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Claire Amiot

Abstract In this note we use results of Minamoto [7] and Amiot-Iyama-Reiten
[1] to construct an embedding of the graded singularity category of certain graded
Gorenstein algebras into the derived category of coherent sheaves over its projec-
tive scheme. These graded algebras are constructed using the preprojective algebras
of d-representation infinite algebras as defined by Herschend-Iyama-Oppermann in
[5]. We relate this embedding to the construction of a semi-orthogonal decompo-
sition of the derived category of coherent sheaves over the projective scheme of a
Gorenstein algebra of parameter 1 described by Orlov in [9].

1 Introduction

To a commutative graded Noetherian ring R, Orlov associates in [9] the graded
singularity category Singgr (R) defined as the Verdier localization of the bounded
derived category Db(grR) by the full triangulated subcategory of perfect com-
plexes Db(grprojR). This category is a graded analogue of the singularity cate-
gory Sing(R) of R which captures many properties of the singularities of the affine
scheme Spec(R). Associated to the graded algebra R, another natural triangulated
category to consider is the derived category Db(qgrR) of graded tails of R, where
qgrR is the quotient of the abelian category grR of finitely generated graded R-
modules by the subcategory fd grR of finite dimensional ones. By a classical theo-
rem due to Serre, the category qgrR is equivalent to the category of coherent sheaves
of the projective scheme Proj(R). When the algebra R is Gorenstein, Orlov relates
these two categories. More precisely, when the Gorentein parameter of R is positive,
there is an embedding
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Singgr (R) �
� // Db(qgrR) . (1)

This applies in particular when R is the ring of homogenous coordinates of an hy-
persurface in PN which is a Fano variety.

More recently, in the context of non-commutative algebraic geometry, Minamoto
and Mori introduced the notion of quasi-Fano algebras. For such an algebra Λ , Mi-
namoto constructs in [7] a triangle equivalence between the derived category of
the module category ModΛ and the derived category of graded tails QGrΠ where
Π is the tensor algebra over Λ of a certain Λ -bimodule. This applies in particular
to d-representation infinite algebras introduced in [5] and gives a triangle equiv-
alence linking any d-representation infinite algebra Λ with its associated (d + 1)-
preprojective algebra Π . In particular, when Π is Noetherian we obtain an equiva-
lence

Db(modΛ)
∼ // Db(qgrΠ) . (2)

On the other hand, in the paper [1], for a d-representation infinite algebra Λ with
Noetherian preprojective algebra Π , we construct a triangle equivalence

Db(modΛ/ΛeΛ)
∼ // Singgr (eΠe) , (3)

where e is an idempotent of Λ satisfying some finiteness conditions. These condi-
tions ensure in particular that the categories qgrΠ and qgr eΠe are equivalent and
that the restriction functor

Db(modΛ/ΛeΛ) // Db(modΛ)

is fully faithful. Therefore combining the equivalences (2) and (3) we obtain an
embedding

Singgr (eΠe) �
� // Db(qgr eΠe) . (4)

The aim of this note is to show that this embedding is a particular case of Orlov’s
functor (1). This description in term of restriction functors gives a better insight of
different properties of the functor (1), and permits, for instance, to understand the
action of the degree shift functor of Singgr (R) inside Db(qgrR).

The plan of the paper is the following. We start in Section 2 by recalling the
definition of higher representation infinite algebras and their preprojective algebras
and we state Minamoto’s equivalence in this particular case. In Section 3, we recall
results of [1] and deduce an embedding of type (4). The main result of this note
is given in Section 4 where we prove that this embedding is the same as the one
contructed by Orlov. This permits to recover some results of [6]. Some examples
are treated in Section 5.
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Notation

Throughout this paper k is an algebraically closed field and all algebras are k-
algebras. We denote by D the k-dual, that is D(−) = Homk(−,k).

Let A be a k-algebra. All modules in this paper are right modules. We denote by
modA the category of finitely presented modules, by projA the category of finitely
generated projective A-modules and by fdA the category of finite dimensional A-
modules. The envelopping algebra Aop⊗A is denoted Ae.

If A is a graded k-algebra, we denote by grA the category of finitely presented
graded A-modules, and by gr projA the category of finitely generated projective
graded A-modules. For a graded module M =

⊕
i∈Z Mi ∈ grA, we denote by M(1)

the graded module whose graded pieces are given by (M(1))i = Mi+1.
We denote by D(−) the derived category and by Db(−) the bounded derived

category.

