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Éric Dumas
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Abstract

Maxwell-Bloch equations describe the propagation of an electromagnetic wave
through a quantum medium. For any number of quantum levels, in space dimen-
sion 3, we show the global existence of weak (L2) solutions to the initial-value
problem. In the case of smoother electromagnetic fields (with curl in L

2), the so-
lution is unique. For smooth data (Hs, s ≥ 2), the solutions remain smooth for all
times.
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1 Introduction

1.1 Presentation of the problem

Maxwell-Bloch equations describe the propagation of an electromagnetic wave
(the magnetic field is denoted H, the electric field E) in a quantum medium,
modelized by a density matrix ρ (see [10]) with N energy levels. The system
then reads 




µ∂tH + curlE = 0,

ε∂tE − curlH = −∂tP,

i∂tρ = [Ω − E · Γ, ρ].
(1)

The space-time variables are (t, x) ∈ R1+3. The fields E and H take values in
R3. The functions µ and ε are positive, and denote magnetic permeability and
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electric permittivity, respectively. The response of the matter to the fields is
through a polarization P , given by the constitutive law,

P = Tr (Γρ).

The dipole moment operator Γ is a N × N Hermitian matrix, with entries
in C3, and depends on the material considered. The N × N Hermitian sym-
metric matrix Ω, with entries in C, represents the (electromagnetic field-) free
Hamiltonian of the medium. The density matrix ρ is Hermitian, non-negative,
has size N × N and entries in C. In the system’s eigenstates basis, its n-th
diagonal entry is the proportion of quantum states at the n-th energy level,
so that

ρnn ≥ 0, and
∫

R3

∑

n

ρnn dx = 1. (2)

The off-diagonal entry ρjk is linked to the transition probability from level j
to level k.

Finally, physically, conservation of current and charge must be satisfied,

div(µH) = 0, div(εE + P ) = 0 (3)

–these relations hold at least formally for all time if they do initially.

System (1) is symmetric hyperbolic. Thus, for smooth enough initial data (in
Hs(R3), with s > 3/2), local existence of solutions is guaranteed, on a time
interval depending a priori on the size of the data. In the present paper, we
address the subsequent natural questions:
Q1) May these solutions be defined globally in time? This is motivated in
particular by the fact that relevant time scales in quantum optics are “large”
(see [9]).
Q2) May solutions be defined with the “natural” regularity given in Proposi-
tion 1 below?
Q3) Since these are weak solutions of (1), what about uniqueness? What
regularity is sufficient for uniqueness to hold?

By standard energy estimates (see also Proposition 19), after mollification,
one gets the following conservations and a priori estimates.

Proposition 1 Let Γ,Ω ∈ L∞(R3). Let µ, ε ∈ L∞(R3), with some ε0 > 0
such that ε ≥ ε0 almost everywhere. If U = (E,H, ρ) ∈ C([0,+∞[, L2(R3)) is
solution to (1), (3) in the sense of distributions, then:
(i) For almost all x ∈ R3, Tr ρλ(t, x) and |ρ(t, x)| := (Tr (ρ(t, x)2))1/2 are
constant in t.
(ii) There is C = C(ε0, ‖Ω‖L∞, ‖Γ‖L∞) such that, for all time t,

E(t) := ‖
√
εE(t)‖2

L2 + ‖√µH(t)‖2
L2 + ‖ρ(t)‖2

L2 ≤ eCtE(0).
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In the sequel, all norms on finite dimensional spaces will be denoted as above
by | · |.

Remark 2 The physically relevant decay in space for ρ, in view of (2), is
ρ(t) ∈ L1(R3), but this is too weak for us to treat the mathematical question.
We really need the L∞ bound, as well as the only natural energy bound, the
L2 one.

Before answering the questions above , we recall previous results on the subject
from which we have drawn some inspiration.

• In the case of 2 levels Maxwell-Bloch systems (N = 2), Donnat and Rauch
have proved in [2] global existence for the smooth solutions (H s(R3), with s ≥
2). Their proof is based on the usual continuation argument, thanks to energy
estimates, using the a priori estimates of Proposition 1, the decomposition of
the fields into their irrotational and divergence-free parts, and Judovic-type
estimates. The 2 levels case benefits special symmetries, so that Bloch equation
may be written as a system for the polarization P and the levels populations
difference n := ρ11 − ρ22 only,





∂2
t P +

1

T1
∂tP + ω2P = C1nE,

∂tn+
n− n0

T2

= −C2∂tP · E.

The particular structure of nonlinearities leads to cancellations, and to con-
servation of L2 energy, as well as control of H1 energy.

• In the case of electromagnetic propagation through a ferromagnetic medium,
with magnetization M(t, x),





µ∂tH + curlE = −∂tM,

ε∂tE − curlH = 0,

∂tM = α

(
M ∧H +

β

|M |M ∧ (M ∧H)

)
,

(4)

Joly, Métivier and Rauch proved in [6] the global existence of weak solutions
(of the kind of the ones in Proposition 1) in space dimension 3, with constant
coefficients ε and µ. This is achieved constructing smooth approximate solu-
tions of (4), with a priori estimates analoguous to the ones of Proposition 1,
and compensated compactness gives the limit of the nonlinear terms. They
get uniqueness in the case when the fields have rotationals in L2, thanks to an
almost L∞ control of the fields provided by a Strichartz estimate for the wave
equation (to which the divergence free part of the magnetic field is solution).
This Strichartz estimate, together with a Judovic estimate, allows them also
to show the global existence of smooth (Hs, s ≥ 2) solutions. Haddar ob-
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tained similar results (in [5]) in space dimension 2, with electric permittivity
ε = ε(x) ∈ L∞(R2). His strategy follows the same lines, but in space dimen-
sion 2, the defect of the injection of H1 into L∞ is described by a simpler
inequality than the Strichartz estimate of [6].

1.2 The results

Some structure is common to the ferromagnetic system (4) and to Maxwell-
Bloch equations: pointwise conservation of the density matrix (of the magneti-
zation, in (4)), which is linked to the irrotational part of the fields, propagation
of the divergence free part of the fields according to a wave equation, interac-
tion terms depending linearly on this part of the fields. . . Thus, we adapt the
methods described above to Maxwell-Bloch system in space dimension 3, for
any (finite) number of levels, in the case of constant coefficients ε and µ and
variable operators Ω and Γ.

Theorem 3 (Global weak solutions) Let Ω,Γ ∈ L∞(R3), and assume that
ε, µ are constant. When U0 = (H0, E0, ρ0) ∈ L2(R3) × L2(R3) × (L2(R3) ∩
L∞(R3)) satisfies the constraint equations (3), there exists U ∈ C([0,+∞[,
L2(R3)× L2(R3)× (L2(R3) ∩ L∞(R3))), global solution to Maxwell-Bloch sys-
tem (1), (3) in the distributional sense, with U0 as initial data.

Theorem 4 (Uniqueness) Under the assumptions of Theorem 3, if in addi-
tion curlH0, curlE0 ∈ L2(R3), then curlH, curlE ∈ C([0,+∞[, L2(R3)), and
U is unique.

Theorem 5 (Global smooth solutions) Let s ∈ N, s ≥ 2. Let Ω,Γ ∈
Cs(R3) be bounded, as well as their derivatives up to order s, and assume that
ε, µ are constant. When U0 ∈ Hs(R3) satisfies the constraint equations (3),
there exists a unique U ∈ C([0,+∞[, Hs(R3)), global solution to (1), (3) with
U0 as initial data.

Remark 6 (i) In view of the finite speed of propagation property of sys-
tem (1), the global boundedness assumption on Ω, Γ and ρ0 is not necessary:
for each given time T > 0, we could localize the data on a compact domain
{|x| ≤ R} with R > T to get the same results on {(t, x) | |x| + t ≤ R, 0 ≤
t ≤ T} –from the modelling viewpoint, it is also reasonnable to consider that
ρ has compact support, namely the space occupied by the matter.

