits a trace at {x = 0}, U),_, € L*(0,p:(t,0,2)dt dz), and satisfies the

enerqgy estimate

(2.11)

/(1 + 2)(0wp:)|U () dzdz + (0.0:)|U|*(5,0, z)dsdz

P(p)|U|*dsdzdz

/1?:0
/7;ﬂ{s§t}

= Rﬁ/iFiU—l— /(1 + 2)(06p:)|. _plgPdzdz.
Proof.

Continuity follows from integration of a vector field (7,,,(0)) for which

surfaces {t = ¢*'} are noncharacteristic:

1 .
First, regularize U: define Us := RsU = 5d+1p (5) *: . U, for a given

1 .
approximation of identity <WP (5)) . We take Supp(p) C {z <0}, so
§>0

that convolution only involves values of U for > 0. Hence, on D,

(2.12) QT%.(@)Ug — P(goi)Ug =1R;F;, + 2[T%.(6), R(g]U — [P(QOZ'), Rg]U,
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and the last two terms go to zero (with §) in LP*1(R!*?), thanks to Friedrichs’lemma,
since (p; is smooth.

We want to show that the sequence <U5|t:£> uniformly converges (w.r.t.

>0
t) in L%(RY) as § goes to zero. So, consider a domain D included in 7 N{t < ¢}

and delimited by incident rays. Set

D} :=D;N{z > p} N { distance to S N {t =t} > p},

D* := all points transported from D}’ by the incident flow in D,

for a small parameter g > 0. In particular, D N {z = 0} = ().
Now, take a smooth cut-off function y with values in [0,1], 1 on a neigh-

bourhood of D N {t = t}, and zero on {t < —T'}:

2T,,(0)(xUs) — P(pi)xUs =
(2.13) ixRski + 2x[T,,(9), Bs|U — x[P (i), Bs]U — 2(T,(9)x)Us

= Gy,
and integration of Re ([(2.13)s — (2.13)s] x x(Us — Us')) on D* writes out:
[ 1+ a)@wlts - Us =

(2.14) = /m P(:)|x(Us — Us)[* + Re (G5 — Gs)x(Us — Us))

§/WWMM%—%W+MM%MME—%N
T

Let p go to zero, so that the left-hand side goes to

[ (4 2)@wlts - Usl? = clUs — Vsl
Dy
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with ¢ > 0. Finally, the right-hand side in (2.14) goes to zero as ¢, — 0,
giving the result.

The trace at {x = 0} is obtained in a similar way, by integration on a tube
of rays with “base” in {x = 0}. O

Continuity with respect to time allows us to interpret (2.10), when Supp an
{t = =T} # 10, and to deduce (2.6 (717)).

We get Equation (2.6(ii)) for U, in the same way by testing (0.1) against
ae~'r/e with a € C°(T,).

This time, loss of regularity (at the boundary) of coefficients in the equa-
tion prevents one to deduce directly lemma 2.1 for U,. Nevertheless, this result
is still valid away from the singular ray: In particular, if w CC Lighto (Nota-
tion 1.1), U, admits a trace (in L7 ,(w)). Testing (0.1) against @ (e="¢/¢ — e/,
with a € C5° (T U Lighty), and integrating by parts, we deal with only one

term:
(2.15)

0= /L » [((02p:)U: — (Ozp,)U,) @), _, dldz = /L [(Dupi) (Ui + U,) @), _, dtdz,

ighto
and since Oxp;),_, (t) does not vanish on Lighty, this implies the boundary

condition (2.6 (iv)). O
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3 Nonlinear operations on the profiles

Starting from the formal (WKB) equivalence

At ~ i(Ohp)U (L, 2, /) = i ((Brpi)Uie#/* 4 (D, ) U, /%) |
we define
Definition 3.1. When Uy € LPY(Ty) — LPTY(T), k=1,r,

(3.1) Ey(U;, U,) = f F (i(0sp)U(t, z,0)) e db

TQ
(where the circle on the integration symbol means the measure df has a total

mass normalized to one),
(3.2) (U, U, = Ey(U;, U)e™ + B (U, U, )e™.

Hence, By, is a continuous operator from LY (T) x LPTY(T) to L'**'/*(T), and

E, from LP*Y(T) x LPYY(T) to L'TV/?(T x T?).

