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Abstract

We investigate the dynamics of a chain of oscillators coupled by fully-

nonlinear interaction potentials. This class of models includes Newton’s

cradle with Hertzian contact interactions between neighbors. By means

of multiple-scale analysis, we give a rigorous asymptotic description of

small amplitude solutions over large times. The envelope equation lead-

ing to approximate solutions is a discrete p-Schrödinger equation. Our

results include the existence of long-lived breather solutions to the origi-

nal model. For a large class of localized initial conditions, we also estimate

the maximal decay of small amplitude solutions over long times.

1 Introduction

Newton’s cradle is a nonlinear mechanical system consisting of a chain of identi-
cal beads suspended from a bar by inelastic strings (see figure 1). All beads be-
have like pendula in the absence of contact with nearest neighbors, i.e. they per-
form time-periodic oscillations in a local confining potential Φ(x) = 1

2x
2+O(x4)
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due to gravity. More generally, the local potential Φ may account for different
types of stiff attachments [JKC13] or an elastic matrix surrounding the beads
[Lav12, HCRVMK13]. Mechanical constraints between touching beads can be
described by the Hertzian interaction potential V (r) = k

1+α (−r)α+1
+ , where

(a)+ = max(a, 0), k depends on the ball radius and material and α = 3/2. The
dynamical equations read in dimensionless form [HDWM04]

(1.1) ẍn +Φ′(xn) = V ′(xn+1 − xn)− V ′(xn − xn−1), n ∈ Z,

xn being the horizontal displacement of the nth bead from its equilibrium po-
sition at which the pendulum is vertical.

Figure 1: Schematic representation of Newton’s cradle.

Contact interactions between beads induce a nonlinear coupling, which can
lead to complex dynamical phenomena like the propagation of solitary waves
[Nes01, FW94, Mac99, EP05, SK12, JKC13], modulational instabilities [Jam11,
JKC13, BTJKPD10] and the excitation of spatially localized stationary (time-
periodic) or moving breathers [TBKJPD10, Jam11, SHVM12, JCK12, JKC13].
For small amplitude oscillations, it has been recently argued that such dynamical
phenomena can be captured by the discrete p-Schrödinger (DpS) equation

(1.2) 2iτ0Ȧn = (An+1 −An) |An+1 −An|α−1 − (An −An−1) |An −An−1|α−1,

with some time constant τ0 depending on α. More precisely, static breather
solutions to (1.1) were numerically computed in [JKC13] and compared to ap-
proximate solutions of the form

(1.3) xapp
n (t) = 2 εRe [An(ε

α−1t) eit ],

where ε ≪ 1 and An denotes a breather solution to the DpS equation (1.2),
which depends on the slow time variable τ = εα−1t. For small amplitudes,
the Ansatz (1.3) was found to approximate breather solutions to (1.1) with
good accuracy [JKC13], and the same property was established in [Jam11] for
periodic traveling waves. Moreover, a small amplitude velocity perturbation
at the boundary of a semi-infinite chain (1.1) generates a traveling breather
whose profile is qualitatively close to (1.3), where An corresponds to a traveling
breather solution of the DpS equation [SHVM12, JKC13].

In this paper, we put the relation between the original lattice (1.1) and
the DpS equation onto a rigorous footing. Our main result can be stated as
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follows (a more precise statement extended to more general potentials is given
in theorem 2.15, section 2.6). Given a smooth (C2) solution A = (An(τ))n∈Z

to (1.2) defined for τ ∈ [0, T ], if an initial condition for (1.1) is O(εα)-close
to the Ansatz (1.3) at t = 0, then the corresponding solution to (1.1) remains
O(εα)-close to the approximation (1.3) on O(ε1−α) time scales. These error
estimates hold in the usual sequence spaces ℓp with 1 ≤ p ≤ +∞. In addition,
if A is a global and bounded solution to (1.2) in ℓp(Z) and δ ∈ (1, α) is fixed,
then the same procedure yields O(| ln ε| εδ)-close approximate solutions up to
times t = O(| ln ε| ε1−α) (theorem 2.20). Moreover, similar estimates allow one
to approximate the evolution of all sufficiently small initial data to (1.1) in
(ℓp(Z))

2 (theorems 2.19 and 2.21).
Two applications of the above error estimates are presented. Firstly, for

all nontrivial solutions A of the DpS equation in ℓ2(Z) we demonstrate that
infτ∈R ‖A(τ)‖∞ > 0, i.e. solutions associated with localized (square-summable)
initial conditions do not completely disperse. Using this result and the above
error bounds, we estimate the maximal decay of small amplitude solutions to
(1.1) over long times for a large class of localized initial conditions. Secondly,
from a breather existence theorem proved in [JS13] for the DpS equation, we
deduce the existence of stable small amplitude “long-lived” breather solutions
to equation (1.1), which remain close to time-periodic and spatially localized
oscillations over long times. This result completes a previous existence theorem
for stationary breather solutions of (1.1) proved in [JCK12], which was restricted
to anharmonic on-site potentials Φ and small values of the coupling constant
k. More generally, the present justification of the DpS equation is also useful
in the context of numerical simulations of granular chains. Indeed, the DpS
system is much easier to simulate than equation (1.1) due to the fact that fast
local oscillations have been averaged, which allows to perform larger numerical
integration steps.

Our results are in the same spirit as rigorous derivations of the continuum cu-
bic nonlinear Schrödinger or Davey-Stewartson equations, which approximate
the evolution of the envelope of slowly modulated normal modes in a large
class of nonlinear lattices [GM04, GM06, BCP09, Sch10] and hyperbolic sys-
tems [DJMR95, JMR98, Sch98, Col02, CL04]. In addition, our extension of
the error bounds up to times τ growing logarithmically in ε (theorem 2.20) is
reminiscent of refined approximations of nonlinear geometric optics derived in
[LR00]. A specificity of our result is the spatially discrete character of the am-
plitude equation (1.2), which allows one to describe nonlinear waves with rather
general spatial behaviors (see theorem 2.19 and 2.21). Another particular fea-
ture of our study is the fact that potentials and nonlinearities can have limited
smoothness, so that high-order corrections seem hardly available.

The outline of the paper is as follows. In section 2.1, we introduce a gener-
alized version of system (1.1) involving more general potentials, which is refor-
mulated as a first order differential equation in (ℓp(Z))

2. Section 2.2 presents
elementary properties of periodic solutions to the linearized evolution problem,
which will be used in the subsequent analysis. The well-posedness of the Cauchy
problem for the nonlinear evolution equation is established in section 2.3. In
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section 2.4, we perform a formal multiple-scale analysis, yielding approximate
solutions to (1.1) consisting of slow modulations of periodic solutions. In this
approximation, the leading term (1.3) is supplemented by a higher-order cor-
rector. Some qualitative properties of the amplitude equation are detailed in
section 2.5, including well-posedness and the study of spatially localized solu-
tions. The main results on the justification of the multiple-scale analysis from
error bounds are stated in section 2.6. The error bounds are derived in sections
2.6 and 3 (the later contains the proof of theorems 2.15 and 2.20, which are
mainly based on Gronwall estimates). Section 4 provides a discussion of the
above results and points out some open problems, and some technical results
are detailed in the appendix.

2 Dynamical equations and multiple-scale anal-

ysis

2.1 Nonlinear lattice model

We first introduce a more general version of system (1.1) incorporating a larger
class of potentials. We consider an interaction potential V ∈ C2(R,R) of the
form V = Vα +W , where

(2.1) Vα(r) =

{

k−

1+α |r|α+1 for r ≤ 0,
k+

1+α rα+1 for r ≥ 0,

and α > 1, (k−, k+) 6= (0, 0). In addition, W is a higher order correction
satisfying

(2.2) W ′(0) = 0, W ′′(r) = O(|r|α−1+β) as r → 0,

for some constant β > 0. We can therefore write W ′(r) = |r|αρ(r) where
ρ(r) = O(|r|β) as r → 0. Under the above assumptions, the principal part of V
satisfies V ′

α(λ r) = λαV ′
α(r) for all r ∈ R and λ > 0. Note that one recovers the

classical Hertzian potential by fixing k− = k > 0, k+ = 0 and W = 0. The case
k− = k+ and W = 0 corresponds to an homogeneous even interaction potential.

In addition, the local potential Φ is assumed of the form Φ(x) = 1
2x

2+φ(x),
where φ ∈ C2(R,R) satisfies

(2.3) φ′(0) = 0, φ′′(x) = O(|x|α−1+γ) as x → 0,

for some constant γ > 0. We have therefore φ′(x) = |x|αχ(x) with χ(x) =
O(|x|γ) as x → 0. The particular case of an harmonic on-site potential Φ is
obtained by fixing φ = 0.

The dynamical equations read

(2.4) ẍn + xn = F (x)n, n ∈ Z,
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where

F (x)n = V ′(xn+1 − xn)− V ′(xn − xn−1)− φ′(xn), n ∈ Z.

From the above assumptions, the leading order nonlinear terms of (2.4) originate
from the interaction potential Vα. We denote x = (xn)n∈Z and address solutions
x(t) ∈ ℓp ≡ ℓp(Z,R). Throughout the paper we assume p ∈ [1,∞] unless
explicitly stated.

In what follows we reformulate equation (2.4) as a first order differential
equation governing the X = (x, ẋ)T variable where X(t) ∈ ℓ2p. This equation
reads

(2.5) Ẋ = J X +G(X),

where

J =

(

0 Id
− Id 0

)

, G(X1, X2) =

(

0
F (X1)

)

,

and Id is the identity map in ℓp. Using the usual difference operators (δ+x)n =
xn+1 − xn and (δ−x)n = xn − xn−1, we can write F in a compact form:

F (x) = δ+V ′(δ−x)− φ′(x).