(ii) It would be interesting to generalize these results to an infinite number of
quantum levels. The density matrix is then a trace class operator on l2(N).
Unfortunately, we are unable to control the trace norm of ρ –just as we cannot
deal with ρ in L1 only.
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(iii) On the contrary, the analogue to Theorem 5 with µ and ε variable seems
tractable, but it requires to prove a precise Strichartz estimate for variable
coefficient wave equations (the analogue to Proposition 30).

A simpler case arises with the common assumption (see [9]) that the dipole
moment operator is “polarized”,

Γ = γ ⊗ e, (5)

with γ a N×N Hermitian symmetric matrix and e a vector in C3. The current
density ∂tP then depends on ρ only, thanks to the relation Tr (A[A,B]) = 0:

−∂tP = −Tr (Γ∂tρ) = iTr (Γ[Ω, ρ]) − iTr (γ[γ, ρ])(E · e)e = iTr (Γ[Ω, ρ]).

This enables us to prove existence and uniqueness of weak solutions with
variable coefficients ε and µ.

Theorem 7 (Polarized case) Let Ω, µ, ε ∈ L∞(R3), with some µ0, ε0 > 0
such that µ ≥ µ0 and ε ≥ ε0 almost everywhere. Assume that Γ has the form
(5), with γ ∈ L∞(R3,HermN ) and e ∈ L∞(R3,C3). When U0 ∈ L2(R3) ×
L2(R3)× (L2(R3)∩L∞(R3)) satisfies (3) with curlH0, curlE0 ∈ L2(R3), there
exists a unique global (distributional) solution U to (1), (3) with U0 as initial
data. When µ and ε are constant, the same holds for U0 ∈ L2(R3)×L2(R3)×
(L2(R3) ∩ L∞(R3)) only.

The article is structured as follows. In Section 2, we give a general class of
systems (Maxwell’s equations coupled to some dissipative ODE), including (1)
(and also the “regularized” ferromagnetic systems (4) with β = 0, or β/|M |
replaced with β/

√
|M |2 + δ2), for which Theorems 3, 4, 5 are valid. There, we

sketch the proofs given in the next sections: Section 3 is devoted to existence
of global weak solutions; 4, to uniqueness; Section 5, to smooth solutions.

2 A general setting for Maxwell-Bloch type systems

We consider system (1) as a particular case of some class of systems, so as to
take into account other kinds of interactions. For example, we have in mind
adding “transverse relaxation” terms (see [1]): i∂tρ = [Ω − E · Γ, ρ] − iγρod,
with ρod the off-diagonal part of ρ, and γ(x) a non-negative L∞ function.

Set u = (u1, u2) = (H,E),

L = ∂t +




0 curl

− curl 0


 , (6)
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and consider ρ as a real vector

v = (Re ρk,l, Im ρk,l, ρm,m)1≤k<l≤N,1≤m≤N ∈ Rn,

where n = N2 (but the following works for all n ∈ N). Then, (1) (with
ε = µ = 1) takes the form

{
Lu = l(x)F (x, v, u),

∂tv = F (x, v, u),
(7)

with l and F satisfying the following assumptions (with n = N 2).

Hypothesis 8 There is a scalar product 〈·, ·〉 on Rn, a constant C > 0, and
for all R > 0, there is a constant C(R) such that:

(1) The function F : R3 × Rn × R6 → Rn is affine in u, and is written
F (x, v, u) = F 0(x, v) + F 1(x, v)u. Here, F 0 takes its values in Rn, and
F 1, in the space of linear operators L(R6,Rn).

(2) The function F 0 is measurable in x and C0 in v (Caratheodory regularity).
The function F 1 is measurable in x and C1 in v.

(3) For all x ∈ R3, u ∈ R6, v ∈ Rn, 〈F (x, v, u), v〉 ≤ 0.
(4) For j = 0, 1, for all x ∈ R3, F j(x, 0) = 0.
(5) For j = 0, 1, for all x ∈ R3, v, v′ ∈ Rn, |F j(x, v)−F j(x, v′)| ≤ C(R)|v−v′|

when |v|, |v′| ≤ R.
(6) The function l is L∞ in x, with values in L(Rn,R6). We denote l1 and l2

its H(= u1) and E(= u2) coordinates.

The crucial assumptions here are the dissipation property (3) and the fact
(1) that F is affine in u. The first one provides a pointwise control on v (see
Proposition 10 below), while the second one allows the use of compensated
compactness. Concerning Lipschitz and growth conditions, from assumptions
1, 4 and 5, one easily deduces the following estimates for F , for all x ∈ R3,
u, u′ ∈ R6, v, v′ ∈ Rn such that |v|, |v′| ≤ R.

|F (x, v, u)| ≤ C(R)(1 + |u|)|v|, (8)

|F (x, v, u)− F (x, v′, u)|≤ C(R)(1 + |u|)|v − v′|, (9)

|F (x, v, u)− F (x, v, u′)| ≤ C(R)|u− u′|. (10)

We take into account the natural L2 regularity and the conservations for the
fields through the following definition of “finite energy solutions”.

Definition 9 Denote by Ldiv the space of U = (u, v) ∈ L2(R3)×(L2∩L∞)(R3)
satisfying

div(uj − ljv) = 0 for j = 1, 2 in D′(R3). (11)
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We call finite energy solution any U ∈ C([0,+∞[, Ldiv) solution to (7) in the
sense of distributions.

In this setting, Proposition 1 becomes

Proposition 10 Under assumptions 8, when U is a finite energy solution to
(7), there is C = C(F, l, ‖v0‖L∞) such that,
(i) For almost all x ∈ R3, |v(t, x)| decreases in t.
(ii) For all time t, ‖U(t)‖L2 ≤ eCt‖U(0)‖L2 .

Theorems 3,4 and 5 are then corollaries of the following ones.

Theorem 11 Under assumptions 8, when U0 = (u0, v0) ∈ Ldiv, there exists a
(global) finite energy solution U to (7) with U0 as initial data.

This result is proved in Section 3. We first construct smooth approximate
solutions to (7) through high-frequency cut-offs. These approximate solutions
satisfy bounds analogue to the ones of Proposition 10, thus weakly converge
(up to a subsequence). The limit in the nonlinear terms (and, in fact, the
strong convergence of the approximate solutions) is obtained by compensated
compactness, splitting the fields u into their irrotational part u‖ (related to
v, via the constraint (11)) and divergence free part u⊥ (solution to a wave
equation).

In Section 3.3, we sketch the proof of Theorem 7. Since the response of the
matter to the fields then depends on the density matrix only, the system is “less
nonlinear”, and after a slightly different regularization procedure, elementary
energy estimates and Gronwall’s Lemma are enough to pass to the limit. In the
case when the coefficients ε and µ are variable, some compactness is needed,
under the form of a L2 control of the curl of the fields, provided by the time
derivatives (using curlE = −µ∂tH, for example).

In Section 4, we are interested in uniqueness of the energy solutions. Towards
this end, we need some L∞ (in space) control on the fields. Viathe conserva-
tion relation (11), the irrotational part of the fields is linked to v, for which
we have a L∞ bound. Since H1(R3) is “not far” from L∞, the first step con-
sists in showing the propagation of H1 regularity of the divergence free part
u⊥ of u, or H(curl) regularity of u (Section 4.1). We thus need to reinforce
assumption 8(2).

The functions F 0 and F 1 are measurable in x and C1 in v. (2’)

Theorem 12 If in addition curl u0,1, curl u0,2 ∈ L2(R3), and assumption 8 (2)
is replaced by (2′), then curl u1, curl u2 ∈ C([0,+∞[, L2(R3)).