The challenge is to understand the link between F and E£(U;, U, ), in par-
ticular, whether oscillations in the difference F — £ are propagated by P° or

not.

Definition 3.2. A sequence h® bounded in L'*Y/? has no propagated oscilla-
tions if, for every sequence w® such that 0Ow® is bounded in LPH!

and P°w® is bounded in L'TV/7,

(3.3) / b0 — 0.

e—0
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We have (cf. [5]):

Proposition 3.1. Let 9yv° ~ i(Owp)U(t,x,0/e) in LPTH(T), and U as men-
tioned above. Then
i) F(0®) is bounded in L'*Y?(T) and admits unique profiles Ex(U);

ii) if h* ~ F(9v°) — E(p/e) in L'Y2(T), h* has no propagated oscillations.

Proof.
Thanks to continuity of F' from LPt! to L'*'/P and to the fact that h° is
only defined up to a sequence going to 0 in L'*'/? we can replace 9;v° and h°

with approximations in LP*! and L't'/? respectively, and assume that
(3.4) O = i(Op)U(t,z,p/e), h* = F(0°) — E(p/e),

with profiles U C* with compact support (on which phases are regular).

Since F' is continuous on R?, the function
(3.5) F(t,z,2,0) := F(i(Op)U)
admits an absolutely convergent Fourier series (with respect to 6),

(3.6) F(t,z,0) = Z calt, , 2)e ™t

a€Z?

where

(37) C(I,O) = E’i7 and C(O,l) = Er‘-
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Then we extract profiles from F(9v®) (k € {i,r}, a € C§°):

/F(atvs)ﬁe_w’“/s = z:/cc@ei(cy'”‘”’v)/E

— Eka,
e—0

(3.8)

thanks to the dominated convergence theorem, since each integral, o being
fixed with a.¢ # @, has a nonstationary phase (¢f. Lemma 1.2¢)) and thus
tends to 0.

So as to prove there is no propagated oscillation, using absolute convergence
in (3.6), we can replace h® with c,(,z, 2)e!*¥/¢ with a ¢ {(0,1),(1,0)}; we
set h® = ce'?/®.

The idea is then to construct a function ¢° tending to 0 in LP*! such that
P2g® ~ 0;h in L*tY/P: With w® just as in Definition 3.2, we get, by integrations

by parts (at least formally):

(3.9) /hsaﬂe ~ — / Py = — /gewaf —0.
S d

Look for ¢° under the form ¢° = ede®’/.

Py = {_Md + 2iTy(0)d + SP(a)d} e¥/*, and

(3.10) :

e at¢ /e

ath =|l1—c+ atc € .
5

On the support of ¢, p(dip) is smooth and does not vanish (because of nonres-

onance, Lemma 1.2i)). We choose

B =it o (280 e o).
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which implies ¢° = Opp+1(e), P°¢° — 0:h® = Op141/5(€), and there is really no

boundary term in the integrations by parts in (3.9). O

4 Construction of the approximate solution

In this paragraph, we construct a function v® satisfying the assumptions of

Proposition 3.1 and giving the asymptotics of u® (see Paragraph 5). It is

obtained via cut-off (near the singular ray S) and regularization of profiles.

Proposition 4.1. Let u® be the solution of (0.1), (0.2), U an associated pro-

file, and F a profile for F(du®). Then, there is a function v¢ € C([-T,T], L*(R?))

NHY(T), supported in T, such that

(4.1)

v¢ ~celd (t7$72799/5) in HI(T)7
O ~ (U (t,x,2,p/e) in LPFH(T),
Pevt ~ —F (t,JZ,Z,gO/{:“) n L1+1/p(T)’

(i,V'f) ~ (f,V'f) in LA(T n{t=-T}),
|t:—T |t:—T

Our strategy is to use cut-off and regularization on each profile, in order

to extend it beyond the singular ray and to apply P on it. This will provide a

function

(4.2)

-7 R P iife ap wr/s)
v = (U""e +UlPe ;
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where 1 and p are parameters for cut-off and regularization.