2 d-Representation Infinite algebras and preprojective algebras

Definition 2.1. [5] Let d be a non-negative integer. A finite dimensional algebra Λ

is said to be d-representation infinite if the following two conditions hold:

• gl.dimΛ ≤ d
• {S−i

d Λ , i ∈ N} ⊂modΛ ,

where Sd is the autoequivalence S◦ [−d] =−
L
⊗Λ DΛ [−d] of Db(modΛ).

Definition 2.2. Let Λ be a d-representation infinite algebra. Its associated prepro-
jective algebra (also called (d+1)-preprojective algebra) is defined to be the tensor
algebra

Π = Πd+1(Λ) := TΛExt
d
Λ (DΛ ,Λ).

The algebra Π is naturally positively graded. We recall that Π is called left graded
coherent if the category grΠ is closed under kernels (see also [5] for equivalent
definitions). We denote by qgrΠ the quotient category of grΠ by the torsion sub-
category fd grΠ of finite-dimensional graded Π -modules, by q : grΠ → qgrΠ the
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natural projection and by q : Db(grΠ)→ Db(qgrΠ) the associated left derived
functor. If M and N are in grΠ , by definition we have

Homqgr Π (qM,qN) = lim
p→∞

Homgr Π (M≥p,N),

where M≥p is the graded module
⊕

i≥p Mi.

Theorem 2.3. [7, Thm 3.12] Let Λ be a d-representation infinite algebra and Π its
associated preprojective algebra. Assume that Π is left graded coherent, then the

triangle functor q(−
L
⊗Λ Π) : Db(modΛ)−→Db(qgrΠ) is a triangle equivalence.

Moreover there is a commutative diagram

Db(modΛ)

S−1
d
��

q(−
L
⊗Λ Π) // Db(qgrΠ)

(1)
��

Db(modΛ)
q(−

L
⊗Λ Π) // Db(qgrΠ)

. (5)

Remark 2.4. The preprojective algebras of d-representation infinite algebras satisfy
very nice properties. In particular they are bimodule (d + 1)-Calabi-Yau of Goren-
stein parameter 1, that is they have global dimension (d+1) and there is an isomor-
phism

RHomΠ e(Π ,Π e)[d +1]'Π(1) in D(grΠ
e).

In fact, the preprojective construction gives a bijection between d-representation
infinite algebras and bimodule (d+1)-Calabi-Yau algebras of Gorenstein parameter
1 (cf [1, Thm 3.5] and [5, Thm 4.35]).

3 The singularity category of a Gorenstein algebra

Definition 3.1. [9] Let R =⊕p≥0Rp be a positively graded algebra. The singularity
category is defined to be the Verdier localization

Singgr (R) := Db(grR)/Db(gr projR).

We denote by π : Db(grR)→ Singgr (R) the localization functor.

When R is Gorenstein, that is when the injective dimension of R is finite as right and
left R-module, then the singularity category can be interpreted as the stable category
of graded maximal Cohen-Macaulay R-modules [4].

Theorem 3.2. [1] Let Λ be a d-representation infinite algebra such that its prepro-
jective algebra Π is Noetherian. Assume there exists an idempotent e in Λ such
that
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(a)dimk Π < ∞ where Π := Π/ΠeΠ ;
(b)eΛ(1− e) = 0.

Then the functor given by the composition

Db(modΛ)
Res. // Db(modΛ)

−
L
⊗Λ Πe // Db(gr eΠe) π // Singgr (eΠe)

is a triangle equivalence, where Λ :=Λ/ΛeΛ and the functor Res : Db(modΛ)→
Db(modΛ) is the restriction functor. Moreover there is a commutative diagram

Db(modΛ)
π(−

L
⊗Λ Πe) //

S−1
d
��

Singgr (eΠe)

(1)
��

Db(modΛ)
π(−

L
⊗Λ Πe) // Singgr (eΠe),

(6)

where Sd is the autoequivalence −
L
⊗Λ DΛ [−d] of Db(modΛ).

Combining Theorems 2.3 and 3.2 we get the following consequence.

Corollary 3.3. Under the hypotheses of Theorem 3.2 there is an embedding

Singgr (eΠe) �
� // Db(qgr eΠe) .