In Section 4.2, we take advantage of this regularity to get the desired L∞

control on the divergence free part of the fields, via a Strichartz estimate
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for the wave equation (such a L∞ estimate is false in general, but holds for
functions whose Fourier transform have bounded support, as proved in [6]).
Furthermore, we assume that the matter (v) does not interact directly with
one of the fields (u1 = H or u2 = E). A priori,

∂2
t (u1)⊥−∆(u1)⊥ = (l1dF (v, u) · (F, l1F − curl u2, l2F +curl u1)− curl(l2F ))⊥,

so that, in order to get a L2
x control on the source term, we let l2F (v, u) vanish.

This provides us with an (approximate) L∞ control of (u1)⊥. Uniqueness then
follows from a simple energy estimate on the system (7), at least if the L∞

norm of u2 is not involved, that is, if F does not depend on u2.

Hypothesis 13 There is an index j ∈ {1, 2} such that F (v, u) does not de-
pend on u3−j, and l3−j(x)F (x, v, u) identically vanishes.

Theorem 14 Under the assumptions of Theorem 12 and assumption 13, the
finite energy solution U is unique.

Finally, we address the question of the global existence of smooth solutions. We
thus replace the Caratheodory regularity of F by Cs regularity. Furthermore,
the u-linearity of F is not necessary as an algebraic condition, and is more to
be considered as a growth condition.

Hypothesis 15 Let s ∈ N be greater or equal to 2.
• The function F ∈ Cs(R3 × Rn × R6) enjoys the affine and dissipation prop-
erties (1) and (3) of assumption 8. For all ω, relatively compact subset of
Rn × R6, it is bounded on R3 × ω, as well as its derivatives up to order s.
• The derivatives ∂xF and ∂2

xF satisfy (8).
• For all x ∈ R3, v ∈ Rn, u ∈ R6, k = 1 or 2,

|∂k
vF (x, v, u)| ≤ C(R)(1 + |u|) when |v| ≤ R.

• The function l ∈ C∞(R3,L(Rn,R6)) is bounded, as well as its derivatives up
to order s.

Theorem 16 Under assumptions 15 and 13 (s ∈ N is then given, s ≥
2), consider U0 ∈ Hs(R3) satisfying (11). Then, there exists a unique U ∈
C([0,+∞[, Hs(R3)), global solution to (7), (11) with U0 as initial data.

The proof is based on the usual continuation argument, through subquadratic
control of the H2 norm. Again, this is achieved by a L∞ control of the fields,
thanks to a Judovic estimate for the irrotational part, and the same Strichartz
estimate as above for the divergence free part.
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3 Existence of global weak solutions

3.1 Regularization

We use the Fourier multiplier Sλ, with symbol χλ := χ(·/λ), where the cut-off
function χ ∈ C∞

c (Rd, [0, 1]) takes value 1 when |ξ| ≤ 1/2, and 0 when |ξ| ≥ 1.
Via the Fourier transform, the following properties are immediate.

Lemma 17 For all s ∈ N, there is Cs > 0 (C0 = 1) such that

Sλ is a continuous map from L2(R3) to Hs(R3), with norm Csλ
s,

from L2(R3) to L∞(R3), with norm λ3/2,

from Lp(R3) to Lp(R3) for all p ∈ [1,∞[,

with norm ‖χ̂‖L1.

Furthermore, as λ goes to infinity, Sλ converges strongly (in the space of
bounded linear operators on L2(Rd)) towards the identity.

Define an approximate solution Uλ to (7) by





Luλ = Sλl(x)F (x, vλ, uλ),

∂tv
λ = F (x, vλ, uλ),

Uλ
|t=0

= (Sλu0, v0).

(12)

This system may be written as an ODE d
dt
Uλ = Gλ(Uλ) on the Banach space

L2
λ × (L2 ∩ L∞)(R3), where L2

λ is the subspace of L2(R3) of functions whose
Fourier transform has support contained in the ball {|ξ| ≤ λ}.

Lemma 18 Under assumptions 8, for all λ > 0, the map

Gλ : U = (u, v) 7→


Sλl(x)F (x, v, u) −




0 curl

− curl 0


u, F (x, v, u)




is locally Lipschitz continuous on L2
λ × (L2 ∩ L∞)(R3).

Proof: Thanks to the support condition defining L2
λ, the curl linear part is

bounded on this space.

When (u, v) ∈ L2
λ × (L2 ∩ L∞)(R3), measurability of F (x, v, u) is ensured by

the Caratheodory regularity of F (assumption 8(2)). The growth in (8) implies
that F (x, v, u) ∈ (L2 ∩ L∞)(R3), and Sλl(x) maps L2 to L2

λ. Thus, Gλ maps
L2

λ×(L2∩L∞)(R3) to itself. Finally, the locally Lipschitz property is inherited
from the Lipschitz estimates (9), (10) on F . �
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This yields local existence of the approximate solution, and as usual, global
existence is given by a priori bounds.

Proposition 19 Under assumptions 8, for all U0 = (u0, v0) ∈ Ldiv and λ > 0,
there exists a unique Uλ ∈ C1([0,+∞[, L2

λ × (L2 ∩ L∞)(R3)) solution to (12).

Furthermore, there is a constant C = C(F, l, ‖v0‖L∞) such that
(i) For almost all x ∈ R3, |vλ(t, x)| decreases in time.
(ii) For all times t, div(uλ

j (t) − Sλljv
λ(t)) = 0 for j = 1, 2.

(iii) For all times t, E(Uλ(t)) := ‖uλ(t)‖2
L2 + ‖vλ(t)‖2

L2 ≤ eCtE(U0).

Proof: To obtain (i), form the scalar product (〈·, ·〉) of vλ with the second
equation in (12) and use the dissipation assumption 8(3).

Take the divergence of the first equation in (12) and replace F (vλ, uλ) by ∂tv
λ

to get (ii).

Finally, taking the scalar product of uλ with the first equation in (12), inte-
grating in space and using the relation u1 · curl u2 −u2 · curl u1 = div(u2 ∧u1),
we have

∂t‖uλ‖2
L2 ≤ C(‖v0‖L∞)

(
‖vλ‖2

L2 + ‖vλ‖L∞‖uλ‖L2‖vλ‖L2

)
,

thanks to (8). Thus, we add the inequality ∂t‖vλ‖2
L2 ≤ 0 obtained from (i),

and Gronwall’s Lemma concludes. �

3.2 Proof of Theorem 11: strong convergence

Fix some T > 0, and denote ΩT = [0, T ]×R3. From the bounds above, we know
that, up to a subsequence of λ’s, Uλ weakly converges (in L2(ΩT ), and weak-?
in L∞([0,+∞[×R3) for vλ) to some U∞. Now, we show (up to a subsequence
again) the strong convergence in C([0, T ], L2(R3)) (and thus in C([0, T ], Ldiv),
passing to the limit in the relation (ii) of Proposition 19).

The main step is the strong convergence of vλ. First, perform an energy esti-
mate on the difference of the equations for vλ and vµ, introducing the limit
u∞.
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∂t(|vλ − vµ|2) =2〈F (vλ, uλ) − F (vµ, uµ), vλ − vµ〉
=2〈F 0(vλ) − F 0(vµ) + (F 1(vλ) − F 1(vµ))u∞, vλ − vµ〉

+ 2〈F 1(vλ)(uλ − u∞) − F 1(vµ)(uµ − u∞), vλ − vµ〉
≤C(‖v0‖L∞)(1 + |u∞|)|vλ − vµ|2

+ 2〈F 1(vλ)(uλ − u∞) − F 1(vµ)(uµ − u∞), vλ − vµ〉

thanks to assumption 8(5).

Now, we introduce the measurable, almost eveywhere (on ΩT ) finite function

a(t, x) := C(‖v0‖L∞)
∫ t

0
(1 + |u∞(t′)|)dt′, (13)

so that

∂t(e
−a|vλ − vµ|2) ≤ 2e−a〈F 1(vλ)(uλ − u∞)− F 1(vµ)(uµ − u∞), vλ − vµ〉. (14)

To get strong convergence, we need a weight sufficiently decreasing at infinity
(see Lemma 22 and Lemma 24 below).