Then we apply the following diagonal process (h = v, v, Pv,...):

Lemma 4.1. For sequences H® and h® such that li_m@(h‘s’cY —H°) =0,
a—0&
ie.
V6> 0, 3 2(6),a(8), la(d)] <6,
(4.3)
Ve <e(8), a7 —H| <,

there is he := ho*©) sych that ||hs — He|| —0> 0.
e—

Proof.

We assume (0) is strictly increasing with ¢ (decreasing e(¢') when §' < §),
and goes to zero at zero. So there is a reciprocal function 6(¢), going to zero
too, and we set a(e) := a(d(e)).

Given a challenging § > 0, since ¢ < ¢(d(¢)) = ¢, we know that
(4.4) [R5 — HE|| < 6(e).

We conclude using the fact that §(¢) goes to zero. O
The main difficulty comes from the boundary condition &vfmo = 0, which

can be lost if the regularization is not performed carefully.

1-Begin with the cut-off of U, along S. We use the local coordinates b from the

proof of Lemma 1.1 (Lighty = {b; < 0}) and the homeomorphism Z,: Given
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a smooth function yxo on R with value 1 on {r < —1}, 0 on R, we set

(4.5) Xﬂ( ’ i <M7r>(Z,,1(t,:c,Z))
Xr(tafvz)-—x< >

1]

with 7(s,y,n) = (s,y). We write x#U, := UF, which equals U, away from S,
and vanishes on a neighbourhood (of size u) of S.
We do the same for U; along S thanks to x! (x¥U; := Ul'), preserving

(Ul + U, =0.

|x:0

The interesting property of these cut-offs is commutation with transport

operators:

(4.6) [T¢:(0), x5 = [Te,(9), 7] = 0.

Hence, U and U/ satisfy

2T, (0)U) — Pler)U) = ix, by = tF} on Ty, F} ka L' (T)
(47) UZH|t=_T — gli H__ﬂgg L2
(Uiu + Uﬁ)lx:o =0

and coefficients in the equations are smooth on the union 7# of supports of
the U}'.

2-A tangent regularization (to {x = 0}, in the variables ¢, z) provides approxi-
mations U;""* := R U}, whose derivatives with respect to ¢, z are in LP*!(D),

and which still satisfy the boundary condition on {z = 0}.

33



Furthermore, the initial data for U; become

(4.8) UHe = g — g* L2,

2 lt=—T p1—0

and left-hand sides of the equations are
(4.9) B = 2[R T, (0)]Uy + [B™, P(er) Uy

converging to i Fy, in L'*Y/P(T#), thanks to Friedrichs’lemma for the first com-

mutator, writing
(4.10) (B, P(er)]U = (R — 1d) P(pr)U + P(ex) (U = U™)

and using usual properties of regularizations for the second one.
3-Setting V" = UM — UFPr and V)" = UM + UFPr | we have for these

LPTY(D) functions, regular in ¢, z:

D,V = AD, VP 4 BVMP 4 ¢ e Ll-l—l/p(ﬁ)

(411) (‘/fu‘vpl _I_ ‘/2#7/)1) — 29;1,7p1

l=—T

‘/2#7/)1' — 0

=0

with A and B regular matrices.

We then extend V{*** € WHiH1/e 0 [P+1(D) by zero on {z < 0}: This is
a function in Wh'+1/»  [P+Y(R1*9) and by regularization, V""" p2—>_>0 Ve
Whitl/e LPTY(D). In addition, if we choose a regularization by convolution
with :—27($/p2), where Suppy C {z > 0}, the condition V;""| = 0 is still

valid.
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Concerning V', we can extend it by symmetry and regularize it, or simply
.. : "

choose a regularization by convolution with —~(—x/p2) (where only values of
P2

V" on {z > 0} play a role), to obtain a smooth approximation on R!*%,

Vlunohpz N ‘/1#7P1 W1,1-|—1/p N Lp-l—l(D).

p2—0

4-Back to U/"” and UM?, p = (p1, p2), we know they are smooth functions

r

such that
e — g L2
g |t:—T ,02—)0 ’
(4.12) (U** + Uﬁ7p)|z=0 =0,

Upr — Uprr WHHe o [pH(D),

p2—0

so that, for k=1, r,
(1.13) A, (VUL — Plon) U — i L4100(D)

just like at Alinea 2.