If moreover the global dimension of the algebra eΛe is finite, there is a recollement
of triangulated categories

Singgr (eΠe) // Db(qgr eΠe)oo
oo // Db(mod eΛe)oo

oo
.

Proof. First of all, notice that any graded Noetherian ring is left graded coherent,
therefore Theorem 2.3 applies in the setup of Theorem 3.2. Then we show that the
functor

grΠ → gr eΠe

M 7→Me

induces an equivalence qgrΠ ' qgr eΠe. Indeed, the functor

−⊗eΠe eΠ : gr eΠe−→ grΠ

induces an inverse since the natural map M⊗Π ΠeΠ → M is an isomorphism in
qgrΠ by hypothesis (a) of Theorem 3.2.

By assumption (b), the restriction functor Res : Db(modΛ)→ Db(modΛ) is
fully faithful, hence we get an embedding
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Singgr (eΠe) �
� // Db(qgr eΠe) .

Finally, we have eΛ ' eΛe⊕ eΛ(1− e) ' eΛe as left eΛe-module, so we have

Λe
L
⊗eΛe eΛ ' Λe⊗eΛe eΛ ' ΛeΛ . Therefore by Lemma 3.4 of [2], if the global

dimension of eΛe is finite there is a recollement

Db(modΛ/ΛeΛ) // Db(modΛ)oo
oo // Db(mod eΛe)oo

oo
,

and thus a recollement

Singgr (eΠe) // Db(qgr eΠe)oo
oo // Db(mod eΛe)oo

oo
.

4 Orlov’s orthogonal decomposition

In this section, we recall Orlov’s construction of embeddings (1), for graded Goren-
stein algebras R = k⊕R1⊕R2⊕ . . . with positive Gorenstein parameter. Then we
prove the main result of this note which links this construction with the results of
[7] and [1].

Definition 4.1. A graded Noetherian algebra R = k⊕ R1 ⊕ R2 ⊕ . . . is said to be
Gorenstein of parameter 1 if it has injective dimension (d + 1) as left and right
module and if there is an isomorphism

RHomR(k,R)[d +1]' k(1) in Db(modRop).

Theorem 4.2. [9, Thm 2.5] Let R= k⊕R1⊕R2⊕ . . . be a positively graded algebra,
Noetherian and Gorenstein of parameter 1. Then for any i ∈ Z there exists a fully
faithful functor

Φi : Singgr (R) // Db(qgrR)

and a semi-orthogonal decomposition

Db(qgrR) = 〈qR(−i),Φi(Sing
gr (R))〉.

The aim of this section is to prove that the recollement produced in Corollary 3.3
is actually induced by one of the semi-orthogonal decomposition above.

Theorem 4.3. Let Λ be a d-representation infinite algebra such that its preprojec-
tive algebra Π is Noetherian. Assume that there exists an idempotent e such that

(a)dimk Π < ∞, where Π := Π/ΠeΠ ;
(b)eΛ(1− e) = 0;
(c)eΛe' k.

Then the graded algebra R := eΠe satisfies the hypothesis of Theorem 4.2 and we
have a commutative diagram
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Db(modΛ)
Res //

π(−
L
⊗Λ Πe)

��

Db(modΛ)

q(−
L
⊗Λ Πe)

��
Singgr (R)

Φ0 // Db(qgrR)

. (7)

Proof. The algebra R is Noetherian since for any right (resp. left) ideal I of R, IΠ

(resp. Π I) is a right (resp. left) ideal of Π . Moreover if I1 ⊂ . . . ⊂ I` is a strictly
ascending chain of ideals in R, then so are I1Π ⊂ . . . ⊂ I`Π and Π I1 ⊂ . . . ⊂ Π I`.
Hence the noetherianity of Π implies the noetherianity of R.

We have R0 = eΠ0e = eΛe = k.
Now we prove that R is Gorenstein of parameter 1. By Remark 2.4, the algebra

Π is bimodule (d +1)-Calabi-Yau of Gorenstein parameter 1. Then by [1, Remark
2.7], we deduce an isomorphism

RHomRe(R,Re)[d +1]' R(1) in D(grRe).

Applying the functor −
L
⊗R R0 =

L
⊗Rk we obtain the following isomorphisms in

D(grRop⊗R0) = D(grRop):

k(1)[−d−1]' RHomRe(R,Re)
L
⊗R R0

' RHomRop
0 ⊗R(R0,R

op
0 ⊗R)

' RHomR(k,R).