Proposition 20 Set b(t, x) = a(t, x)+ |x|2 with a from (13). Then, under the

assumptions of Proposition 19, for all T > 0,
(
vλ
)

λ>0
is a Cauchy sequence

in L2(ΩT , e
−bdtdx).

Before we give the proof of this proposition, we show how it implies Theo-
rem 11, and in particular, the

Corollary 21 The sequence (uλ, vλ)λ>0 strongly converges in C([0, T ], L2(R3))
towards a finite energy solution to (7).

Proof:

Convergence of vλ almost everywhere and in C([0, T ], L2(R3)): up to a subse-

quence,
(
vλ
)

λ>0
converges almost everywhere on ΩT (for the measure e−bdtdx,

or dtdx, since e−b is positive). Now, thanks to the pointwise estimate (i)
of Proposition 19 and dominated convergence, we get strong convergence in
L2(ΩT ). In particular, the (sub)sequence of applications t 7→ ‖vλ − vµ‖L2(t)
converges to zero as λ, µ → ∞ for almost all t ∈ [0, T ]. Finally, the equation
on vλ shows that ∂tv

λ is bounded in L∞L2 (thanks to the bound (8) on F ),
so that (‖vλ − vµ‖L2)λ,µ is equicontinuous, and thus converges in C([0, T ],R)
by Ascoli’s Theorem.

Convergence of the nonlinear terms in L1(0, T, L2(R3)): the uniform bound
(Proposition 19(i)) and strong convergence of vλ are enough for F (x, vλ, uλ)
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to converge in D′(]0, T [×R3) to F (x, v∞, u∞), since F (x, v, u) = F 0(x, v) +
F 1(x, v)u is affine in u and each F j is locally Lipschitz in v, uniformly in x
(assumption 8(5)). This allows to pass to the limit in equations (12) in D′,
but we need more to get strong convergence (in C([0, T ], L2(R3))) of uλ.

Thanks to the Lipschitz properties (9),(10) of F , we have

|F (vλ, uλ) − F (v∞, u∞)| ≤ C(‖v0‖L∞)
(
|uλ − u∞| + (1 + |u∞|)|vλ − v∞|

)
.

We already know that vλ converges to v∞ in C([0, T ], L2(R3)). The prod-
uct u∞(vλ − v∞) converges to zero almost everywhere, and is dominated by
2‖v0‖L∞|u∞| ∈ L2(ΩT ), thus converges to zero in L2(ΩT ) by Lebesgue’s dom-
inated convergence theorem. Therefore, we get

‖F (vλ, uλ) − F (v∞, u∞)‖L1L2 ≤ C(‖v0‖L∞)‖uλ − u∞‖L1L2 + o(1), (15)

and next we prove simultaneously the convergence of uλ in C([0, T ], L2(R3))
and of F (vλ, uλ) in L1(0, T, L2(R3)).

Convergence of the fields uλ in C([0, T ], L2(R3)): the classical energy estimate
gives

‖uλ − u∞‖L2(t) ≤ ‖(1 − Sλ)u0‖L2 + C
∫ t

0
‖F (vλ, uλ) − F (v∞, u∞)‖L2dt′

≤ C
∫ t

0
‖uλ − u∞‖L2(t′)dt′ + o(1),

in view of(15), so that Gronwall’s Lemma concludes the proof of Theorem 11.
�

Proof of Proposition 20:

Integrate on Ωt the product of (14) and e−|x|2 to get

‖e−b/2(vλ − vµ)(t)‖2
L2

≤ 2
∫

Ωt

e−b〈F 1(vλ)(uλ − u∞) − F 1(vµ)(uµ − u∞), vλ − vµ〉dxdt′. (16)

Thus we study the two terms

∫

Ωt

e−b〈F 1(vλ)(uν − u∞), vλ − vµ〉dxdt′, ν = λ, µ. (17)

Introduce the Fourier multipliers π‖ and π⊥, with symbols (ξ/|ξ|, .)ξ/|ξ| and
(ξ/|ξ| ∧ .) ∧ ξ/|ξ|, respectively. The symbols are homogeneous of degree zero,
so that the operators map Lp(R3) into itself continuously, for all finite p [11].
Furthermore, they are the (L2) orthogonal projectors onto irrotational and
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divergence free vector fields, respectively. This is the Hodge decomposition,
which we use to split (uν − u∞) in (17) into two parts. For notational conve-
nience, define

Π‖ =



π‖ 0

0 π‖


 , Π⊥ =



π⊥ 0

0 π⊥


 .

Now, (17) splits into the sum of

I =
∫

Ωt

e−b〈F 1(vλ)Π‖(u
ν − u∞), vλ − vµ〉dxdt′

and II =
∫

Ωt

e−b〈F 1(vλ)Π⊥(uν − u∞), vλ − vµ〉dxdt′.
(18)

Lemma 22 The integral I from (18) satisfies, as λ, µ go to infinity,

I ≤ C(‖v0‖L∞)
(
‖e−b/2(vλ − v∞)‖2

L2(Ωt) + ‖e−b/2(vλ − vµ)‖2
L2(Ωt)

)
+ o(1).

Proof: The divergence relation (ii) in Proposition 19 is equivalent to

Π‖u
ν = Π‖S

νl(x)vν ,

and becomes in the (weak) limit λ→ ∞

Π‖u
∞ = Π‖l(x)v

∞.

Furthermore, thanks to the strong convergence of Sλ to id in L(L2), we can
replace l(x)v∞ with Sνl(x)v∞. This yields

I =
∫

Ωt

e−b〈F 1(vλ)Π‖(S
νl(x)vν − l(x)v∞), vλ − vµ〉dxdt′

=
∫

Ωt

e−b〈F 1(vλ)Π‖S
νl(x)(vν − v∞), vλ − vµ〉dxdt′ + o(1).

Now, another o(1) error is added when commuting e−b/2 with Π‖S
ν, as shows

the following version of Rellich’s Theorem (proved below).

Lemma 23 For all p > 2, the operators [SνΠ‖, e
−b/2] mapping (L2 ∩Lp)(ΩT )

into L2(ΩT ) are compact, uniformly w.r.t. ν:
When wν ⇀ 0 in (L2 ∩ Lp)(ΩT ) weak, [SνΠ‖, e

−b/2]wν −→
ν→∞

0 in L2(ΩT ).

We use the growth properties of F 1 (assumption 8, (4) and (5)), together with
the bounds l ∈ L∞(R3), |e−b/2| ≤ 1, and ‖Π‖S

ν‖L(L2) = 1, to bound

∣∣∣∣
∫

Ωt

〈F 1(vλ)[Π‖S
ν, e−b/2]l(x)(vν − v∞), e−b/2(vλ − vµ)〉dxdt′

∣∣∣∣

≤ C(‖v0‖L∞)‖[Π‖S
ν, e−b/2](vν − v∞)‖L2(ΩT )‖vλ − vµ‖L2(ΩT ),
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which goes to zero as λ, µ go to infinity, thanks to Lemma 23. Thus, we obtain

I =
∫

Ωt

〈F 1(vλ)Π‖S
νl(x)e−b/2(vν − v∞), e−b/2(vλ − vµ)〉dxdt′ + o(1),

which immediately implies Lemma 22. �

Proof of Lemma 23:

Since b(t, x) ≥ |x|2, we have e−b/2 ∈ Lp(ΩT ) for all p ∈ [1,∞]. Next, Π‖S
ν is a

bounded family of continuous operators on Lp(ΩT ) for all p ∈ [2,∞[, so that,
when φ ∈ C∞

c (]0, T [×R3),

‖[SνΠ‖, e
−b/2]wν − [SνΠ‖, φ]wν‖L2(ΩT )

≤
(
‖SνΠ‖‖L(L2(ΩT )) + ‖SνΠ‖‖L(L4(ΩT ))

)
‖e−b/2 − φ‖L4(ΩT )‖wν‖L4(ΩT ),

and we may replace e−b/2 by an L4 approximation φ ∈ C∞
c (]0, T [×R3).