The Banach spaces ℓ2p are equipped with the following norms
(2.6)

‖X‖p =

(

∑

n∈Z

(x2
n + ẋ2

n)
p/2

)1/p

if 1 ≤ p < ∞, ‖X‖∞ = sup
n∈Z

(x2
n + ẋ2

n)
1/2.

The map G is smooth and fully-nonlinear in ℓ2p, as shown by the following
lemma. Below and in the rest of the paper, we use the abbreviations c.n.d.f. for
continuous non-decreasing functions and c.n.i.f. for continuous non-increasing
functions.

Lemma 2.1. The map G ∈ C1(ℓ2p, ℓ
2
p) satisfies

(2.7) ‖G(X)‖p = O(‖X‖αp ), ‖DG(X)‖L(ℓ2p)
= O(‖X‖α−1

p )

when X → 0 in ℓ2p. Moreover, G and DG are bounded on bounded sets in ℓ2p,
and there exist c.n.d.f. CG, CD such that for all X ∈ ℓ2p

(2.8) ‖G(X)‖p ≤ CG(‖X‖∞) ‖X‖p, ‖DG(X)‖L(ℓ2p)
≤ CD(‖X‖∞).

Proof. It is a classical result that the functions f = V ′ or f = φ′ can be

viewed as smooth operators on ℓp(Z,R) via (f(x))n
def
= f(xn). The property

V ′ ∈ C1(ℓp, ℓp) follows from the continuous embedding ℓp ⊂ ℓ∞, the fact that
V ′ ∈ C1(R), V ′(0) = 0 and V ′′ is uniformly continuous on compact intervals.
The property φ′ ∈ C1(ℓp, ℓp) follows from the same arguments. These properties
imply that F ∈ C1(ℓp, ℓp) and G ∈ C1(ℓ2p, ℓ

2
p).
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Moreover, standard estimates yield the following inequalities for f = V ′, φ′

and all x ∈ ℓp,

(2.9) ‖Df(x)‖L(ℓp) ≤ Mf (‖x‖∞), ‖f(x)‖p ≤ Mf (‖x‖∞) ‖x‖p,

where Mf (d) = sup[0,d] |f ′| defines a c.n.d.f. of d ∈ R
+. These estimates yield

the bounds (2.8), hence G and DG are bounded on bounded sets in ℓ2p due to
the continuous embedding ℓp ⊂ ℓ∞. Moreover, (2.7) follows by combining (2.9)
with the bounds

MV ′(r) = O(rα−1), Mφ′(r) = O(rα−1+γ), r → 0+,

which originate from properties (2.1), (2.2) and (2.3).

In section 2.3, we prove the local well-posedness in ℓ2p of the Cauchy problem
associated with (2.5), and its global well-posedness for 1 ≤ p ≤ 2 when V ≥ 0
and φ ≥ 0. To obtain global solutions, we use the fact that the Hamiltonian

(2.10) H =
∑

n∈Z

1

2
ẋ2
n +

1

2
x2
n + φ(xn) + V (xn+1 − xn)

is a conserved quantity of (2.4).

2.2 Periodic solutions to the linearized equation

In this section, we consider the time-periodic solutions to the linearized dynami-
cal equations which constitute the basic pattern slowly modulated in section 2.4.
We present some elementary properties of these solutions, solve the nonhomo-
geneous linearized equations and compute the associated solvability conditions.
This result will be used in section 2.4 to derive the amplitude equation (1.2) as
a solvability condition and obtain the expression of a higher-order corrector to
approximation (1.3), following a usual multiple-scale perturbation scheme (see
e.g. [SS99], section 1.1.3).

Equation (2.4) linearized at xn = 0 reads

(2.11) ẍn + xn = 0, n ∈ Z,

or equivalently

(2.12) X ′ = J X.

Its solutions are 2π-periodic and take the form

(

xn(t)
ẋn(t)

)

= ane
ite1 + c.c.,

where c.c. denotes the complex conjugate, e±1 = (1/
√
2)(1,±i)T and an =

(xn(0) − iẋn(0))/
√
2. Moreover, assuming X(0) ∈ ℓ2p corresponds to imposing
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(an)n∈Z ∈ ℓp(Z,C). In a more compact form, the solution X = (x, ẋ)T to
equation (2.12) with initial condition X(0) = X0 = (x0, ẋ0)T reads

X(t) = eJtX0 =

(

cos t sin t
− sin t cos t

)

X0(2.13)

= (π1X
0) eite1 + (π−1X

0) e−ite−1(2.14)

where π±1 ∈ L(ℓ2p, ℓp(Z,C)) are defined by

π±1

(

x
ẋ

)

=
1√
2
(x∓ iẋ),

so that π1X
0 = (an)n∈Z.

Remark 2.2. One can notice that x2
n + ẋ2

n is a conserved quantity of (2.11) for
all n ∈ Z. With the choice of norm (2.6), ‖X(t)‖p is conserved along evolution
for solutions to (2.12) and it follows that ‖eJt‖L(ℓ2p)

= 1 for all t ∈ R. Moreover

we have ‖X(t)‖p = ‖X0‖p =
√
2 ‖π±1X

0‖p.
In what follows we consider the nonhomogeneous linearized equation

(2.15) Ẋ = J X + U,

where U : R → ℓ2p is 2π-periodic, and derive compatibility conditions on
U allowing for the existence of 2π-periodic solutions to (2.15). We denote
S1 = R/2πZ the periodic interval [0, 2π] and consider the function spaces
X

0 = C0(S1, ℓ2p) and X
1 = C1(S1, ℓ2p) endowed with their usual uniform topology.

Lemma 2.3. Let U ∈ X
0. The differential equation (2.15) has a solution

X ∈ X
1 if and only if

(2.16) π1

(
∫ 2π

0

e−itU(t) dt

)

= 0.

Proof. Given U ∈ C0(R, ℓ2p), the differential equation (2.15) with initial condi-
tion X(0) = X0 ∈ ℓ2p has a unique solution X ∈ C1(R, ℓ2p) given by the Duhamel
integral

(2.17) X(t) = eJtX0 +

∫ t

0

eJ(t−s)U(s) ds.

Now let us assume U ∈ X
0. In this case, X is 2π-periodic iff X(2π) = X(0).

Since eJ2π = Id, this condition is realized when
∫ 2π

0

e−JsU(s) ds = 0,

which is equivalent to condition

(2.18) π±1

(
∫ 2π

0

e∓itU(t) dt

)

= 0

due to identity (2.14). Since U is real and π1z = π−1z̄, condition (2.18) reduces
simply to (2.16).

7



The above results yield the following splitting of X0.

Lemma 2.4. The operator ∂t − J maps X
1 to X

0, and we have the splitting
X

0 = ker(∂t−J) ⊕ range(∂t−J). The corresponding projector P on ker(∂t−J)
along range(∂t − J) reads

PX = ζ(X)eite1 + ζ̄(X)e−ite−1,

where ζ ∈ L(X0, ℓp(Z,C)) is defined by

ζ(X) =
1

2π

∫ 2π

0

e−itπ1X(t) dt.

Proof. It is clear that P ∈ L(X0) defines a projection and rangeP = ker(∂t−J)
by identity (2.14). Moreover, condition (2.16) shows that kerP = range(∂t−J),
hence X

0 = rangeP ⊕ kerP = ker(∂t − J) ⊕ range(∂t − J).

Now one can deduce the following result from expression (2.17) and lemma
2.4.

Lemma 2.5. For all U ∈ X
0 satisfying (2.18) (or equivalently P U = 0),

equation (2.15) has a unique solution in X
1 ∩ range(∂t − J) given by

(2.19) X(t) = (K U)(t) = (I − P )

∫ t

0

eJ(t−s)U(s) ds.

Moreover, the linear operator K def

= K (I − P ) : X0 → X
1 is bounded.

2.3 Well-posedness of the nonlinear evolution problem

The following result ensures the local well-posedness of the Cauchy problem for
(2.5) in ℓ2p, and its global well-posedness for positive potentials when 1 ≤ p ≤ 2.
In addition we derive a crude lower bound on the maximal existence times for
small initial data (estimate (2.20)).

Lemma 2.6. For all initial condition X(0) = X0 ∈ ℓ2p, equation (2.5) admits a
unique solution X ∈ C2((t−, t+), ℓ2p), defined on a maximal interval of existence
(t−, t+) depending a priori on X0 (with t− < 0 < t+). In addition, there exists
T0 > 0 such that for ‖X(0)‖p small enough

(2.20) t+ > T0 ‖X(0)‖1−α
p , t− < −T0 ‖X(0)‖1−α

p .

Moreover, for p ∈ [1, 2], if V ≥ 0 and φ ≥ 0 then (t−, t+) = R and X ∈
L∞(R, ℓ22).

Proof. Since G is C1 in ℓ2p, it follows that the Cauchy problem for (2.5) is
locally well-posed in ℓ2p (see e.g. [Zei95], section 4.9). More precisely, for all
initial condition X(0) = X0 ∈ ℓ2p, equation (2.5) admits a unique solution X ∈
C1((t−, t+), ℓ2p), defined on a maximal interval of existence (t−, t+) depending
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a priori on X0 (with t− < 0 < t+). Then a bootstrap argument yields X ∈
C2((t−, t+), ℓ2p).

