Preprojective algebras, singularity categories
and orthogonal decompositions

Claire Amiot

Abstract In this note we use results of Minamoto [7] and Amiot-Iyama-Reiten
[1] to construct an embedding of the graded singularity category of certain graded
Gorenstein algebras into the derived category of coherent sheaves over its projec-
tive scheme. These graded algebras are constructed using the preprojective algebras
of d-representation infinite algebras as defined by Herschend-Iyama-Oppermann in
[5]. We relate this embedding to the construction of a semi-orthogonal decompo-
sition of the derived category of coherent sheaves over the projective scheme of a
Gorenstein algebra of parameter 1 described by Orlov in [9].

1 Introduction

To a commutative graded Noetherian ring R, Orlov associates in [9] the graded
singularity category Sing®" (R) defined as the Verdier localization of the bounded
derived category 2°(grR) by the full triangulated subcategory of perfect com-
plexes 2°(grprojR). This category is a graded analogue of the singularity cate-
gory Sing(R) of R which captures many properties of the singularities of the affine
scheme Spec(R). Associated to the graded algebra R, another natural triangulated
category to consider is the derived category 2°(qgrR) of graded tails of R, where
qgr R is the quotient of the abelian category gr R of finitely generated graded R-
modules by the subcategory fd gr R of finite dimensional ones. By a classical theo-
rem due to Serre, the category qgr R is equivalent to the category of coherent sheaves
of the projective scheme Proj(R). When the algebra R is Gorenstein, Orlov relates
these two categories. More precisely, when the Gorentein parameter of R is positive,
there is an embedding
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Sing®" (R)—— Qb(qgrR) . (1)

This applies in particular when R is the ring of homogenous coordinates of an hy-
persurface in PV which is a Fano variety.

More recently, in the context of non-commutative algebraic geometry, Minamoto
and Mori introduced the notion of quasi-Fano algebras. For such an algebra A, Mi-
namoto constructs in [7] a triangle equivalence between the derived category of
the module category Mod A and the derived category of graded tails QGrIT where
II is the tensor algebra over A of a certain A-bimodule. This applies in particular
to d-representation infinite algebras introduced in [5] and gives a triangle equiv-
alence linking any d-representation infinite algebra A with its associated (d + 1)-
preprojective algebra I1. In particular, when I is Noetherian we obtain an equiva-
lence

2°(modA) ——= PP (qgrI) . (2)

On the other hand, in the paper [1], for a d-representation infinite algebra A with
Noetherian preprojective algebra IT, we construct a triangle equivalence

P°(mod A /AeA) —— Sing®" (elle) , 3)

where e is an idempotent of A satisfying some finiteness conditions. These condi-
tions ensure in particular that the categories qgr I and qgrelle are equivalent and
that the restriction functor

Z°(mod A /AeA) —= Z2°(mod A)

is fully faithful. Therefore combining the equivalences (2) and (3) we obtain an
embedding

Sing®" (elTe)——= 2°(qgrelle) . 4)

The aim of this note is to show that this embedding is a particular case of Orlov’s
functor (1). This description in term of restriction functors gives a better insight of
different properties of the functor (1), and permits, for instance, to understand the
action of the degree shift functor of Sing®" (R) inside 2°(qgrR).

The plan of the paper is the following. We start in Section 2 by recalling the
definition of higher representation infinite algebras and their preprojective algebras
and we state Minamoto’s equivalence in this particular case. In Section 3, we recall
results of [1] and deduce an embedding of type (4). The main result of this note
is given in Section 4 where we prove that this embedding is the same as the one
contructed by Orlov. This permits to recover some results of [6]. Some examples
are treated in Section 5.
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Notation

Throughout this paper k is an algebraically closed field and all algebras are k-
algebras. We denote by D the k-dual, that is D(—) = Homy(—, k).

Let A be a k-algebra. All modules in this paper are right modules. We denote by
mod A the category of finitely presented modules, by projA the category of finitely
generated projective A-modules and by fdA the category of finite dimensional A-
modules. The envelopping algebra A°? ® A is denoted A°.