Now, denoting mν(ξ) the symbol of SνΠ‖, for all cut-off function γ ∈ C∞
c (R3)

such that γ ≡ 1 in a neighborhood of 0, the symbol (1 − γ)mν has bounded
semi-norms. Hence T ν = [SνΠ‖, φ] is a bounded family of pseudodifferential
operators on ΩT , with degree −1. Consider ψ1, ψ2 ∈ C∞

c (]0, T [×R3) satisfying
ψ1 ≡ 1 on suppφ and ψ2 ≡ 1 on suppψ1, so that ψ1φ = φ and ψ2ψ1 = ψ1.
Then,

T νwν = ψ2T
νwν + (1 − ψ2)T

νwν.

Thanks to Rellich’s Theorem, the first term on the right-hand side strongly
tends to zero in L2(ΩT ). In view of the conditions on the supports of ψ1 and
ψ2, the second term writes

(1 − ψ2)[S
νΠ‖, φ]wν =(1 − ψ2)S

νΠ‖φw
ν

=(1 − ψ2)S
νΠ‖ψ1φw

ν

=(1 − ψ2)[S
νΠ‖, ψ1]φw

ν.

Here again, (1− ψ2)[S
νΠ‖, ψ1] is a bounded family of pseudodifferential oper-

ators on ΩT , with degree −1, and φwν strongly converges to zero in H−1(ΩT )
(by Rellich’s Theorem), so that the product converges to zero in L2(ΩT ). �

For the second integral II, we use compensated compactness.

Lemma 24 The integral II from (18) has limit zero as λ, µ go to infinity,
uniformly w.r.t. t ∈ [0, T ].

Proof: The integral II is equal to

II =
∫

Ωt

e−bQ(x, vλ, vµ) · Π⊥(uν − u∞) dxdt′,
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where Q(x, v, w) is a R6 valued function, defined by

Q(x, v, w) · ξ = 〈F 1(x, v)ξ, v − w〉, ∀ξ ∈ R6.

First, we know that Q(vλ, vµ) is bounded in L2(ΩT ), thanks to the L2 ∩ L∞

bound on vλ, vµ, and the control |F 1(x, v)| ≤ C(|v|)|v| on F 1. Since Π⊥(uν −
u∞) is also bounded in L2(ΩT ), and e−b takes its values in [0, 1], the family of
integrals II, as functions of t, is uniformly (in λ, µ) equicontinuous on [0, T ].
As a consequence, it is sufficient to prove Lemma 24 for t fixed.

Next, since the weight e−b goes to zero as |x| goes to infinity, we may localize
II: for all δ > 0, there is R = R(δ) such that

II ≤
∫

[0,t]×{|x|≤R}
e−b〈F 1(vλ)Π⊥(uν − u∞), vλ − vµ〉dxdt′ + δ. (19)

Now, observe that the divergence free part Π⊥u
ν of the fields is solution to a

wave equation (thanks to the relation curl curl π⊥ = −∆π⊥),

(∂2
t − ∆)Π⊥u

ν = Π⊥S
ν
(
∂t(l1F (vν, uν)) − curl(l2F (vν, uν)),

∂t(l2F (vν, uν)) + curl(l1F (vν, uν))
)
,

so that (∂2
t − ∆)Π⊥(uν − u∞) is bounded in H−1(ΩT ).

We apply the results of compensated compactness [3], [12] on [0, t]×{|x| ≤ R}.
The operators � and ∂t have non-intersecting characteristic varieties

C� := {τ 2 − |ξ|2 = 0} \ {0} and C∂t
:= {τ = 0} \ {0},

and Π⊥(uν−u∞) is bounded in L2(ΩT ), with �Π⊥(uν−u∞) relatively compact
in H−2(ΩT ). Since Q(vλ, vµ)e−b is bounded in L2(ΩT ), it is sufficient to check

that ∂t

(
Q(vλ, vµ)e−b

)
is relatively compact in H−1(ΩT ) to conclude that the

integral in (19) goes to zero as λ, µ go to infinity. But we have

∂t

(
Q(vλ, vµ)e−b

)
=
(
(∂v,wQ)(vλ, vµ) · (∂tv

λ, ∂tv
µ) − (∂tb)Q(vλ, vµ)

)
e−b.

Here, e−b ∈ L∞(ΩT ), since b ≥ |x|2. Furthermore, (∂v,wQ)(vλ, vµ) is bounded
in L∞(ΩT ) (by the Lipschitz assumption 8(5) on F 1), and ∂tv

λ = F (vλ, uλ)
is bounded in L2(ΩT ). For the second term, ∂tb = C(‖v0‖L∞)(1 + |u∞|) ∈
L∞(ΩT ) + L2(ΩT ), and Q(vλ, vµ)e−b is bounded in L2(ΩT ) ∩ L∞(ΩT ). This

shows that ∂t

(
Q(vλ, vµ)e−b

)
is bounded in L2(ΩT ), and Lemma 24 is proved.

�

Add the estimates of Lemma 22 and Lemma 24 for ν = λ, µ. From (16),
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Gronwall’s Lemma implies that for all t ∈ [0, T ],

‖e−b/2(vλ−vµ)(t)‖2
L2 ≤ C(‖v0‖L∞, T )

∫ t

0
‖e−b/2(vλ−v∞)(t′)‖2

L2dt′+o(1). (20)

For all t ∈ [0, T ], (vλ(t))λ>0 is bounded in L2. The equation ∂tv
λ = F (vλ, uλ)

shows that (vλ)λ>0 is an L2 weak valued equicontinuous family. Thus, by
Ascoli’s Theorem, up to a subsequence, vλ(t) converges (in L2 weak) for all
t. Taking the limit µ → ∞ in (20) and applying Gronwall’s Lemma again
completes the proof of Proposition 20. �

3.3 Proof of Theorem 7: the polarized case

In this section, we sketch the proof of Theorem 7, when system (1) reduces to





µ∂tH + curlE = 0,

ε∂tE − curlH = iTr (Γ[Ω, ρ]),

i∂tρ = [Ω − E · Γ, ρ].
(21)

For the sake of simplicity, we don’t give any similar statement for general
systems, even if we only use here: hyperbolicity of the system (any space di-
mension is allowed, as well as variable coefficients), the L2∩L∞ a priori bound
on the density matrix ρ, the (local in ρ, global in (H,E)) Lipschitz property
of the nonlinear terms, and the dependence of the source term in Maxwell’s
equations on x and ρ only (in particular, neither the conservations (3) are
needed, nor the decomposition of the fields into irrotational and divergence
free parts).

First, regularize the system in a slightly different way from that of Section 3.1
to define an ODE with locally Lipschitz nonlinearity on the Banach space
B = L2(R3) × L∞(R3) × (L2(R3) ∩ L2(R3)),





µ∂tH
λ + curl SλEλ = 0,

ε∂tE
λ − curlSλHλ = iTr (Γ[Ω, ρλ]),

i∂tρ
λ = [Ω − SλEλ · Γ, ρλ],

(Hλ, Eλ, ρλ)|t=0
= (H0, E0, ρ0) ∈ B.