Now let us prove (2.20) by Gronwall-type estimates. Equation (2.5) can be
expressed in Duhamel form

(2.21) X(t) = eJtX(0) +

∫ t

0

eJ(t−s)G(X(s)) ds,

where we recall that ‖eJt‖L(ℓ2p)
= 1. In addition, by lemma 2.1 there exist

R, λ > 0 such that

(2.22) ‖G(X)‖p ≤ λ‖X‖αp

for allX ∈ ℓ2p with ‖X‖p ≤ R. Denote by ε a small parameter and fix ‖X(0)‖p =
ε. From the above properties we deduce

‖X(t)‖p ≤ ε+ λ

∫ t

0

‖X(s)‖αp ds, 0 ≤ t ≤ t1,

where t1 = sup{ t ≥ 0, ‖X(t)‖p ≤ R }. This yields the estimate

(2.23) ‖X(t)‖p ≤ ̺ε,λ(t), 0 ≤ t ≤ t1,

where ̺ε,λ is the solution to the differential equation

(2.24) ̺′ = λ ̺α, ̺(0) = ε

whose explicit form is

(2.25) ̺ε,λ(t) = ε [ 1− (α− 1)λ εα−1t ]
1

1−α .

We note that ̺ε,λ blows up at t = ε1−α [λ (α − 1)]−1. Consequently, we fix
θ ∈ (0, 1) and introduce tε = T0 ε

1−α with T0 = (1− θ) [λ (α− 1)]−1, and hence
for all t ∈ [0, tε] we have

(2.26) ̺ε,λ(t) ≤ ̺ε,λ(tε) = ε θ
1

1−α .

Now let us assume ‖X(0)‖p = ε ≤ θ
1

α−1R. By estimates (2.23) and (2.26) we
have then

(2.27) ‖X(t)‖p ≤ θ
1

1−α ε for |t| ≤ tε,

where the estimate for t ≤ 0 is the same as for t ≥ 0 due to the time-reversibility
of (2.5) inherited from (2.4). Consequently, X(t) is defined and O(ε) in ℓ2p at
least for t ∈ [−tε, tε], which proves (2.20).

In addition, the existence of a global solution to (2.5) in ℓ22 can be proved
when V ≥ 0 and φ ≥ 0, using the fact that the Hamiltonian (2.10) is a conserved
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quantity of (2.4). Indeed, for all initial condition X(0) = X0 ∈ ℓ22 and for all
t ∈ (t−, t+) we have in that case

(2.28) ‖X(t)‖22 ≤ 2H = ‖X0‖22 + 2
∑

n∈Z

(

φ(xn(0)) + V (xn+1(0)− xn(0))
)

,

and thus X ∈ L∞(R, ℓ22). Lemma 2.1 ensures that G and DG are bounded on
bounded sets in ℓ22. Together with the uniform bound (2.28) on the solution X,
this property implies that (t−, t+) = R (see e.g. [RS75], theorem X.74).

Similar arguments can be used for global well-posedness in ℓ2p with p ∈ [1, 2),
except one uses the fact that ‖X(t)‖p is bounded on bounded time intervals.
Indeed, the following estimate follows from equation (2.21) and lemma 2.1

‖X(t)‖p ≤ ‖X(0)‖p +
∫ t

0

CG(‖X(s)‖∞) ‖X(s)‖p ds,

where CG is a c.n.d.f. Then using the continuous embedding ℓ2 ⊂ ℓ∞ and
estimate (2.28), we find

‖X(t)‖p ≤ ‖X(0)‖p + CG(
√
2H)

∫ t

0

‖X(s)‖p ds,

hence by Gronwall’s lemma

‖X(t)‖p ≤ eCG(
√
2H) t ‖X(0)‖p.

This shows that ‖X(t)‖p is bounded on bounded time intervals, which completes
the proof.

2.4 Multiple-scale expansion

In this section, we perform a multiple-scale analysis in order to obtain approx-
imate solutions to equation (2.5). These approximations consist of slow time
modulations of small 2π-periodic solutions to the previously analyzed linearized
equation (2.12).

To determine the relevant time scales, we denote by ε a small parameter
and fix ‖X(0)‖p = ε. As previously seen in the proof of lemma 2.6, the solution
X(t) of (2.5) is defined and O(ε) in ℓ2p at least on long time scales t ∈ [−tε, tε]
with tε = T0 ε

1−α. Considering the Duhamel form (2.21) of (2.5) when t ≈ tε,
the integral term at the right side of (2.21) is O(tε ε

α), so that both terms are
O(ε) and contribute “equally” to X(t).

We therefore consider the slow time τ = εα−1t in addition to the fast time
variable t, and look for slowly modulated periodic solutions involving these two
time scales:

X(t) = εY (τ, t)|τ=εα−1t,

Y being 2π-periodic in the fast variable t. Injecting this Ansatz in Equa-
tion (2.5), we obtain

(2.29) (∂t − J)Y − 1

ε
G(εY ) + εα−1∂τY = 0.
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Considering the class of potentials described in section 2.1, one can write

(2.30)
1

ε
W ′(εx) = εα−1rε(x),

1

ε
φ′(εx) = εα−1ηε(x),

with rε(x) = |x|αρ(εx) = O(εβ |x|α+β) and ηε(x) = |x|αχ(εx) = O(εγ |x|α+γ)
when ε → 0. Hence we can split the nonlinear terms of (2.29) in the following
way,

(2.31)
1

ε
G(εY ) ≡ εα−1Gα(Y ) + εα−1Rε(Y ),

where for all Y = (Y1, Y2)
T ,

Gα(Y ) =

(

0
δ+V ′

α(δ
−Y1)

)

, Rε(Y ) =

(

0
δ+rε(δ

−Y1)− ηε(Y1)

)

.

Moreover, for all Y ∈ ℓ2p we have limε→0 Rε(Y ) = 0 thanks to the assumptions
made on rε and ηε (see definition (2.30) and properties (2.2) and (2.3)). More
precisely, using the second estimate of (2.9), there exist C > 0 and a c.n.i.f. ε0
such that for all Y ∈ ℓ2p and ε < ε0(‖Y ‖∞),

(2.32) ‖Rε(Y )‖p ≤ C εmin(β,γ) ‖Y ‖αp (‖Y ‖βp + ‖Y ‖γp).

Now let us consider Y(τ) = Y (τ, .) ∈ X
1, rewrite equation (2.29) as

(2.33) (∂t − J)Y = εα−1[Gα(Y)− ∂τY +Rε(Y) ]

and look for approximate solutions to (2.33) of the form

(2.34) Y = Y0 + εα−1Y1 + o(εα−1),

where Yj(τ) ∈ X
1, j = 0, 1. Inserting expansion (2.34) in equation (2.33) yields

at leading order in ε

(2.35) (∂t − J)Y0 = 0,

i.e. Y0(τ) ∈ ker(∂t − J). Consequently, the principal part of the approximate
solution takes the form

(2.36) (Y0(τ))(t) = a(τ)eite1 + ā(τ)e−ite−1,

where a(τ) ∈ ℓp(Z,C). Similarly, identification at order εα−1 yields

(2.37) (∂t − J)Y1 = Gα(Y0)− ∂τY0.

According to lemma 2.5, this nonhomogeneous equation can be solved under
the compatibility condition P [Gα(Y0) − ∂τY0 ] = 0, i.e. Y0 must satisfy the
amplitude equation

(2.38) ∂τY0 = P Gα(Y0).
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Then equation (2.37) becomes

(2.39) (∂t − J)Y1 = (I − P )Gα(Y0),

which determines Y1(τ) as a function of Y0(τ), up to an element of ker(∂t − J).
At our level of approximation, we can arbitrarily fix Y1(τ) ∈ range(∂t − J),
which yields according to lemma 2.5

(2.40) Y1(τ) = KGα(Y0(τ)).

As a conclusion, we have obtained an approximate solution to equation (2.5),

(2.41) Xε
app(t) = ε[Y0(ε

α−1t)](t) + εα[Y1(ε
α−1t)](t),

where Y0 denotes a solution to the amplitude equation (2.38) taking the form
(2.36) and the corrector Y1 is defined by (2.40).

In section 3 we justify the above formal multiple-scale analysis by obtaining
a suitable error bound on the approximate solutions. The overall strategy is
based on the following ideas. In section 3.1, we check that the approximate
solution (2.41) solves (2.5) up to an error that remains O(εα+η) for t ∈ [0, tm],
with tm = T ε1−α (T > 0 fixed) and η = min(α− 1, β, γ) > 0 (this corresponds
to the orders of the terms of (2.33) neglected in the above analysis). From this
result and Gronwall’s inequality, we get the error estimate

‖Xε
app(t)−X(t)‖L∞([0,tm],ℓ2p)

= O(tm εα+η),

provided ‖Xε
app(0) − X(0)‖p = O(tm εα+η) (section 3.2). Consequently, if tm

were bounded then both terms of approximation (2.41) would be relevant for
t ∈ [0, tm]. However, in our case tm diverges for ε → 0, hence we get a larger
error

‖Xε
app(t)−X(t)‖L∞([0,tm],ℓ2p)

= O(ε1+η).

As a result, only the lowest-order term of approximation (2.41) is relevant on
O(ε1−α) times, which finally yields the approximate solution to (2.5)

(2.42) Xε
a(t) = ε[Y0(ε

α−1t)](t) = εa(εα−1t)eite1 + εā(εα−1t)e−ite−1.

Let us examine more closely the amplitude equation satisfied by a(τ) ∈
ℓp(Z,C). The nonlinear term of (2.38) can be explicitly computed following the
lines of [Jam11]; see the appendix for details. More precisely, we have

(2.43) i∂τa = δ+f(δ−a),

where
(f(a))n = ω0 an |an|α−1,

ω0 = (k− + k+) 2
α−3
2

αΓ(α2 )√
π(α+ 1)Γ(α+1

2 )
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and Γ(x) =
∫ +∞
0

e−t tx−1 dt denotes Euler’s Gamma function. Equation (2.43)
reads component-wise

(2.44) i
∂an
∂τ

= ω0 (∆α+1a)n, n ∈ Z,

where the nonlinear difference operator

(∆α+1a)n = (an+1 − an) |an+1 − an|α−1 − (an − an−1) |an − an−1|α−1

is the discrete (α+ 1)-Laplacian.