If A is a graded k-algebra, we denote by gr A the category of finitely presented
graded A-modules, and by grprojA the category of finitely generated projective
graded A-modules. For a graded module M = @,.; M; € gr A, we denote by M(1)
the graded module whose graded pieces are given by (M(1)); = M.

We denote by Z(—) the derived category and by 2°(—) the bounded derived
category.

2 d-Representation Infinite algebras and preprojective algebras

Definition 2.1. [5] Let d be a non-negative integer. A finite dimensional algebra A
is said to be d-representation infinite if the following two conditions hold:

. gl.di_mA <d
o {S;'A,ic N} CmodA,

L
where S, is the autoequivalence So [—d] = — @4 DA[—d] of Z°(mod A).

Definition 2.2. Let A be a d-representation infinite algebra. Its associated prepro-
Jective algebra (also called (d + 1)-preprojective algebra) is defined to be the tensor
algebra

IT=1I;(A) = TAExtS (DA,A).

The algebra IT is naturally positively graded. We recall that IT is called left graded
coherent if the category grII is closed under kernels (see also [5] for equivalent
definitions). We denote by qgr Il the quotient category of gr II by the torsion sub-
category fd gr IT of finite-dimensional graded IT-modules, by ¢ : gr II — qgr I1 the
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natural projection and by q : 2°(gr IT) — 2°(qgrIT) the associated left derived
functor. If M and N are in gr I1, by definition we have

Homggr 1(gM,gN) = }52‘0 Homg, 1(M>,,N),

where M> ), is the graded module ;> , M;.
Theorem 2.3. [7, Thm 3.12] Let A be a d-representation infinite algebra and I its
associated preprojective algebra. Assume that 11 is left graded coherent, then the

L
triangle functor q(— @ IT) : 2°(mod A) — 2°(qgr I) is a triangle equivalence.
Moreover there is a commutative diagram

L
P°(mod A) 4T P (qgrIT) . %)
Sdll i(l)
L
P°(mod A) 4T P°(qgr )

Remark 2.4. The preprojective algebras of d-representation infinite algebras satisfy
very nice properties. In particular they are bimodule (d + 1)-Calabi-Yau of Goren-
stein parameter 1, that is they have global dimension (d + 1) and there is an isomor-
phism

RHomype (IT, I1°)[d + 1] ~ II(1) in 2(gr IT°).

In fact, the preprojective construction gives a bijection between d-representation
infinite algebras and bimodule (d 4 1)-Calabi-Yau algebras of Gorenstein parameter
1 (cf [1, Thm 3.5] and [5, Thm 4.35]).

3 The singularity category of a Gorenstein algebra

Definition 3.1. [9] Let R = ©,>0R,, be a positively graded algebra. The singularity
category is defined to be the Verdier localization

Sing® (R) := 2°(grR)/ 7" (gr projR).
We denote by 7 : 2°(gr R) — Sing®" (R) the localization functor.

When R is Gorenstein, that is when the injective dimension of R is finite as right and
left R-module, then the singularity category can be interpreted as the stable category
of graded maximal Cohen-Macaulay R-modules [4].

Theorem 3.2. [1] Let A be a d-representation infinite algebra such that its prepro-
Jjective algebra I1 is Noetherian. Assume there exists an idempotent e in A such
that



Preprojective algebras and singularity categories 5

(a)dimy IT < oo where II := II /TIeIl;
(b)eA(1—¢) =0.

Then the functor given by the composition

L
—@plle

P°(mod A) Res. Z°(mod A) 2P (grelle) —== Sing®" (elle)

is a triangle equivalence, where A := A /AeA and the functor Res : 2°(mod A) —
P°(mod A) is the restriction functor. Moreover there is a commutative diagram

L
P (mod A) — A1) Ginoer (o1Te) ©6)
8, ‘l ) lm
E(*@AH@

P°(mod A) —————= Sing®" (elTe),

L
where S, is the autoequivalence — @, DA[—d] of 2°(mod A).
Combining Theorems 2.3 and 3.2 we get the following consequence.