(22)

We recover the same bounds as in Proposition 19. To these, we add an energy
estimate for the time derivatives, using the H(curl) regularity. It serves in the
sequel for controlling the curlSλ terms (another avatar of this trick is present
in Section 4.1).
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Proposition 25 There exists a unique Uλ = (uλ, ρλ) ∈ C1([0,+∞[, B) solu-
tion to (22). Furthermore,
(i) For almost all x ∈ R3, |ρλ(t, x)| is constant in time.
(ii) There is a constant C = C(µ0, ε0, ‖Ω‖L∞, ‖Γ‖L∞) such that, for all times
t, ‖Uλ(t)‖L2 ≤ eCt‖U0(t)‖L2.
(iii) If in addition curlH0, curlE0 ∈ L2(R3), then there is a constant C =
C(µ0, ε0, ‖Ω‖L∞, ‖Γ‖L∞, ‖ρ0‖L∞, ‖ curlH0‖L2 , ‖ curlE0‖L2) such that, for all
times t, ‖∂tu

λ(t)‖L2 ≤ C(1 + t).

We then show that the whole sequence (Uλ)λ>0 converges in C([0, T ], L2(R3))
for all T > 0.

Proposition 26 For all T > 0, the solution Uλ to (22) converges in C([0, T ],
L2(R3)) towards the unique U ∈ C([0, T ], B) solution to (21) in D′ with U0 as
initial data.

Proof:

To show that Uλ is a Cauchy sequence in C([0, T ], L2(R3)), consider the differ-
ence of systems (22) for Uλ and Uν , and take the scalar product in L2 of the
equations with Hλ −Hν, Eλ − Eν and ρλ − ρν , respectively. The u = (H,E)
equations yield

d

dt

(
‖√µ(Hλ −Hν)‖2

L2 + ‖
√
ε(Eλ − Eν)‖2

L2

)

=2i
∫

Tr (Γ[Ω, ρλ − ρν ])(Eλ − Eν)

− 2
∫

(curl(SλEλ − SνEν) · (Hλ −Hν)

+ 2
∫

(curl(SλHλ − SνHν) · (Eλ − Eν).

(23)

From Proposition 25, ∂tu
λ is bouded in L∞(0, T, L2), thus so are curlSλEλ

and curlSλHλ = ε∂tE
λ − iTr (Γ[Ω, ρλ]). Since Sλ strongly converges to the

identity as an operator on L2, we write Hλ − Hν = SλHλ − SνHν + oL2(1),
and the last two terms on the r.h.s. of (23) go to zero as λ, ν → ∞. The rest of
the estimates is standard, and passing to the limit in the system is immediate.

Uniqueness of the limit is obtained in the same way, with Sλ replaced by 1:
as in Proposition 1, energy estimates are obtained after mollification, using
Friedrich’s Lemma. �

Remark 27 In the case of constant coefficients µ and ε, we use the same
regularization as in (12), so that no bound on the curl of the fields is needed.
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4 Uniqueness of weak solutions

Let U and U ′ be two finite energy solutions to (7) with the same initial data.
The difference δU := U ′ − U is solution to a symmetric hyperbolic system

M(δU) = (lδF, δF ),

where δF = F 0(v′) − F 0(v) + (F 1(v′) − F 1(v))u+ F 1(v′)(u′ − u).
(24)

When the fields u belong to L∞(ΩT ), an energy estimate provides ‖δU(t)‖L2 ≤
eC(‖u‖L∞ )t‖δU(0)‖L2, which implies U ′ = U . Unfortunately, this a priori esti-
mate is false for general finite energy solution. It becomes true when cutting
off the high frequencies of u, and we control the cut-off error thanks to the H1

norm of u.

4.1 Proof of Theorem 12: propagation of H(curl) regularity

First note that for any u ∈ L2(R3,R3), the divergence free part π⊥u is in
H1 iff the curl of u belongs to L2. We use Maxwell’s equations to convert
space derivatives of the fields into time derivatives, and we control the latter
by energy estimates. Now, since the function v is already defined, we write
Maxwell’s equations as a linear system for u⊥ := Π⊥(u1, u2) (with L from (6)),

Lu⊥ = Π⊥Bu⊥ + Π⊥f, (25)

where B(t, x) = l(x)F 1(x, v(t, x)), f(t, x) = l(x)F (x, v(t, x),Π‖l(x)v(t, x)),

using the constraint (11) to get the forcing f . Thus, B is a 6× 6 matrix with
coefficients in C([0,+∞[, (L2 ∩ L∞)(R3)), and time derivatives in C([0,+∞[,
Lp(R3)) for all p ∈ [2,∞[. In the same way, f ∈ C([0,+∞[, (L2 ∩ L∞)(R3))
and ∂tf ∈ C([0,+∞[, Lp(R3)) for all p ∈ [2,∞[. Since the restriction of L
to the range of Π⊥ is symmetric hyperbolic, the Cauchy problem associated
with (25) and any initial data u⊥,0 = Πu⊥,0 ∈ L2(R3) has a unique solution
u⊥ = Π⊥u⊥ ∈ C([0,+∞[, L2(R3)).

Proposition 28 Let f, ∂tf ∈ C([0,+∞[, L2(R3)), B ∈ C([0,+∞[, L∞(R3))
and ∂tB ∈ C([0,+∞[, L3(R3)). Then, for all u⊥,0 = Πu⊥,0 ∈ H1(R3), the so-
lution u⊥ to the Cauchy problem associated with (25) belongs to C([0,+∞[,
H1(R3)). Furthermore, for all T > 0, there are constants K1 = K1(‖u⊥,0‖H1 ,
‖B‖L∞(ΩT ), ‖f‖W 1,∞([0,T ],L2))), K2 = K2(‖B‖L∞(ΩT ), ‖∂tB‖L∞([0,T ],L3))), such
that for all t ∈ [0, T ],

‖u⊥(t)‖H1 ≤ K1 +K2e
K2t(1 − e−K1t). (26)
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Proof: Fix T > 0. The classical fixed-point argument shows that u⊥ is the
limit, in C([0, T ], L2(R3)), of the sequence (un

⊥)n∈N defined by u0
⊥ = u⊥,0 and

un+1
⊥ = T un

⊥, where T y =: z is solution to Lz = Π⊥By + Π⊥f , z|t=0
= u⊥,0.

Begin with the inhomogeneous equation Lz = Π⊥f ∈ L1([0, T ], L2), and the
usual energy estimate

‖z(t)‖L2 ≤ ‖z(0)‖L2 + 2
∫ t

0
‖f(t′)‖L2dt′. (27)

Now, L = ∂t + iP (Dx), where the symbol of the Fourier multiplier P (Dx) has
eigenvalues ±|ξ| with constant multiplicities. Denote by Π± the associated
projections. The wave z splits up into

z = z+ + z−, where ẑ±(t, ξ) = e±it|ξ|Π±ẑ0(ξ) +
∫ t

0
e±i(t−t′)|ξ|Π±f̂(t′, ξ)dt′.

Since f ∈ C([0, T ], L2(R3)) and ∂tf ∈ C([0, T ], L2(R3)), integrating by parts
gives

1

i
∂̂xz±(t, ξ) =e±it|ξ|ξΠ±ẑ0(ξ)

± i
[
e±i(t−t′)|ξ|Π±f̂(t′, ξ)

]t
0
± i

∫ t

0
e±i(t−t′)|ξ| ξ

|ξ|Π±∂̂tf(t′, ξ)dt′,

from which we deduce

‖∂xz(t)‖L2 ≤ ‖∂xz(0)‖L2 + 2‖f‖C(L2) + 2
∫ t

0
‖∂tf(t′)‖L2dt′. (28)

Furthermore, the relation ∂tz = −iP (Dx)z + Π⊥f implies

‖∂tz(t)‖L2 ≤ C‖∂xz(t)‖L2 + ‖f(t)‖L2. (29)

When defining z by Lz = Π⊥By+ Π⊥f with y ∈ C([0, T ], H1)∩ C1([0, T ], L2),
according to (28) and (29), we recover a z in the same space, as soon as we
control ∂t(By) (By ∈ L1(L2) is immediate). But for a fixed t,

‖∂t(By)‖L2 ≤ ‖(∂tB)y‖L2 + ‖B∂ty‖L2

≤ ‖∂tB‖L3‖y‖L6 + ‖B‖L∞‖∂ty‖L2

≤ C‖∂tB‖L3‖∂xy‖L2 + ‖B‖L∞‖∂ty‖L2,

(30)

thanks to Gagliardo-Nirenberg-Sobolev’s inequality.