2.5 Qualitative properties of the amplitude equation

In this section we establish the well-posedness of the differential equation (2.44),
point out some invariances and conserved quantities yielding global existence
results, and study the existence of spatially localized solutions which do not
decay when τ → +∞.

2.5.1 Conserved quantities and well-posedness

Let a ∈ C1((Tmin, Tmax), ℓα+1(Z,C)) denote a solution to (2.43) defined on some
time interval (Tmin, Tmax). One can readily check that the quantity

‖δ+a‖α+1

α+1 =
∑

n∈Z

|an+1 − an|α+1

is conserved along evolution. This property is linked with the Hamiltonian
structure of equation (2.44), which can be formally written

(2.45)
∂an
∂τ

= i
∂H
∂ān

, n ∈ Z, with H =
2ω0

α+ 1
‖δ+a‖α+1

α+1.

More precisely, setting

a = π1

(

q
p

)

=
1√
2
(q − ip),

the solutions a ∈ C1((Tmin, Tmax), ℓ2(Z,C)) of (2.43) correspond to solutions
(q, p) ∈ C1((Tmin, Tmax), ℓ

2
2) of the Hamiltonian system

(

q̇
ṗ

)

= J ∇H(q, p),

where

H(q, p) =
2ω0

α+ 1

∑

n∈Z

[

(

qn+1 − qn√
2

)2

+

(

pn+1 − pn√
2

)2
]

α+1
2

is defined on the real Hilbert space ℓ22.
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Equation (2.44) admits the gauge invariance an → an e
iϕ, the translational

invariance an → an + c and a scale invariance, since any solution (an)n∈Z of
(2.44) generates a one-parameter family of solutions

(

ε an(|ε|α−1 τ)
)

n∈Z
, ε ∈ R.

Several conserved quantities of (2.44) can be associated to these invariances via
Noether’s theorem. The scale invariance and the invariance by time translation
correspond to the conservation of H. The gauge invariance yields the conserved
quantity

‖a‖22 =
∑

n∈Z

|an|2

whenever a ∈ C1((Tmin, Tmax), ℓ2(Z,C)). In the same way, the translational
invariance yields the additional conserved quantity

P =
∑

n∈Z

an

provided a ∈ C1((Tmin, Tmax), ℓ1(Z,C)).

In the sequel we use the notation ℓp = ℓp(Z,C). The following lemma ensures
the local well-posedness of equation (2.44) in ℓp for p ∈ [1,+∞] and its global
well-posedness for p ∈ [1, 1 + α] (in particular for p = 2).

Lemma 2.7. Let a0 ∈ ℓp. Equation (2.44) with initial data a(0) = a0 admits
a unique solution a ∈ C2((Tmin, Tmax), ℓp), defined on a maximal interval of
existence (Tmin, Tmax) depending a priori on a0 (with Tmin < 0 < Tmax). One
has in addition

(2.46) Tmax ≥ T1 ‖a0‖1−α
p , Tmin ≤ −T1 ‖a0‖1−α

p ,

with T1 = [(α− 1) 2α+1ω0]
−1. Moreover, (Tmin, Tmax) = R if p ∈ [1, α+ 1].

Proof. Since α > 1 we have ∆α+1 ∈ C1(ℓp, ℓp) and thus the Cauchy problem
for (2.44) is locally well-posed in ℓp. Therefore, for all initial condition a0 ∈ ℓp,
equation (2.44) admits a unique maximal solution a ∈ C1((Tmin, Tmax), ℓp), and
a bootstrap argument yields then a ∈ C2((Tmin, Tmax), ℓp).

To prove estimates (2.46), we rewrite (2.44) in the form

(2.47) ia(τ) = ia0 + δ+
∫ τ

0

f(δ−a(s)) ds.

Since ‖f(a)‖p ≤ ω0 ‖a‖αp , we get

‖a(τ)‖p ≤ ‖a0‖p + 2α+1 ω0

∫ τ

0

‖a(s)‖αp ds, 0 ≤ τ < Tmax.

As in the proof of lemma 2.6, a Gronwall-type estimate yields then

(2.48) ‖a(τ)‖p ≤ ̺ε,λ(τ), 0 ≤ τ < ε1−α T1,

for the parameter choice ε = ‖a0‖p and λ = 2α+1 ω0, where ̺ε,λ(τ) is the
solution to the differential equation (2.24) with explicit form (2.25) defined up

14



to τ = ε1−α T1. Consequently, bound (2.48) yields the first estimate of (2.46),
and the estimate for τ ≤ 0 is the same as for τ ≥ 0 owing to the invariance
a(τ) → ā(−τ) of (2.44).

Global well-posedness in ℓp for p ∈ [1, α+1] follows from the fact that ∆α+1,
D∆α+1 are bounded on bounded sets in ℓp and ‖a(τ)‖p is bounded on bounded
time intervals. To prove this second property, we deduce from (2.47)

‖a(τ)‖p ≤ ‖a0‖p + 2ω0

∫ τ

0

‖δ−a(s)‖p ‖δ−a(s)‖α−1
∞ ds,

≤ ‖a0‖p + 2ω0

∫ τ

0

‖δ−a(s)‖p ‖δ−a(s)‖α−1
α+1 ds,

≤ ‖a0‖p + 4ω0 ‖δ−a0‖α−1
α+1

∫ τ

0

‖a(s)‖p ds,

where we have used the fact that ‖f(a)‖p ≤ ω0 ‖a‖p ‖a‖
α−1
∞ and ‖δ−a(τ)‖α+1

is conserved. Now we have by Gronwall’s lemma

(2.49) ‖a(τ)‖p ≤ eσ τ ‖a0‖p, σ = 2α+1 ω0 ‖a0‖
α−1

α+1,

and the proof is complete.

Remark 2.8. The bound (2.49) can be improved for p = 2 and p = α+ 1, since
‖a(τ)‖2 = ‖a0‖2 is bounded and a sharper estimate can be deduced from (2.47) :

‖a(τ)‖α+1 ≤ ‖a0‖α+1 + 2ω0 τ ‖δ−a0‖
α

α+1.

2.5.2 Spatially localized solutions

Another important feature of equation (2.44) is the absence of scattering for
square-summable solutions. More precisely, the following result ensures that all
(nontrivial) solutions to (2.44) in ℓ2 satisfy infτ∈R ‖a(τ)‖∞ > 0, which implies
that they do not completely disperse. The proof is based on the conservation
of ℓ2 norm and energy, an idea introduced in [KKFA08] in the context of the
disordered discrete nonlinear Schrödinger equation.

Lemma 2.9. Let a0 ∈ ℓ2 with a0 6= 0 and a ∈ C1(R, ℓ2) denote the solution to
(2.44) with a(0) = a0. Then we have

∀τ ∈ R, ‖a(τ)‖∞ ≥
(

‖ 1
2δ

+a0‖α+1
α+1

‖a0‖22

)
1

α−1

.

Proof. Simply use the conserved quantities ‖δ+a‖α+1 and ‖a‖2 from section
2.5.1, and estimate thanks to the triangle and interpolation inequalities:

‖δ+a0‖α+1 = ‖δ+a(τ)‖α+1

≤ 2‖a(τ)‖α+1

≤ 2‖a(τ)‖1−
2

α+1
∞ ‖a(τ)‖

2
α+1

2 = 2‖a(τ)‖1−
2

α+1
∞ ‖a0‖

2
α+1

2 .
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When a0 is restricted to some subset C of ℓ2, the following result provides a
simpler estimate involving the constant

(2.50) I(C) = inf {Qα(a), a ∈ C, a 6= 0} ,

where

(2.51) Qα(a) =
‖δ+a‖α+1

‖a‖2
.

Corollary 2.10. Keep the notations of lemma 2.9 and assume a0 ∈ C ⊂ ℓ2.
Then we have

(2.52) ∀τ ∈ R, ‖a(τ)‖∞ ≥
(

1

2
I(C)

)

α+1
α−1

‖a0‖2.

Proof. Use lemma 2.9 and the identity

(

‖ 1
2δ

+a0‖α+1
α+1

‖a0‖22

)
1

α−1

= ‖a0‖2
(

1

2
Qα(a

0)

)

α+1
α−1

.

Remark 2.11. The above result is useless for C = ℓ2 since I(ℓ2) = 0. Indeed,
considering the sequence aN = {1,...,N} (with denoting the indicator function)

one can check that Qα(a
N ) = 2

1
α+1N−1/2 → 0 as N → +∞.

Remark 2.12. If C is a finite-dimensional linear subspace of ℓ2, then I(C) > 0
(Qα is the ratio of two equivalent norms on C). Moreover, if I(C) > 0 on some
subspace C of ℓ2 then the norms ‖ ‖∞ and ‖ ‖2 are equivalent on C (this follows
from the case τ = 0 of (2.52) and the continuous embedding ℓ2 ⊂ ℓ∞).

Lemma 2.9 and corollary 2.10 show that all square-summable localized solu-
tions do not decay as τ → ±∞. One of the simplest type of localized solutions
to (2.44) corresponds to time-periodic oscillations (discrete breathers), which
have been studied in a number of works (see [JS13] and references therein).
Equation (2.44) admits time-periodic solutions of the form

(2.53) an(τ) = ε vn e
i ω0 |ε|α−1 τ ,

where v = (vn)n∈Z is a real sequence and ε ∈ R an arbitrary constant, if and
only if v satisfies

(2.54) vn = −(∆α+1v)n, n ∈ Z.