Corollary 3.3. Under the hypotheses of Theorem 3.2 there is an embedding
Sing®" (elTe)——= 2°(qgrelle) .

If moreover the global dimension of the algebra eAe is finite, there is a recollement
of triangulated categories

Sing®" (elle) =—= 2°(qgrelle) =—= Z°(modeAe) .

Proof. First of all, notice that any graded Noetherian ring is left graded coherent,
therefore Theorem 2.3 applies in the setup of Theorem 3.2. Then we show that the
functor

grIl — grelle
M — Me

induces an equivalence qgr IT ~ qgr eIle. Indeed, the functor
— Qer1eell : grelle — grI1

induces an inverse since the natural map M @ IleIl — M is an isomorphism in
qgr I1 by hypothesis (a) of Theorem 3.2.

By assumption (b), the restriction functor Res : 2°(mod A) — Z°(mod A) is
fully faithful, hence we get an embedding
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Sing®" (elTe)— 2" (qgrelle) .

Finally, we have eA ~ eAe D eA (1 —e) ~ eAe as left eAe-module, so we have
L
Ae®epe A >~ Ae Rope eA ~ AeA. Therefore by Lemma 3.4 of [2], if the global
dimension of eAe is finite there is a recollement
Z°(mod A /AeA) == P°(mod A) =—= P*(mod eAe) ,
and thus a recollement

Sing®" (elTe) =—= 2°(qgrelle) =——= 2°(mod eAe) .

4 Orlov’s orthogonal decomposition

In this section, we recall Orlov’s construction of embeddings (1), for graded Goren-
stein algebras R = k@ R ® R, @ ... with positive Gorenstein parameter. Then we
prove the main result of this note which links this construction with the results of
[7] and [1].

Definition 4.1. A graded Noetherian algebra R =k P R; &Ry & ... is said to be
Gorenstein of parameter 1 if it has injective dimension (d 4 1) as left and right
module and if there is an isomorphism

RHomg(k,R)[d+1] ~ k(1) in 2°(mod R°P).

Theorem 4.2. [9, Thm 2.5] Let R=k® R BR> . .. be a positively graded algebra,
Noetherian and Gorenstein of parameter 1. Then for any i € 7 there exists a fully
faithful functor

®; : Sing® (R) — 2°(qgrR)

and a semi-orthogonal decomposition

7°(agrR) = (qR(—i), Pi(Sing®" (R))).

The aim of this section is to prove that the recollement produced in Corollary 3.3
is actually induced by one of the semi-orthogonal decomposition above.

Theorem 4.3. Let A be a d-representation infinite algebra such that its preprojec-
tive algebra I1 is Noetherian. Assume that there exists an idempotent e such that

(a)dimy IT < oo, where I1 := IT/Iell;

(b)eA(1—e) =0;

(c)eAe ~ k.

Then the graded algebra R := elle satisfies the hypothesis of Theorem 4.2 and we
have a commutative diagram
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PP(modA) —E= PP (modA) . 7

L L
”<®AH9)\L iq(@,\ﬂe)

Sing?' (R) — > 7" (qgr R)

Proof. The algebra R is Noetherian since for any right (resp. left) ideal 7 of R, ITI
(resp. III) is a right (resp. left) ideal of II. Moreover if I} C ... C I is a strictly
ascending chain of ideals in R, then so are 1[I C ... C I,II and II) C ... C I1I,.
Hence the noetherianity of IT implies the noetherianity of R.

We have Ry = ellpe = eAe = k.

Now we prove that R is Gorenstein of parameter 1. By Remark 2.4, the algebra
IT is bimodule (d + 1)-Calabi-Yau of Gorenstein parameter 1. Then by [1, Remark
2.7], we deduce an isomorphism

RHomge(R,R®)[d+ 1] ~R(1) in Z(grR°).