Therefore we are in the setup of Theorem 4.2. In order to check that the diagram (7)
is commutative, we have to recall the construction of the functors Φi. We use the
same notation as in [9] that we recall here for the convenience of the reader.

For i ∈ Z we denote by gr≥iR the full subcategory of grR which consists of all
modules M ∈ grR such that Mp = 0 when p < i. We denote by P the category
Db(gr projR), and by P≥i the full subcategory of P generated by the free modules
R(p) with p≥−i.

Orlov proves the existence of the following semi-orthogonal decompositions
(Lemmas 2.3 and 2.4 in [9])

Db(grR) = 〈Db(gr≥iR),P<i〉, Db(gr≥iR) = 〈P≥i,
⊥P≥i〉

and proves the equivalence D(grR)/P 'Db(gr≥iR)/P≥i. Then the functor Φi is
given by the following composition

Singgr (R) = D(grR)/P ∼ // Db(gr≥iR)/P≥i ' ⊥P≥i
� � // Db(grR)

q // Db(qgrR) .

More precisely, if X ∈Db(grR) then there exists a triangle

Y // X // X1 // Y [1]
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in Db(grR) with Y ∈P<i and X1 ∈ Db(gr≥iR). Since P<i ⊂P , X and X1 are
isomorphic in the singularity category. Then there exists a triangle

X2 // X1 // Z // X2[1]

where Z ∈P≥i and X2 ∈ ⊥P≥i. The objects X and X2 are isomorphic in the singu-
larity category. Then Φi(πX) is defined to be q(X2). In particular if X ∈ ⊥P≥i then
Φi ◦π(X)' q(X).

Now let X ∈ Db(modΛ/ΛeΛ). The object X
L
⊗Λ Πe belongs to the thick sub-

category of Db(grR) generated by (1− e)Πe. For ` < 0, the space Homgr R((1−
e)Πe,R(`)) clearly vanishes since Π hence R are positively graded. Moreover we
have

Homgr R((1− e)Πe,R) = Homgr R((1− e)Πe,eΠe)

' (eΠ(1− e))0

= eΛ(1− e) = 0 by assumption (b).

This means that (1− e)Πe belongs to the category

⊥P≥0 = {M ∈Db(grR) | HomDb(gr R)(M,R(`)) = 0,∀`≤ 0}

and so does X
L
⊗Λ Πe. Therefore Φ0 ◦π(X

L
⊗Λ Πe) = q(X

L
⊗Λ Πe) and the diagram

(7) is commutative.

The functor Φ0 does not commute with the degree shift. Using diagrams (5) and
(6), we can deduce what is the degree shift action of the category Singgr (R) inside
the category Db(qgrR). More precisely we recover the following result.

Corollary 4.4. [6, Lemma 5.2.1] In the setup of Theorem 4.3, let M be an object in
Singgr (R). Then we have

Φ0(M(1))' Cone(RHomqgr R(qR,Φ0(M)(1))→Φ0(M)(1)).

Proof. Using the diagrams (7), (5) and (6), it is enough to understand the action of
the functor Sd inside the category Db(modΛ). We denote by θ a projective resolu-
tion of the object RHomΛ (DΛ ,Λ) in Db(modΛ e), and by θ a projective resolution
of the object RHomΛ (DΛ ,Λ) in Db(modΛ

e). Then for N ∈ Db(modΛ) we have
the following isomorphisms in Db(modΛ)
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S−1
d N ' N⊗Λ θ [d]

' N⊗Λ Λ ⊗Λ θ ⊗Λ Λ [d] by [1, Lemma 4.2]
' N⊗Λ θ ⊗Λ Λ [d]

' Cone(N⊗Λ θ ⊗Λ ΛeΛ → N⊗Λ θ)[d] induced by the inclusion ΛeΛ →Λ

' Cone(S−1
d N⊗Λ ΛeΛ → S−1

d N)

' Cone(RHomΛ (eΛ ,S−1
d N)⊗k eΛ → S−1

d N)

Now, we can translate this isomorphism using the commutative diagrams (7), (5)
and (6). And we obtain for any M ∈ Singgr (R)

Φ0(M(1))' Cone(RHomqgr R(q(eΛ
L
⊗Λ Πe),Φ0(M)(1))⊗k q(eΛ

L
⊗Λ Πe)→Φ0(M)(1))

' Cone(RHomqgr R(qR,Φ0(M)(1))⊗k qR→Φ0(M)(1)).