5-Finally, we set v®#? := ¢ (Uﬁ’pewi/s + Uﬂ’pewr/s), and compute

(4.14)

PSP — Z (QT%(a)U,f’p B (PS«Ok)U;iL’p) cienle +e Z (PU]iMP)eiﬂﬁk/e'

k=i,r k=z,r
Thanks to convergence properties of the approximations, each equivalent in
(4.1) is improved using Lemma 4.1 for the quantities v=#?, Qu=Hr Pep=tr

... (fixing successively p, p1 and py, and then letting ¢ go to zero). 0
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5 Asymptotics for u°

We now prove the difference between the approximate solution v® from Para-

graph 4 and the exact solution u® goes (strongly) to zero:

Proposition 5.1. Let u® be the solution of (0.1), (0.2) —or precisely, the sub-
sequence defining profiles—, and v® an approximate solution provided by Propo-

sition 4.1. Then,

1
5.1 sup <Vu€—vs 2+ = |lut =2 )—>07
a0 s (196 =0l =)
(5.2) [0su® — Opv®|| o 0 0,
where Qp :=| —T,T[x]0,z[xB(0,r).
Proof.

We establish an energy estimate, testing P*(u® — v°) € L'*'/?(Q,) against

Oy(u® —v®) € LPH(Q,), where Q, :=] — T,t[x]0, z[x B(0, ).
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Integration by parts gives

2Re Pe(u® — v) =0(u® — v¥)

Q¢

2

(?)

2
Lm,z

= H\/l—l——:ﬂa,g(uE —v°)

€ € 1 € €
1002w =9I (1) + 5 e = o3 (1)

- “\/H—x@t('us —vf)

(5.3)

2

-7
i (=T)

€ ey|2
a2y (-T)
e e|2
L =, (=),
We already know, from construction of v, that the norms of the traces at

t = =T go to zero with epsilon. Showing the integral above goes to zero
suffices to prove (5.1).

This integral writes out as
/ﬂ (P*v° + F(Ou°)) 0,(vF — @)
:/Q (P*v" + F (, 2, 2, 0/)) O(vF — @)

(5.4) +/Q (E(t,x,2,0/e) — F(t,x, 2,0/¢)) 0(vF — @)
+/Q (F(0°) — € (t, ., 2, 0/¢)) Du(vF — @)

— / (F(0w°) — F(Owu®)) O¢(v® — u®).
Q¢
The first term on the right-hand side is the product of a function tending

strongly to zero in L''/? and of a function bounded in LPt'; consequently, it

tends to zero.
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The second term corresponds to testing d(v® — u®) € LP*! (which has
null profiles) against a function in L'*/?(Q, x T?) (smooth with respect to )
evaluated at § = p/¢e; again, this term goes to zero.

For the third term, we can apply Proposition 3.1, which states F(dv®) —
€ (¢/¢) has no propagated oscillations; 0;(v°—u®) is an admissible test function,
so product tends to zero.

Finally, Property (2.3(ii)), i.e. dissipativity of the nonlinearity, ensures the
inequality
(5.5) Rff/Q (F(00%) = F () 0y(vF = @) 2 ¢||0:(v° — w)l[73
so that this last quantity, when added to (5.3), is controlled by the three
preceding terms, and gives (5.2) together with (5.1). O
Corollary 5.1. The (whole) sequence u® of solutions of (0.1), (0.2) is equiva-
lent in H'(Qp) = HY(]=T,T[x]0,z[x B(0,7)) to el (L, z, 2, 0/c) = Ui(t, x, z)e¥i/*
+U,(t,x,2)e /%, and the pair of profiles (U;,U,) is the unique solution of
2T, (0)U; — P(ei)U; + %EZ'(UZ', U)=0onT;

QTvr(a)Ur - P(‘Pr’)Ur + l.Er(UZ', Ur) =0 onT7,
(5.6) i

Proof.
Nonlinear terms in the profiles equations are given by Proposition (3.1),i)

~hence, existence of profiles shows existence of a solution to (5.6). Uniqueness
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is again a consequence of dissipativity ((2.3),(i¢)), inherited by the system (5.6)
(thanks to the fact that (U, V') — (sz |(atgoi)Ue_i€i + (atgo,,)Ve_wr |p+1d9)1/(p+1)

is a norm on C?, for example). g
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