Estimates (27) to (30) show that T maps continuously C([0, T ], H1)∩C1([0, T ],
L2) into itself. In addition, when z ∈ C([0, T ], H1) is solution to z = T z (∈
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C1([0, T ], L2)), we have

‖z(t)‖H1 ≤ ‖z(0)‖H1+C(‖B‖L∞(Ωt), ‖∂tB‖L∞([0,t],L3)))
∫ t

0
‖z(t′)‖H1dt′

+ C(‖f‖L∞([0,t],L2)), ‖B‖L∞(Ωt), ‖∂tf‖L∞([0,t],L2))),

so that Gronwall’s Lemma implies (26).

Proceed in the same way with the difference un+1
⊥ − un

⊥ to get, for n ≥ 1,

‖∂t,x(u
n+1
⊥ − un

⊥)(t)‖L2 ≤ C
(
‖un

⊥ − un−1
⊥ ‖C([0,T ],L2)

+
∫ t

0
‖∂t,x(u

n
⊥ − un−1

⊥ )(t′)‖L2dt′
)
.

For T1 small enough (CT1 < 1/2, which depends on B, but not on the
initial data), this inequality implies that (un

⊥)n∈N is a Cauchy sequence in
C([0, T1], H

1) ∩ C1([0, T1], L
2). Iterate this on [T1, 2T1], [2T1, 3T1]. . . to obtain

convergence on the whole [0, T ]. �

4.2 Proof of Theorem 14: uniqueness of H(curl) solutions

Consider U and U ′, finite energy solutions to (7) with the same initial data,
such that curl uj, curl u′j belong to C([0,+∞[, L2(R3)) for j = 1, 2. The differ-
ence δU := U ′−U is solution to the symmetric hyperbolic system (24). Under
the assumptions of Theorem 14, there is j ∈ {1, 2} such that,

l3−jδF = 0, δF = δF (v, v′, uj, u
′
j).

We construct an L∞ approximation of the fields u (analogous to the ones of
[6], Lemma 6.2, and [5], Lemma 2.7).

Lemma 29 Under the assumptions of Theorem 14, let U be a finite energy
solution to (7) such that curl uj ∈ C([0,+∞[, L2(R3)), j = 1, 2. Then, for all
T > 0, λ ≥ e, there are uλ

j ∈ L∞(ΩT ), αλ ∈ L2(0, T ), βλ ∈ L∞(0, T ), C > 0
such that, for all t ∈ [0, T ],

‖uλ
j (t)‖L∞ ≤ αλ(t) + βλ(t) and ‖(uj − uλ

j )(t)‖L2 ≤ C/λ,

with ‖αλ‖L2 ≤ C
√

lnλ and ‖βλ‖L∞ ≤ C lnλ.

20



Before we give a proof of Lemma 29, we finish the proof of Theorem 14. From
(24), we have

‖δF (t)‖L2 ≤ C(‖v0‖L∞)
(
‖δv(t)‖L2 + (αλ + βλ)(t)‖δv(t)‖L2

+
C

λ
‖δv(t)‖L∞ + ‖δuj(t)‖L2

)

≤ C(‖v0‖L∞)
(
(1 + αλ + βλ)(t)‖δU(t)‖L2 + 1/λ

)
,

so that the energy estimate, together with Gronwall’s Lemma, gives

‖δU(t)‖L2 ≤ C
t

λ
eC
∫ t

0
(1+αλ+βλ)(t′)dt′ .

Since C
∫ t
0(1+αλ +βλ)(t

′)dt′ ≤ C(T ) lnλ with C(T )−→
T→0

0, we choose T0 small

enough (in order to have C(T0) < 1), and let λ go to infinity. This shows that
δU(t) vanishes on [0, T0]. Repeat this procedure on intervals of size T0 to get
the desired conclusion. �

Proof of Lemma 29:

First split uj into its irrotational and divergence free parts,

uj = π⊥uj + π‖uj.

The divergence free part is linked to v via the conservations (11): π‖uj =
π‖(ljv).

Approximation of the divergence free part. Here, we don’t need the specific
form of (7) required in Theorem 14. Since π‖ is a homogeneous Fourier multi-
plier of degree 0, it defines for all finite p a bounded endomorphism on Lp(R3),
with norm less than C0p (see [11]). Using l ∈ L∞ and the pointwise estimate
on v (Proposition 10(ii)),

‖π‖uj(t)‖Lp ≤ C ′
0 p ‖v(t)‖L2∩L∞ ≤ C ′

0 p ‖v(0)‖L2∩L∞. (31)

Then, define

uλ
j‖(t, x) :=

∣∣∣∣∣∣∣∣∣∣∣

uj‖(t, x) if |π‖uj(t, x)| ≤ C lnλ

(where the constant C has to be chosen),

0 otherwise,
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so that,

‖(π‖uj − uλ
j‖)(t)‖2

L2 =
∫

{|π‖uj |≥C lnλ
|π‖uj(t)|2dx

≤ (C lnλ)2−p‖π‖uj(t)‖p
Lp

≤ (C ′
0 p ‖v(0)‖L2∩L∞)p

(C lnλ)p−2
= (C lnλ)2λ

α ln

(
α

C′
0

C
‖v(0)‖

L2∩L∞

)
,

when setting p = α lnλ. Choosing α = 2, for C big enough, this last quantity
is less than C ′/λ2, for λ ≥ e. Thus, set

βλ(t) := ‖uλ
j‖‖L∞ ≤ C lnλ.

Approximation of the irrotational part.

Thanks to the assumptions F = F (x, v, uj) and l3−jF (x, v, uj) = 0, we get
from (7),

(∂2
t − ∆)π⊥uj = π⊥ljdF (v, uj) ·

(
F (v, uj), ljF (x, v, uj) + (−1)j curl u3−j

)

= π⊥lj
[
dF 0(v) · F (v, uj) + (dF 1(v) · F (v, uj))uj

+F 1(v)(ljF (x, v, uj) + (−1)j curl u3−j)
]
.

Since v ∈ C([0, T ], L2 ∩ L∞) and |F (v, uj)| ≤ C(1 + |uj|)|v| from (8), the
first term on the r.h.s. belong to C([0, T ], L2). The same holds for |uj|2, for
uj = π⊥uj + π‖uj ∈ C([0, T ], H1) + C([0, T ], L4) ↪→ C([0, T ], L4) by Sobolev’s
embedding. Finally,

‖�π⊥uj(t)‖L2 ≤ C(‖v0‖L∞)(1+ ‖uj(t)‖L2 + ‖Π⊥u(t)‖H1 + ‖π‖uj(t)‖2
L4), (32)

which is easily bounded (in C([0, T ])) in terms of T , ‖u|t=0
‖L2 , ‖Π⊥u|t=0

‖H1

and ‖v|t=0
‖L2∩L∞, thanks to the basic L2 estimate, Proposition 28 and (31),

respectively.

We now wish to use a Strichartz estimate to control ‖π⊥uj‖L2(L∞) in terms
of ‖�π⊥uj‖L1(L2). The usual estimates allow a Lr(Lp) control for finite p only
(see [4], [8], [7]). The limit case only holds when truncating frequencies, and
is proved in [6] (Proposition 6.3): using the cut-off of Section 3.1,

Proposition 30 There is a constant C > 0 such that, for all λ, T > 0 and
u ∈ C([0,+∞[, H2(R3)),

|Sλu‖L2([0,T ],L∞(R3)) ≤ C
√

ln(1 + λT )
(
‖∂t,xu(0)‖L2(R3) + ‖�u‖L1([0,T ],L2(R3))

)
.
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To end the proof, set

uλ
j := Sλπ⊥uj + uλ

j‖.