In particular, nontrivial solutions to (2.54) satisfying limn→±∞ vn = 0 corre-
spond to breather solutions to (2.44) given by (2.53). The following existence
theorem for spatially symmetric breathers has been proved in [JS13] using a
reformulation of (2.54) as a two-dimensional mapping.
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Theorem 2.13. The stationary DpS equation (2.54) admits solutions vin (i =
1, 2) satisfying

lim
n→±∞

vin = 0,

(−1)n vin > 0, |vin| > |vin−1| for all n ≤ 0,

and v1n = v1−n, v2n = −v2−n+1, for all n ∈ Z.

Furthermore, for all q ∈ (0, 1), there exists n0 ∈ N such that the above-mentioned
solutions vin satisfy, for i = 1, 2:

∀n ≥ n0, |vin| ≤ q1+αn−n0
.

Remark 2.14. These solutions are thus doubly exponentially decaying, so that
they belong to ℓp for all p ∈ [1,∞].

One may wonder if results analogous to lemma 2.9 and theorem 2.13 hold
true for the original lattice (2.4). The proofs of the above results heavily rely
on the gauge invariance of (2.44) which implies the conservation of ‖a(τ)‖2.
Such properties are not available for system (2.4), hence the same methodology
cannot be directly applied to Newton’s cradle. These problems will be solved in
the next section through the justification of approximation (2.42) on long time
scales.

2.6 Error bounds and applications

In this section, we give several error bounds in order to justify the expansions
of section 2.4, for small amplitude solutions and long (but finite) time intervals.
From these error bounds, we also infer stability results for long-lived breather
solutions to the original lattice model, as well as lower bounds for the amplitudes
of small solutions valid over long times (see section 2.6.3).

2.6.1 Asymptotics for times O(1/εα−1)

In theorem 2.15 below, one considers any solution a ∈ C2([0, T ], ℓp) to equation
(2.43) and constructs a family Xε

a of approximate solutions to (2.5), whose
amplitudes are O(ε) and determined by a and ε. These approximate solutions
are O(ε1+η)-close to exact solutions for some constant η > 0 specified below
and t ∈ [0, T/εα−1]. The proof of theorem 2.15 is detailed in section 3.2.

Theorem 2.15. Let η = min(α−1, β, γ) and fix two constants Ci, T > 0. There
exist a c.n.i.f. εT > 0 and a c.n.d.f. CT ≥ Ci such that the following holds:

For all solution a ∈ C2([0, T ], ℓp) to equation (2.43) with N
def

= ‖a‖L∞([0,T ],ℓp)

and for all ε ≤ εT (N), we define

(2.55) Xε
a(t) =

ε√
2
a(εα−1t) eit

(

1
i

)

+ c.c.
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Then, for all X0 ∈ ℓ2p satisfying

‖X0 −Xε
a(0)‖p ≤ Ciε

1+η,

the solution X(t) ∈ ℓ2p of equation (2.5) with X(0) = X0 is defined at least for
t ∈ [0, T/εα−1] and satisfies

(2.56) ‖X(t)−Xε
a(t)‖p ≤ CT (N) ε1+η for all t ∈ [0, T/εα−1].

Remark 2.16. The case φ = 0 of equation (2.4) (harmonic on-site potential Φ)
corresponds to fixing γ = +∞, which yields η = min(α − 1, β). Similarly, the
case W = 0 (pure Hertzian-type interaction potential V = Vα) is obtained with
β = +∞ and η = min(α− 1, γ).

Remark 2.17. By lemma 2.6, the solution X of equation (2.5) satisfies X =
(x, ẋ)T ∈ C2([0, T/εα−1], ℓ2p), hence x ∈ C3([0, T/εα−1], ℓp). Moreover, it fol-

lows from lemma 2.7 that Xε
a = (xε

a, y
ε
a)

T ∈ C2([0, T/εα−1], ℓ2p), hence xε
a ∈

C2([0, T/εα−1], ℓp). Consequently, the exact solution x of (2.4) is generally more
regular than its approximation xε

a, which is an unusual property in the context
of modulation equations.

Example 2.18. In the case α = 3/2 (as for the classical Hertz force), if W and
φ are C3 at both sides of the origin, then β, γ ≥ 1/2 in (2.2) and (2.3) and we
have by theorem 2.15

‖X(t)−Xε
a(t)‖p ≤ CT (N) ε3/2 for all t ∈ [0, T ε−1/2].

As a corollary of theorem 2.15 and previous estimates on the solutions to the
amplitude equation (2.43), one obtains theorem 2.19 below. Roughly speaking,
for all sufficiently small initial data X0 ∈ ℓp, this theorem provides an approxi-
mation XA of the solution to (2.5) (with amplitude given by a solution to (2.43))
valid on O(‖X0‖1−α

p ) time scales.

Theorem 2.19. Let η = min(α−1, β, γ) and Ci > 0. There exists Tm ∈ (0,+∞]
such that for all T ∈ (0, Tm), there exist ε̃T > 0 and C̃T ≥ Ci such that the

following properties hold. For all X∗ = (x∗, y∗)T ∈ ℓ2p such that 0 < ε
def

=
‖X∗‖p ≤ ε̃T , for all X0 ∈ ℓ2p satisfying ‖X0 − X∗‖p ≤ Ciε

1+η, the solution
X(t) ∈ ℓ2p to equation (2.5) with X(0) = X0 is defined at least for t ∈ [0, T ε1−α].
This solution satisfies

(2.57) ‖X(t)−XA(t)‖p ≤ C̃T ε
1+η for all t ∈ [0, T ε1−α],

where

XA(t) =
1√
2
A(t) eit

(

1
i

)

+ c.c.,

and A ∈ C2([0, T ε1−α], ℓp) is the solution to equation (2.43) with O(ε) initial
condition A(0) = (x∗ − i y∗)/

√
2. Moreover, if p ∈ [1, 1 + α] then Tm = +∞.
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Proof. By lemma 2.7, there exists a unique maximal solution A of (2.43) with
initial condition A(0) defined as above from X∗. Due to the scale invariance
of (2.43), the initial condition a(0) = ε−1 A(0) yields the solution a(τ) =
ε−1 A(ε1−α τ). Since ‖a(0)‖p =

√
2/2 by construction, lemma 2.7 ensures that

a(τ) is defined and bounded in ℓp for τ ∈ [0, T ] whenever T < T1 2
(α−1)/2. In

addition this property is true for all T ∈ (0,+∞) when p ∈ [1, 1+α]. This leads
us to define Tm = T1 2

(α−1)/2 for p > 1 + α and Tm = +∞ for p ∈ [1, 1 + α].
Now let us consider T < Tm being fixed, so that A(t) is defined and bounded

in ℓp for t ∈ [0, T ε1−α]. Using either bounds (2.48) or (2.49) (the latter being
valid for p ∈ [1, 1 + α]), there exists MT > 0 independent of X∗ such that

N
def
= ‖a‖L∞([0,T ],ℓp) ≤ MT .
With the above remarks one can apply theorem 2.15 for ε ≤ εT (MT ) = ε̃T .

Noticing that XA(t) = Xε
a(t), one obtains estimate (2.57) with C̃T = CT (MT ),

which proves theorem 2.19.

2.6.2 Asymptotics for times O(| ln ε| ε1−α)

Theorem 2.20 below provides a different kind of error estimate, where the
multiple-scale approximation is controlled on longer O(| ln ε| ε1−α) time scales,
at the expense of lowering the precision of (2.56). These estimates are valid
when the Ansatz Xε

a(t) ∈ ℓ2p is bounded for t ∈ R
+, i.e. Xε

a is constructed
from a solution a ∈ L∞(R+, ℓp) of (2.43). The proof of this result is detailed in
section 3.3.

Theorem 2.20. Let η = min(α − 1, β, γ), µ ∈ (0, η) and Ci > 0. Fix a ∈
L∞(R+, ℓp) solution to equation (2.43) with ‖a‖L∞(R+,ℓp) = N and consider

Xε
a(t) =

ε√
2
a(εα−1t)eit

(

1
i

)

+ c.c.

There exist positive constants ε0(µ,Ci, N), Cl(Ci, N) and a c.n.i.f. ν(N) such
that for all ε ≤ ε0, if X0 ∈ ℓ2p satisfies ‖X0 − Xε

a(0)‖p ≤ Ci | ln ε|ε1+η, then
the solution X(t) ∈ ℓ2p to equation (2.5) with X(0) = X0 is defined for t ∈
[0, µ ν | ln ε| ε1−α] and satisfies

(2.58) ‖X(t)−Xε
a(t)‖p ≤ Cl | ln ε| ε1+η−µ, t ∈

[

0, µ ν | ln ε| ε1−α
]

.

In the same way as theorem 2.19 was deduced from theorem 2.15, theorem
2.21 below follows directly from theorem 2.20. The proof requires all solutions
to (2.43) to be global and bounded in ℓp (due to the same assumption made on
a in theorem 2.20), hence we have to restrict to p = 2.

Theorem 2.21. Let η = min(α − 1, β, γ), µ ∈ (0, η) and Ci > 0. There exist
positive constants ε0(µ,Ci), Cl(Ci) and ν such that the following holds. For any

X∗ = (x∗, y∗)T ∈ ℓ22 such that ε
def

= ‖X∗‖2 ≤ ε0, we consider the solution A ∈
C2(R, ℓ2) to equation (2.43) with O(ε) initial condition A(0) = (x∗ − i y∗)/

√
2,

and we define

XA(t) =
1√
2
A(t) eit

(

1
i

)

+ c.c.
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Then, for all X0 ∈ ℓ22 satisfying ‖X0−X∗‖2 ≤ Ci | ln ε|ε1+η, the solution X(t) ∈
ℓ2p to equation (2.5) with X(0) = X0 is defined for t ∈ [0, µ ν | ln ε| ε1−α] and
satisfies

(2.59) ‖X(t)−XA(t)‖2 ≤ Cl | ln ε| ε1+η−µ, t ∈
[

0, µ ν | ln ε| ε1−α
]

.