Using the previous description, it is also possible to describe for any i ∈ Z the
functors Φi defined by Orlov in terms of the categories Db(modΛ) and Db(modΛ).

Corollary 4.5. Under hypothesis and notations of Theorem 4.3, for any i ∈ Z there
is a commutative diagram

Db(modΛ)
S−i

d ◦Res◦Si
d //

π(−
L
⊗Λ Πe)

��

Db(modΛ)

q(−
L
⊗Λ Πe)

��
Singgr (R)

Φi // Db(qgrR)

Proof. Using the commutativity of the diagrams (7), (5) and (6), it is enough to
check that for any M ∈ Singgr (R) we have Φi(M) ' Φ0(M(−i))(i). Indeed one
immediately checks that if N ∈ ⊥P≥i, then N(−i) ∈ ⊥P≥0, so

Φ0(πN(−i))(i) = q(N(−i))(i) = q(N) = Φi(πN).

5 Examples

In this section, d ≥ 1 is an integer and we denote by S the polynomial algebra S =
k[X0, . . . ,Xd ].

Let Λ be the d-Beilinson algebra, that is the algebra presented by the quiver

0 1 2 d−1 d
x0,0x1,0

xd,0

x0,1x1,1

xd,1

x0,d−1x1,d−1

xd,d−1

with relations xi,`+1x j,`− x j,`+1xi,` = 0 for ` = 0, . . . ,d− 2 and i, j = 0, . . . ,d. This
algebra is a d-representation infinite algebra (cf Example 2.15 of [5]).
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Its associated preprojective algebra is the graded algebra Π given by the graded
quiver

1 1 3 d−2 d−1

0

x0,1x1,1

xd,1

x0,2x1,2

xd,2

x0,d−1x1,d−1

xd,d−1

x0,0 x1,0
xd,0

x0,dx1,d
xd,d

where deg(xi,d) = 1 for any i and deg(xi,`) = 0 for any i and ` ≤ d− 1 and with
relations xi,`+1x j,`− x j,`+1xi,` = 0 for i, j, ` ∈ Z/(d +1)Z.

Let e be the idempotent associated with the vertex 0. The algebra Π = Π/ΠeΠ

is presented by an acyclic quiver, so it is finite-dimensional. We also clearly have
eΛ(1− e) = 0 and eΛe = k. So we are in the setup of Theorem 4.3.

One easily checks that the algebra eΠe is isomorphic to the subalgebra of S
generated by the monomials of the form ∏

d
i=0 Xαi

i where ∑i=0 αi = d+1. Moreover,
using the fact that deg(xi0,0xi1,1 . . .xid ,d) = 1 in Π for any i0, . . . , id , we deduce that
eΠe is isomorphic as graded ring to the (d +1)-Veronese algebra S(d+1).

Therefore one has a triangle equivalence

Db(modΛ)'Db(qgr S(d+1)). (8)

By Serre’s theorem, [10] one has qgrR ' coh(ProjR) if R is generated in degree 1
and R0 ' k. So we have equivalences qgr S(d+1) ' coh(ProjS(d+1))' coh(ProjS)'
cohPd. Therefore the equivalence (8) can be written

Db(modΛ)'Db(cohPd)

and we recover the triangle equivalence due to Beilinson [3].
The algebra Λ = Λ/ΛeΛ is presented by the quiver

1 2 d−1 d
x0,1x1,1

xd,1

x0,d−1x1,d−1

xd,d−1

with relations xi,`+1x j,`− x j,`+1xi,` = 0. By Theorem 3.2 there is a triangle equiva-
lence

Singgr (S(d+1))'Db(modΛ)

and we deduce a recollement

Singgr (S(d+1)) // Db(cohPd)oo
oo // Db(mod k)oo

oo
.

Note that for d = 1, one easily checks that the graded algebra S(2) is isomorphic to
the graded algebra k[U,V,W ]/(UW −V 2) where deg(U) = deg(V ) = deg(W ) = 1.
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Thus Y = Proj(S(2))'P1 can be seen as a Fano hypersurface of P2 of degree 2. Then
we are in the setup of Theorem 3.11 (i) of [9], and the graded singularity category
of S(2) is equivalent to the triangulated category of graded B-branes.
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