With αλ(t) := ‖Sλπ⊥uj(t)‖L∞(R3), we get ‖αλ‖L2 ≤ C
√

lnλ from (32) and
Proposition 30, and finally,

‖(π⊥uj − Sλπ⊥uj)(t)‖L2 ≤ ‖1{|ξ|≥λ}π̂⊥uj(t)‖L2

≤ ‖(1 + |ξ|2)1/2

(1 + λ2)1/2
1{|ξ|≥λ}π̂⊥uj(t)‖L2

≤ C

(1 + λ2)1/2
‖ curluj‖C([0,T ],L2).

�

5 Proof of Theorem 16: global smooth solutions

We consider initial data U0 ∈ Hs(R3) for s ≥ 2, and the associated maximal
smooth solution to (7), U ∈ C([0, T?[, H

s(R3)). As is well-known, if T? is finite,
then the L∞ (in space) norm of U(t) blows up as t goes to T?. Hence, arguing
by contradiction and assuming that T? is finite, it suffices to show that the H2

norm of U(t) remains bounded on [0, T?[, thanks to Sobolev’s inequality.

Furthermore, it is also a classical fact that, approximating U0 ∈ Hs(R3) by a
sequence of smooth initial data, one generates a sequence of smooth solutions
which forms a Cauchy sequence in C([0, T ], Hs(R3)) and converges to a solution
to (7), for all T > 0 for which the whole sequence is defined. As a consequence,
we only need to prove that solutions corresponding to smooth initial data have
H2 bounds which depend only on theH2 norm of the initial data. In the sequel,
we take U0 ∈ H3(R3).

We proceed by means of energy estimates for the equations satisfied by U , ∂xU
and ∂2

xU = (∂xi
∂xj

U)i,j. Since l ∈ W 2,∞, we only have to bound the derivatives
Gk(t, x) := ∂k

x(F (x, v(t, x), uj(t, x)), k = 0, 1, 2. Since U ∈ C([0, T?[, H
3(R3)),

the function ‖U(t)‖2
H2 is continuously differentiable on [0, T?[, and satisfies

d

dt

(
‖U(t)‖2

H2

)
≤ C

2∑

k=0

‖Gk(t)‖L2‖U(t)‖H2 . (33)

Direct computation, together with the pointwise estimate |v(t, x)| ≤ |v0(x)|,
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give

|G0| =|F (x, v, uj)| ≤ C(v0)(1 + |uj|)|v|,
|G1| =|∂xF + ∂vF · ∂xv + ∂uj

F · ∂xuj|
≤C(v0)((1 + |uj|)|v| + |∂xuj| + (1 + |uj|)|∂xv|),

|G2| ≤C(v0)
(
(1 + |uj|)(|v| + |∂xv| + |∂2

xv|)

+ |∂xuj| + |∂2
xuj| + |∂xuj||∂xv| + |∂xv|2|uj|

)
,

with a constant C(v0) depending on ‖v0‖L∞ only.

Next, the products of first order derivatives |∂xuj||∂xv| and |∂xv|2 are estimated
thanks to Gagliardo-Nirenberg’s inequality,

‖∂xw‖L4 ≤ C‖w‖1/2
L∞‖w‖1/2

H2 .

This shows that for k = 0, 1, 2, and t ∈ [0, T?[,

‖Gk(t)‖L2 ≤ C(v0)(1 + ‖uj(t)‖L∞)‖U(t)‖H2 .

There remains to estimate uj(t) in L∞. To this end, as before, we decompose
uj into its irrotational and divergence free parts.

The irrotational part π‖uj is estimated using π‖uj = π‖(ljv), and Judovic’s
inequality (see [13]) for the homogeneous Fourier multiplier π‖ of degree zero,
applied to w = ljv(t),

‖π‖w‖L∞ ≤ C‖w‖L∞ ln(2 + ‖w‖H2).

The divergence free part π⊥uj is split again into a low-frequency part and a
high-frequency part, using the cut-off of Section 3.1,

π⊥uj = Sλπ⊥uj + (1 − Sλ)π⊥uj.

The low-frequency part Sλπ⊥uj is controlled in L2(L∞) by the Strichartz es-
timate of Proposition 30, and thus in terms of T?, ‖u|t=0

‖L2, ‖Π⊥u|t=0
‖H1 and

‖v|t=0
‖L2∩L∞, as noticed in Section 4.2 (see (32)),

‖Sλπ⊥uj(t)‖L∞ ≤ C(U0, T?)α(t), α ∈ C([0, T?[), ‖α‖L2(0,T?) ≤
√

lnλ.

Concerning the high-frequency part, we simply have, for w = π⊥uj(t) and all
ε > 0,

‖(1 − Sλ)w‖L∞ ≤‖F((1 − Sλ)w)‖L1 ≤
∫

|ξ|≥λ
|ŵ|dξ

≤λ−(1/2−ε)
∫

|ξ|≥λ
|ξ|−(3/2+ε)|ξ|2|ŵ|dξ ≤ Cελ

−(1/2−ε)‖w‖H2.
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The value ε = 1/4 is admissible for what follows. Gathering the above esti-
mates and plugging them into (33), we get, for all λ ≥ e, with C = C(U0, T?),

d

dt

(
‖U(t)‖2

H2

)
≤ C

(
α(t) + ln(2 + ‖U(t)‖H2) + λ−1/4‖U(t)‖H2

)
‖U(t)‖H2 .

The weight λ−1/4 allows to balance the quadratic growth of ‖U(t)‖2
H2 , while

‖α‖L2(0,T?) ∼
√

lnλ does not blow up too fast. Precisely, choosing

λ = max
(
e, ‖U(t)‖4

H2

)
,

and setting φ(t) = ‖U(t)‖2
H2 , we have

φ ∈ C1([0, T?[, [0,+∞[), φ′ ≤ C(α + ln(2 +
√
φ))

√
φ

≤ C(α + ln(2 + φ))(2 + φ),

up to changing the constant C. In the same way, we may suppose that

‖α‖L2(0,T?) ≤
√

ln(2 + φ). As a consequence,

(ln(2 + φ))′ ≤ C(α+ ln(2 + φ)).

Then, Gronwall’s Lemma and Cauchy-Schwarz inequality imply

ln(2 + φ(t)) ≤ eCt ln(2 + φ(0)) + C
∫ t

0
eC(t−t′)α(t′)dt′

≤ eCT? ln(2 + φ(0)) + eCT?

√
C

2

√
ln(2 + φ(t)).

This quadratic inequality shows that
√

ln(2 + φ(t)) is bounded in terms of C,

T? and φ(0) only, and the proof is complete. �
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[7] H. Lindblad. Counterexamples to local existence for semilinear wave equations.
American Journal of Mathematics, 118, no. 1, 1–16, 1996.

[8] H. Lindblad and C.D. Sogge. On existence and scattering with minimal

regularity for semilinear wave equations. Journal of Functional Analysis, 130,
357–426, 1995.

[9] A.C. Newell and J.V. Moloney. Nonlinear optics. Addison-Wesley Publishing
Company Advanced Book Program, Redwood City, CA, 1992.

[10] R. Pantell and H. Puthoff. Fundamentals of quantum electronics. Wiley and
Sons Inc., N.Y., 1969.

[11] E. Stein. Singular integrals and differentiability properties of functions.
Princeton University Press, 1970.

[12] L. Tartar. H-measures, a new approach for studying homogeneization,

oscillations and concentrations effects in partial differential equations.
Proceedings of the Royal Society of Edinburgh, 115(A), 193–230, 1990.

[13] M. Taylor. Pseudodifferential operators and nonlinear optics. Birkhäuser,
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