Proof. We proceed exactly as in the proof of theorem 2.19 for p = 2, except the

solutions A, a of (2.43) are now global in time, N
def
= ‖a‖L∞(R+,ℓ2) = ‖a(0)‖2 =√

2/2, and we use theorem 2.20 instead of theorem 2.15.

2.6.3 Long-lived localized solutions

We can apply theorem 2.13 to generate breather solutions to the amplitude
DpS equation (2.44) which provide approximate solutions for theorems 2.15,
2.19, 2.20 and 2.21. Hence, we obtain stable exact solutions to the original
nonlinear lattice (2.4), close to breathers, over the corresponding time scales.

Theorem 2.22. Let η = min(α − 1, β, γ) and fix two constants Ci, T > 0.
Consider a solution vi = (vin)n∈Z (i = 1, 2) of the stationary DpS equation
(2.54) described in theorem 2.13. There exist εT , CT > 0 such that for all
ε ∈ (0, εT ], for all X0 ∈ ℓ2p satisfying

(2.60) ‖X0 − (
√
2εvi, 0)T ‖p ≤ Ciε

1+η,

the solution X(t) ∈ ℓ2p to equation (2.5) with X(0) = X0 is defined at least for
t ∈ [0, T ε1−α] and satisfies

(2.61) ‖X(t)−Xε
b(t)‖p ≤ CT ε

1+η for all t ∈ [0, T ε1−α],

where

Xε
b(t) =

√
2 ε (vi cos (Ω t),−vi sin (Ω t))T , Ω = 1 + ω0 ε

α−1.

Proof. Consider the breather solution of (2.44) given by (2.53) with v = vi,
ε = 1, and apply theorem 2.15.

As a result of estimate (2.61), the initial condition X(0) = (
√
2εvi, 0)T

generates long-lived breather solutions X̃ε
b defined for t ∈ [0, T ε1−α] and taking

the form X̃ε
b(t) = Xε

b(t) + O(ε1+η). These solutions are stable in ℓ2p on the
corresponding time scale since condition (2.60) implies

‖X(t)− X̃ε
b(t)‖p ≤ 2CT ε

1+η for all t ∈ [0, T ε1−α]

(this follows by using (2.61) and the triangle inequality).

Using theorem 2.21 and corollary 2.10, we also obtain lower bounds for the
amplitudes of small localized solutions over long times. This result is valid for
all initial data in subsets C of ℓ22 such that I(C) > 0, where I(C) is defined as in
(2.50)-(2.51) with the choice of norms (2.6) (for which the canonical isomorphism

between (ℓp(Z,R))
2
and ℓp(Z,C) is an isometry). As already noticed in remark

2.12, one has I(C) > 0 whenever C is a finite-dimensional linear subspace of ℓ22.
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Proposition 2.23. Keep the notations of theorem 2.21. Let C denote a subset
of ℓ22 such that I(C) > 0. There exists ε1(µ,Ci, I(C)) > 0 such that for all
ε ∈ (0, ε1] and X0 ∈ C with ‖X0‖2 = ε, the solution X to equation (2.5) given
by theorem 2.21 is bounded from below, namely:

(2.62) ∀t ∈
[

0, µ ν | ln ε| ε1−α
]

, ‖X(t)‖∞ ≥ M ε

with M = 1
2

(

1
2 I(C)

)

α+1
α−1 .

Proof. Fix X0 = X∗ in theorem 2.21 and note that

‖X(t)‖∞ ≥ ‖XA(t)‖∞ − ‖X(t)−XA(t)‖∞
≥ ‖XA(t)‖∞ − ‖X(t)−XA(t)‖2.

Now, estimating ‖XA(t)‖∞ thanks to corollary 2.10 and ‖X(t)−XA(t)‖2 with
theorem 2.21 gives ‖X(t)‖∞ ≥ ε (2M−Cl | ln ε| εη−µ). Since η > µ, this estimate
implies (2.62) provided ε is small enough.

Example 2.24. Consider solutions x = (xn)n∈Z to (2.4) with unperturbed initial
positions, and with a group of N consecutive particles having the same initial
velocity vi (N ≥ 1 being fixed). This corresponds to fixing

∀n ∈ Z, xn(0) = 0 , ẋn(0) =

{

vi if n ∈ {1, . . . , N},
0 elsewhere,

i.e. X0 = vi (0, {1,...,N})
T . For C = Span

(

(0, {1,...,N})
T
)

one has I(C) =

Qα( {1,...,N}) = 2
1

α+1N−1/2 > 0 (see definition (2.51)). Consequently one can

apply proposition 2.23, where M = 2
2α−1
1−α N

α+1
2(1−α) and ‖X0‖2 = |vi|N1/2 = ε.

This yields for all ε ∈ (0, ε1] and t ∈
[

0, µ ν | ln ε| ε1−α
]

:

sup
n∈Z

(x2
n(t) + ẋ2

n(t))
1/2 ≥ 2

2α−1
1−α N

1
1−α |vi|.

To interpret estimate (2.62), it is interesting to recall that ‖X(t)‖∞ is con-
served along evolution for solutions to the linearized equation (2.12) (see remark
2.2), hence the bound (2.62) estimates the maximal decay of ‖X‖∞ that could
occur over long times due to purely nonlinear effects. This estimate can be
compared with the classical Gronwall estimate given below.

Lemma 2.25. Keep the notations of lemma 2.6. There exists a constant ε̃1 > 0
such that the following property holds true. For all δ ∈ (0, 1), there exists
T̃ (δ) ∈ (0, T0] such that for all X0 ∈ ℓ2∞ with ‖X0‖∞ ≤ ε̃1 one has

(2.63) ‖X(t)‖∞ ≥ δ ‖X0‖∞, ∀ t ∈ [0, T̃ (δ) ‖X0‖1−α
∞ ].

Proof. Using the triangle inequality in the Duhamel form (2.21), the time-
invariance of ‖eJtX0‖∞ and estimate (2.22), one finds

‖X(t)‖∞ ≥ ‖X0‖∞ − λ

∫ t

0

‖X(s)‖α∞ ds.
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Then we deduce from the Gronwall estimate (2.27)

‖X(t)‖∞ ≥ ‖X0‖∞ − t λ θ
α

1−α ‖X0‖α∞,

from which the result follows easily.

Estimate (2.63) differs from (2.62) in the sense that it involves only the ℓ∞
norm and holds true for all sufficiently small initial data in ℓ2∞. In addition it is
valid on time scales of order ‖X0‖1−α

∞ , whereas (2.62) holds true on longer time
scales of order | ln (‖X0‖2)| ‖X0‖1−α

2 .

3 Error bounds via Gronwall estimates

In this section we prove theorems 2.15 and 2.20. For this purpose, we check in
section 3.1 the consistency of the Ansatz Xε

app defined by (2.41) and conclude
using Gronwall estimates (sections 3.2 and 3.3).

3.1 Estimate of the residual

In the sequel we consider solutions a(τ) to equation (2.44) such that a ∈
L∞(I, ℓp) for some closed time interval I. By lemma 2.7, this can be achieved for
all initial condition a(0) = a0 ∈ ℓp(Z,C) by choosing I = [0, T ] ⊂ (Tmin, Tmax)
in the general case, or I = [0,+∞) in the particular case p = 2. The ampli-
tude a determines the approximate solution Xε

app to equation (2.5) introduced
in section 2.4. Following equation (2.41), we recall that

Xε
app(t) = εY ε(τ, t), τ = εα−1t,

where Y ε = Y0 + εα−1Y1 and Yk(τ, t) = (Yk(τ))(t) for k = 0, 1.
In this section we check that Xε

app solves equation (2.5) up to the residual

(3.1) Eε = Ẋε
app − J Xε

app −G(Xε
app)

that remains o(εα) when εα−1t ∈ I.
To this aim, we first prove the following lemma providing bounds on the

approximate solutions Y0 and the correctors Y1 derived from the amplitudes
a(τ). Below we denote by Ck

b (I,X
1) the Banach space of Ck functions from

I into X
1 with bounded derivatives up to order k, equipped with the usual

supremum norm (see section 2.2 for the definition of function spaces Xk).

Lemma 3.1. Consider any solution a ∈ L∞(I, ℓp) to equation (2.44), the as-
sociated leading order solution Y0 of (2.33) defined by (2.36), and its corrector
Y1 defined by (2.40). There exist M0,M1 > 0 such that

(3.2) ‖Y0‖C1
b (I,X

1) ≤ M0 (‖a‖L∞(I,ℓp) + ‖a‖αL∞(I,ℓp)
),

(3.3) ‖Y1‖C1
b (I,X

1) ≤ M1 (‖a‖αL∞(I,ℓp)
+ ‖a‖2α−1

L∞(I,ℓp)
).
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Proof. We immediately deduce from Lemma 2.7 that Y0 ∈ C2
b (I,X

1) and

(3.4) ‖Y0‖L∞(I,Xk) ≤ (1 + k)
√
2 ‖a‖L∞(I,ℓp), k = 0, 1.

In what follows we estimate Gα(Y0), in order to estimate ∂τY0 from equa-
tion (2.38) and Y1 from equation (2.40). Since Gα ∈ C1(ℓ2p, ℓ

2
p) we have also

Gα ∈ C1(X0,X0) by the omega-lemma (see [AMR88], lemma 2.4.18). Moreover,
standard estimates yield for all X ∈ ℓ2p

(3.5) ‖Gα(X)‖p ≤ M3 ‖X‖αp , ‖DGα(X)‖L(ℓ2p)
≤ M4 ‖X‖α−1

p ,

which implies for all X ∈ X
0

‖Gα(X)‖X0 ≤ M3 ‖X‖α
X0 , ‖DGα(X)‖L(X0) ≤ M4 ‖X‖α−1

X0 .