L L
Applying the functor — ®g Rp = ®grk we obtain the following isomorphisms in
2(grR°P ®Ry) = Z(gr RP):

L
k(l)[—d - 1] ~ RHompe (R,Re) ®Rr Ry
~ RHongp(@R(RO,RSp ®R)
~ RHomg(k,R).

Therefore we are in the setup of Theorem 4.2. In order to check that the diagram (7)
is commutative, we have to recall the construction of the functors &;. We use the
same notation as in [9] that we recall here for the convenience of the reader.

For i € Z we denote by gr ;R the full subcategory of gr R which consists of all
modules M € grR such that M, = 0 when p < i. We denote by & the category
2 (gr proj R), and by 2, the full subcategory of & generated by the free modules
R(p) with p > —i.

Orlov proves the existence of the following semi-orthogonal decompositions
(Lemmas 2.3 and 2.4 in [9])

Z°(grR) = (2°(gr=iR), P<i),  D°(gr 5;R) = (P, D)

and proves the equivalence Z(grR)/ & ~ Z°(gr »;R)/ P~;. Then the functor ®; is
given by the following composition

Sing®" (R) = Z(grR)/ 2 — = P°(gr oK)/ P>~ P~ —— 7°(grR) — > 7"(qgrR) .
More precisely, if X € 2°(gr R) then there exists a triangle

Y X X Y[1]
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in Z°(grR) with Y € Z_; and X; € Z°(gr»;R). Since P; C Z, X and X; are
isomorphic in the singularity category. Then there exists a triangle

X> X z X,[1]

where Z € &5; and X; € ~%+,;. The objects X and X, are isomorphic in the singu-
larity category. Then @;(7X) is defined to be q(X>). In particular if X € + 22, then
PDom(X)~q(X).

L
Now let X € 2°(mod A /AeA). The object X ©, ITe belongs to the thick sub-
category of 7°(grR) generated by (1 — e)ITe. For ¢ < 0, the space Homg, r((1 —
e)ITe,R({)) clearly vanishes since IT hence R are positively graded. Moreover we
have

Homg, r((1 —e)ITe,R) = Homg, r((1 —e)ITe,elTe)
= (elI(1—e))o
=eA(1—¢)=0 by assumption (b).

This means that (1 — e)ITe belongs to the category

TP 50 ={M € Z°(grR) | Homyp g, ) (M, R(£)) = 0,V¢ < 0}

L L L
and so does X ®, ITe. Therefore @y o (X ®4 I1e) = q(X ®, ITe) and the diagram
(7) is commutative.

The functor @y does not commute with the degree shift. Using diagrams (5) and
(6), we can deduce what is the degree shift action of the category Sing®" (R) inside
the category 2°(qgr R). More precisely we recover the following result.

Corollary 4.4. [6, Lemma 5.2.1] In the setup of Theorem 4.3, let M be an object in
Sing®" (R). Then we have

Py(M(1)) ~ Cone(RHomggr r(qR, Po(M) (1)) — Po(M)(1)).

Proof. Using the diagrams (7), (5) and (6), it is enough to understand the action of
the functor S, inside the category 2°(mod A). We denote by 6 a projective resolu-
tion of the object RHom, (DA, A) in 2°(mod A®), and by 8 a projective resolution
of the object RHom4 (DA, A) in 2°(mod A®). Then for N € 2°(mod A) we have
the following isomorphisms in 2°(mod A)
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S;'N =N, 6[d]
~NRAA®prOR4Ald] by [1, Lemma 4.2]
~N@j 0@, Ald]
~ Cone(N®, 0 ®) AeA - N®4 0)[d] induced by the inclusion AeA — A
~ Cone(S;lN ®pAeA — S;lN)
~ Cone(RHomy (eA,S;'N) @reA — S, 'N)

Now, we can translate this isomorphism using the commutative diagrams (7), (5)
and (6). And we obtain for any M € Sing®" (R)

) (M(1)) ~ Cone(RHomags z(q(eA ©1 ITe), Bo(M) (1)) &5 q(eA $4 ITe) — do(M)(1))
~ Cone(RHomggr r(qR, Po(M)(1)) @k qR — Po(M)(1)).