We have then
‖Gα(Y0)‖L∞(I,X0) ≤ M3 ‖Y0‖αL∞(I,X0),

‖∂τY0‖L∞(I,X0) ≤ ‖P‖L(X0) ‖Gα(Y0)‖L∞(I,X0) ≤ M3 ‖Y0‖αL∞(I,X0),

‖∂τGα(Y0)‖L∞(I,X0) ≤ M4 ‖Y0‖α−1
L∞(I,X0) ‖∂τY0‖L∞(I,X0) ≤ M3M4 ‖Y0‖2α−1

L∞(I,X0)

(the estimate of ∂τY0 follows from equation (2.38) and ‖P‖L(X0) = 1). From
these estimates and (3.4), there exists M5 > 0 such that

(3.6) ‖∂τY0‖L∞(I,X1) ≤ M5 ‖a‖αL∞(I,ℓp)
,

(3.7) ‖Gα(Y0)‖L∞(I,X0) ≤ M5 ‖a‖αL∞(I,ℓp)
,

(3.8) ‖∂τGα(Y0)‖L∞(I,X0) ≤ M5 ‖a‖2α−1
L∞(I,ℓp)

.

Consequently, estimate (3.2) is established thanks to (3.4) and (3.6). Further-
more, using the fact that K ∈ L(X0,X1), we obtain Y1 = KGα(Y0) ∈ C1

b (I,X
1)

and
‖Y1‖C1

b (I,X
1) ≤ ‖K‖L(X0,X1)M5 (‖a‖αL∞(I,ℓp)

+ ‖a‖2α−1
L∞(I,ℓp)

),

which establishes estimate (3.3).

Now we prove the main result of this section. The subsequent estimates will
involve c.n.d.f. of various norms which we will denote by Ck.

Lemma 3.2. There exist a c.n.i.f. ε1 and a c.n.d.f. CE such that for all
a ∈ L∞(I, ℓp) solution to equation (2.44) and ε ≤ ε1(‖a‖L∞(I,ℓp)), the residual
Eε defined by (3.1) satisfies

(3.9) sup
εα−1t∈I

‖Eε(t)‖p ≤ CE(‖a‖L∞(I,ℓp))ε
α+η,

where η = min(α− 1, β, γ).
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Proof. Let us compute Eε. Using identities (2.41), (2.35), (2.37) and (2.31),
one obtains after some elementary computations

Eε(t) = εα[Gα(Y0(ε
α−1t, t))−Gα(Y

ε(εα−1t, t))](3.10)

+ ε2α−1∂τY1(ε
α−1t, t)− εαRε(Y

ε(εα−1t, t)).

Let us estimate each term of (3.10) separately. From lemma 3.1 we already
know a c.n.d.f. C1 such that

(3.11) sup
εα−1t∈I

‖∂τY1(ε
α−1t, t)‖p ≤ C1(‖a‖L∞(I,ℓp)).

Moreover, by estimate (2.32) and lemma 3.1, there exists a c.n.i.f. ε1 and a
c.n.d.f. C2 such that for ε ≤ ε1(‖a‖L∞(I,ℓp))

(3.12) sup
εα−1t∈I

‖Rε(Y
ε(εα−1t, t))‖p ≤ εmin(β,γ)C2(‖a‖L∞(I,ℓp)).

Let us impose ε1 ≤ 1 without loss of generality. The first term at the right side
of (3.10) can be estimated as follows for εα−1t ∈ I, using estimate (3.5) and
lemma 3.1 :

‖Gα(Y0(ε
α−1t, t))−Gα(Y

ε(εα−1t, t))‖p

= εα−1
∥

∥

∫ 1

0

DGα(Y0(ε
α−1t, t) + θεα−1Y1(ε

α−1t, t)) dθ · Y1(ε
α−1t, t)

∥

∥

p

≤ εα−1

∫ 1

0

‖DGα(Y0(ε
α−1t, t) + θεα−1Y1(ε

α−1t, t))‖L(ℓ2p)
‖Y1(ε

α−1t, t)‖p

≤ εα−1C3(‖Y0(ε
α−1t, t)‖p + ‖Y1(ε

α−1t, t)‖p) ‖Y1(ε
α−1t, t)‖p

≤ εα−1C4(‖a‖L∞(I,ℓp)).

Combining this estimate with (3.11) and (3.12) yields the final estimate (3.9).

Example 3.3. In the case α = 3/2 (as for the classical Hertz force), if W and
φ are C3 at both sides of the origin, then β, γ ≥ 1/2 in (2.2) and (2.3), and we
have by lemma 3.2

sup
ε1/2t∈I

‖Eε(t)‖p ≤ CE(‖a‖L∞(I,ℓp))ε
2.

3.2 Proof of theorem 2.15

To prove theorem 2.15, we first estimate the error between the approximate
solution Xε

app constructed from a given a(0) = a0 ∈ ℓp(Z,C) (equation (2.41))
and the exact solution X to equation (2.5) for X(0) ≈ Xε

app(0), in the case when
ε ≈ 0 and on O(ε1−α) time scales. This result will follow in a rather standard
way from Gronwall estimates. In a second step, we check on these time scales
the validity of the leading-order approximate solution Xε

a (equation (2.42)).
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By lemma 2.7, for all initial condition a0 ∈ ℓp(Z,C) equation (2.44) admits
a unique maximal solution a defined for τ ∈ (Tmin, Tmax). Let us fix T ∈
(0, Tmax) and restrict a to [0, T ], so that a ∈ L∞([0, T ], ℓp). From lemma 3.1
it follows that Xε

app ∈ L∞([0, tm(ε)], ℓ
2
p) with tm(ε) = T/εα−1, and we have

Eε ∈ L∞([0, tm(ε)], ℓ
2
p) by lemma 3.2.

Let Z = X −Xε
app and Z0 ≡ X(0)−Xε

app(0). Then Z is solution to

Ż − J Z = G(Xε
app + Z)−G(Xε

app)− Eε,

Z(0) = Z0,

or equivalently

(3.13) Z(t) = eJtZ0 +

∫ t

0

eJ(t−s)[G(Xε
app + Z)−G(Xε

app)− Eε](s) ds.

By Cauchy–Lipschitz theorem, the solution Z ∈ C1([0, tmax(ε)], ℓ
2
p) to this equa-

tion is defined up to some maximal existence time tmax(ε) ≤ tm(ε), depending
a priori on Z0.

Remark 3.4. In fact we prove below that tmax(ε) = tm(ε) when ε and ‖Z0‖p
are small enough. This will provide a solution X to (2.5) defined at least for
t ∈ [0, tm(ε)].

We have already estimated the residual Eε in the previous section. We now
need to estimate the difference G(Xε

app + Z) − G(Xε
app). For this purpose we

assume ‖Z0‖p < ε and define

tε(Z0) = sup{t ∈ [0, tmax], ‖Z(t)‖p ≤ ε}.

Remark 3.5. Since ‖Z‖p ∈ C0([0, tmax]), we have either tε = tmax or tε < tmax

and ‖Z(tε)‖p = ε.

Lemma 3.6. There exists a c.n.i.f. ε2 and a c.n.d.f. CL such that for all
solution a ∈ L∞([0, T ], ℓp) to equation (2.44), ε ≤ ε2(‖a‖L∞([0,T ],ℓp)), Z0 ∈ ℓ2p
with ‖Z0‖p < ε and t ∈ [0, tε(Z0)],

(3.14) ‖G(Xε
app(t) + Z(t))−G(Xε

app(t))‖p ≤ εα−1CL(‖a‖L∞([0,T ],ℓp)) ‖Z(t)‖p.

Proof. We first estimate
(3.15)

‖G(Xε
app(t)+Z(t))−G(Xε

app(t))‖p ≤
∫ 1

0

‖DG(Xε
app(t)+θZ(t))‖L(ℓ2p)

dθ ‖Z(t)‖p.

By estimate (2.7), there exists µ,C > 0 such that for all U ∈ ℓ2p with ‖U‖p ≤ µ,
we have

(3.16) ‖DG(U)‖L(ℓ2p)
≤ C ‖U‖α−1

p .

From definition (2.41) and lemma 3.1, assuming ε2 ≤ 1, there exists a c.n.d.f.
C5 such that

sup
t∈[0,tm(ε)]

‖Xε
app(t)‖p ≤ εC5(‖a‖L∞([0,T ],ℓp)) for all ε ∈ (0, ε2],
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hence for all θ ∈ [0, 1] and t ∈ [0, tε(Z0)]

(3.17) ‖Xε
app(t) + θZ(t)‖p ≤ ε(1 + C5(‖a‖L∞([0,T ],ℓp))).

Consequently, there exists a c.n.i.f. ε2 ≤ 1 such that for all ε ≤ ε2(‖a‖L∞([0,T ],ℓp)),
θ ∈ [0, 1] and t ∈ [0, tε(Z0)] we have ‖Xε

app(t) + θZ(t)‖p ≤ µ. Then one obtains
estimate (3.14) using bounds (3.16) and (3.17) in conjunction with estimate
(3.15).

Now let us apply lemmas 3.2 and 3.6 to the Duhamel formulation (3.13) for
Z(t). This yields for all ε ≤ ε2(‖a‖L∞([0,T ],ℓp)), Z0 ∈ ℓ2p with ‖Z0‖p < ε and for
all t ∈ [0, tε]

‖Z(t)‖p ≤ bε + CLε
α−1

∫ t

0

‖Z(s)‖p ds,

with bε = ‖Z0‖p + CETε
1+η. Then one obtains by Gronwall lemma

(3.18) ‖Z(t)‖p ≤ bε exp(CLε
α−1tε) ≤ bε exp(CLT ).