Using the previous description, it is also possible to describe for any i € Z the
functors @; defined by Orlov in terms of the categories 2°(mod A) and 2°(mod A).

Corollary 4.5. Under hypothesis and notations of Theorem 4.3, for any i € 7 there
is a commutative diagram

S7ioResoS!
2°(mod A) —2 o P°(mod A)
L L
JT(Q@AHE)l iq(®AHe)
Sing® (R) u 7°(qgrR)

Proof. Using the commutativity of the diagrams (7), (5) and (6), it is enough to
check that for any M € Sing® (R) we have ®;(M) ~ Py(M(—i))(i). Indeed one
immediately checks that if N € 25, then N(—i) € + %+, so

Do(aN (=) (i) = q(N(=0))(i) = q(N) = Pi(nN).

S Examples

In this section, d > 1 is an integer and we denote by S the polynomial algebra § =
k[Xo, ..., Xq4].
Let A be the d-Beilinson algebra, that is the algebra presented by the quiver

X0.0
0 X1,0 1

1 X0.d—1 —>
1
Xd,0 Xd,1

X1d—1——

Xdd—1 ——

with relations x; ¢1xj ¢ —x;j ¢41x;0 =0for £=0,...,d -2 and i,j = 0,...,d. This
algebra is a d-representation infinite algebra (cf Example 2.15 of [5]).
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Its associated preprojective algebra is the graded algebra IT given by the graded
quiver

% o xdii“"\

X0.1 X0.2
1 11 1 1,2 3 d—2
Xd,1 Xd,2

where deg(x; 4) = 1 for any i and deg(x;,) = 0 for any i and £ < d — 1 and with
relations x; o4 1Xj ¢ —x;j y1X0 =0 fori, j, 0 € Z/(d+1)Z.

Let e be the idempotent associated with the vertex 0. The algebra IT = IT/ITell
is presented by an acyclic quiver, so it is finite-dimensional. We also clearly have
eA(l —e) =0 and eAe = k. So we are in the setup of Theorem 4.3.

One easily checks that the algebra elle is isomorphic to the subalgebra of S
generated by the monomials of the form Hflzo Xia" where ) ;_o & = d + 1. Moreover,
using the fact that deg(x;,0Xi,,1 -..Xi,4) = 1 in IT for any i, ...,is, we deduce that
elle is isomorphic as graded ring to the (d 4 1)-Veronese algebra S(+1).

Therefore one has a triangle equivalence

2°(mod A) ~ 2P (qgrSH1)). (8)

By Serre’s theorem, [10] one has qgr R ~ coh(ProjR) if R is generated in degree 1
and Ry ~ k. So we have equivalences qgr S(*1) ~ coh(ProjS@+1)) ~ coh(ProjS) ~
cohP4. Therefore the equivalence (8) can be written

2°(mod A) ~ Z°(cohP?)

and we recover the triangle equivalence due to Beilinson [3].
The algebra A = A /AeA is presented by the quiver

Xo.1

Xl— 2 d—1

X041 —>
Xld—1—— d

Xd,| ——— Xd,d—1——

with relations x; ¢4.1x; ¢ — x; ¢4 1x; ¢ = 0. By Theorem 3.2 there is a triangle equiva-
lence
Sing8" (S@*H1)) ~ 2°(mod A)

and we deduce a recollement
Sing® (S(+1)) == 2"(cohP!) =——= 2" (modk) .

Note that for d = 1, one easily checks that the graded algebra s s isomorphic to
the graded algebra k[U,V,W]/(UW —V?) where deg(U) = deg(V) = deg(W) = 1.

X0d—1 ——
Xld-1—— d—1

Xd,d—1 ——
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Thus Y = Proj(S (2)) ~ P! can be seen as a Fano hypersurface of P? of degree 2. Then
we are in the setup of Theorem 3.11 (i) of [9], and the graded singularity category
of S?) is equivalent to the triangulated category of graded B-branes.
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