We now fix a c.n.d.f. C0 > 0 and make the following stronger assumption
on the initial distance between exact and approximate solutions.

Assumption 3.7. Z0 = X(0)−Xε
app(0) satisfies

‖Z0‖p ≤ C0(‖a‖L∞([0,T ],ℓp))T ε1+η.

Assumption 3.7 implies ‖Z0‖p < ε as soon as ε < ε3 = (C0 T )−1/η, and then
estimate (3.18) applies for ε < min(ε2, ε3). This yields

(3.19) ‖Z(t)‖p ≤ CR(‖a‖L∞([0,T ],ℓp)) ε
1+η, t ∈ [0, tε],

where CR = (C0 + CE)T exp(CLT ) is a c.n.d.f. Consequently, for ε < εT =

min(ε2,C
−1/η
R ) we have ‖Z(t)‖p < ε for all t ∈ [0, tε], which implies tε = tmax

(see remark 3.5). Now estimate (3.19) allows to bound ‖Z(t)‖p for t ∈ [0, tmax].
Consequently, for all ε < εT (‖a‖L∞([0,T ],ℓp)) and Z0 satisfying assumption 3.7
we have tmax(ε) = tm(ε) and

(3.20) ‖X(t)−Xε
app(t)‖p ≤ CR(‖a‖L∞([0,T ],ℓp)) ε

1+η, t ∈ [0, T/εα−1].

With the error estimate (3.20) at hand, one can recover an estimate of the
same type for the leading order approximate solution Xε

a(t) = εY0(ε
α−1t, t).

Indeed

(3.21) X(t)−Xε
a(t) = X(t)−Xε

app(t) + εαY1(ε
α−1t, t).

From lemma 3.1, we already know a c.n.d.f. C1 such that for all t ∈ [0, T/εα−1],

(3.22) ‖Y1(ε
α−1t, t)‖p ≤ C1(‖a‖L∞([0,T ],ℓp).
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Now let us set C0 = (Ci+C1)/T in assumption 3.7, where Ci > 0 is a fixed con-
stant, and make the assumption ‖X0 − Xε

a(0)‖p ≤ Ciε
1+η of theorem 2.15.

Recalling that ε ≤ 1, η + 1 ≤ α, and using (3.21)–(3.22), one can check
that assumption 3.7 is satisfied and thus estimate (3.20) holds. Then using
(3.21)–(3.22) again, there exists a c.n.d.f. CT = CR + C1 such that for all
t ∈ [0, T/εα−1],

‖X(t)−Xε
a(t)‖p ≤ CT (‖a‖L∞([0,T ],ℓp) ε

1+η.

This completes the proof of theorem 2.15.

3.3 Proof of theorem 2.20

Theorem 2.20 consists of a different kind of error estimate, where the multiple-
scale approximation is controlled on O(| ln ε| ε1−α) time scales going beyond
ε1−α, at the expense of lowering the precision of (2.56). To obtain this result,
we adapt the proof of theorem 2.15 by allowing T to grow logarithmically in
ε. Theorem 2.20 is valid when the Ansatz Xε

a(t) ∈ ℓ2p is bounded for t ∈ R
+.

In that case, all estimates of sections 3.1 and 3.2 involving constants depending
only on ‖a‖L∞([0,T ],ℓp) can be made uniform w.r.t. T , which allows one to set
T = O(| ln ε|) when ε → 0.

In what follows we use the notations and definitions introduced in section
3.2. Let us consider a solution a ∈ L∞([0,+∞), ℓp) of the amplitude equation
(2.43), a fixed constant µ ∈ (0, η) and set

T =
µ

C̃L

| ln ε|,

where C̃L = CL(‖a‖L∞([0,+∞),ℓp)) and ε ≤ 1. The initial error Z0 is set to
satisfy assumption 3.7 with C0 = M , M being a fixed constant that will be
subsequently determined. It follows that ‖Z0‖p = O(| ln ε| ε1+η) < ε provided ε
is small enough. Assuming in addition ε ≤ ε̃2 = ε2(‖a‖L∞([0,+∞),ℓp)), estimate
(3.19) ensures that

(3.23) ‖Z(t)‖p ≤ (M + C̃E)T exp(C̃LT ) ε
1+η, t ∈ [0, tε],

where C̃E = CE(‖a‖L∞([0,+∞),ℓp)). Our choice of T yields exactly exp(C̃L T ) =
ε−µ, hence estimate (3.23) becomes

(3.24) ‖Z(t)‖p ≤ M + C̃E

C̃L

µ | ln ε| ε1+η−µ, t ∈ [0, tε].

Consequently, for ε small enough we have ‖Z(t)‖p < ε for all t ∈ [0, tε], which
implies tε = tmax = T ε1−α as shown in section 3.2.

Now, as previously observed in section 3.2, the error bound (3.24) yields
an estimate of the same type for the leading order approximate solution Xε

a(t),
thanks to the estimate

(3.25) ‖Y1(ε
α−1t, t)‖p ≤ C̃1, t ∈ [0, T/εα−1],
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with C̃1 = C1(‖a‖L∞([0,∞),ℓp). Indeed, let us further assume ε ≤ e−1 and make
the assumption ‖X0 −Xε

a(0)‖p ≤ Ci | ln ε| ε1+η of theorem 2.20 for some fixed
constant Ci. Using identity (3.21) and the bounds given above, one obtains

‖X0 −Xε
app(0)‖p ≤ (Ci + C̃1) | ln ε| ε1+η

(we recall that η ≤ α − 1). Consequently, assumption 3.7 is satisfied with
the choice C0 = M = (Ci + C̃1)C̃L/µ and estimate (3.24) holds true for all
t ∈ [0, T ε1−α]. Then using (3.21)-(3.25) and the definition of T , we get for all
t ∈ [0, µ C̃−1

L | ln ε| ε1−α]

‖X(t)−Xε
a(t)‖p ≤ Cl | ln ε| ε1+η−µ,

with Cl = Ci +2C̃1 + η C̃E/C̃L, which proves estimate (2.58) for ν = C̃−1
L . This

ends the proof of theorem 2.20.

4 Conclusion

We have shown that small amplitude oscillations in Newton’s cradle are de-
scribed by the DpS equation (1.2) over long times. From this result, we have
estimated on long time scales the maximal decay of small amplitude localized so-
lutions and proved the existence of stable long-lived breather states in Newton’s
cradle.

The justification of the DpS equation and the associated estimates of max-
imal decay extend straightforwardly to generalizations of (2.4) and (1.2) to ar-
bitrary space dimensions (i.e. for n ∈ Z

d and d ≥ 1) when xn(t) defines a scalar
field. However, generalizing our construction of long-lived breather states would
require an existence theorem for discrete breather solutions of the d-dimensional
DpS equation, which is not yet available for d ≥ 2. Other possible extensions
of this work concern the generalization and justification of the DpS equation
when small spatial inhomogeneities are present in the original lattice (2.4), as
well as the addition of dissipative terms in (2.4) and (1.2). Considering these
effects is particularly important from a physical point of view when system (2.4)
describes a granular chain [JKC13].

Other open problems concern the qualitative analysis of the DpS equa-
tion. In particular, excitations generated from a localized disturbance and
reminiscent of traveling breather solutions have been numerically studied in
[JKC13, SHVM12], both for the DpS equation and Newton’s cradle. The ex-
istence of exact traveling breather solutions of (1.2) is an open problem, and
would imply (in the case of small amplitude waves) the existence of similar ex-
citations in Newton’s cradle on long time scales. More generally, understanding
in system (1.2) the complex mechanisms of fully nonlinear energy propagation
from a localized disturbance is a challenging open problem [JKC13]. This would
allow in particular to analyze the propagation of nonlinear acoustic waves after
an impact in granular chains with local potentials, thanks to the connection we
have established between (1.2) and (1.1).
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Appendix

Simplified form of the amplitude equation

This section provides an explicit computation of the nonlinear term of the
amplitude equation (2.38). Given the form (2.36) of Y0 and recalling that
P (X) = ζ(X)eite1+c.c. (see lemma 2.4), the amplitude a(τ) ∈ ℓp(Z,C) satisfies
the differential equation

∂τa = ζ(Gα(Y0)),

or more explicitly
i∂τa = δ+f(δ−a),

where

∀ a ∈ ℓp(Z,C), (f(a))n = f̃(an),

∀ a ∈ C, f̃(a) =
1√
2

1

2π

∫ 2π

0

e−itV ′
α

(

a eit√
2

+ c.c.

)

dt.

Below we compute the map f̃ explicitly.

Setting a = r eiθ and using the change of variable s = t + θ in the integral
defining f̃ , one obtains

f̃(a) =
eiθ

23/2 π

∫

S1

V ′
α(

√
2 r cos s ) e−is ds,

where one can fix S1 = (−π, π). Given the form (2.1) of the potential Vα, one
obtains after elementary computations,

f̃(a) = 2
α−3
2 (k− + k+) cα a |a|α−1,

where

cα =
2

π

∫ π/2

0

(cos t)α+1 dt

is a Wallis integral with fractional power α+1. Expressing cα in terms of Euler’s
Gamma function leads to

cα =
1

π

Γ( 12 )Γ(
α
2 + 1)

Γ(α+1
2 + 1)

(see [AS70], formula 6.2.1 and 6.2.2, p. 258). Since Γ(1/2) =
√
π and Γ(a+ 1) =

aΓ(a), we obtain finally

cα =
αΓ(α2 )√

π(α+ 1)Γ(α+1
2 )

.
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