Artinian-Noetherian

Exercise 1. Let M be a module and let $f \in \operatorname{End}_{A}(M)$.

1. Show that if M is Artinian and f is injective, then f is an automorphism.
2. Show that if M is Noetherian and f is surjective, then f is an automorphism.

Exercise 2. Let A be a Noetherian ring. The aim is to show that $A[X]$ is Noetherian (Hilbert's basis theorem). Let I be a left ideal of $A[X]$.

1. For any $n \in \mathbb{N}$, define I_{n} to be the set of $a \in A$ such that there exists a polynomial in I with $a X^{n}$ as term of higher degree. Show that the I_{n} form a ascending chain of finite type ideals of A, and denote by n_{0} an integer such that $I_{n_{0}}=I_{m}$ for any $m \geq n_{0}$.
2. For each $i \leq n_{0}$, denote by $\left\{a_{i, j}, j=1 \ldots, m_{i}\right\}$ a generating set of I_{i}, and $P_{i j}$ be a polynomial in I such that the non zero term of higher degree is $a_{i j} X^{i}$. Show that I is generated by the $P_{i j}$ and conclude.

Indecomposable and connected

Exercise 3. Let Q be a quiver. Show that if k has no zero divisor, then $k Q$ is connected if and only if Q is connected.

Exercise 4. Let Q be the quiver $1 \rightarrow 2 \rightarrow 3$. Prove that the following representations are indecomposable

$$
\begin{array}{ccc}
k \rightarrow 0 \rightarrow 0 & 0 \rightarrow k \rightarrow 0 & 0 \rightarrow 0 \rightarrow k \\
k=k \rightarrow 0 & 0 \rightarrow k=k & k=k=k
\end{array}
$$

Show that there are no other indecomposable representations up to isomorphism.

Exercise 5. Let k be a field. Is A a local algebra in the following cases?

1. $A=\mathcal{T}_{n}(k)$;
2. $A=\left\{X \in \mathcal{T}_{n}(k), X_{i i}=X_{j j} \forall i, j\right\}$?

Simple and composition series

Exercise 6. 1. Let Q be a quiver without any oriented cycles. Show that the only simple representations are the $\left(S_{i}\right)_{i \in Q_{0}}$ where $\left(S_{i}\right)_{i}=k$ and $\left(S_{i}\right)_{j}=0 i \neq j$. Is it true if Q has oriented cycles ?
2. Let A be a Noetherian and Artinian algebra. Show that there are finitely many isomorphism classes of simples. Is it true if A is assumed to be only Noetherian?

Exercise 7. What are the composition series of $k Q e_{1}$ where Q is the following quiver?

Show that if Q is a quiver without oriented cycles and V is a representation of Q, then $\ell(V)=\operatorname{dim}_{k} V$ and the simple S_{i} appears exactly $\operatorname{dim} V_{i}$ times as a decomposition factor of V.

Exercise 8. Let $A=\mathcal{M}_{2}(\mathbb{R})$.

1. Show that A has a unique simple module up to isomorphism. What is the length of a composition series for A ?
2. Find an infinite family of composition series for A.

Semi-simple

Exercise 9. Let M be a A-module. Show that the following facts are equivalent.

1. M is semi-simple;
2. for any monomorphism $j: L \rightarrow M$ and any morphism $f: L \rightarrow L^{\prime}$, there exists a morphism $f^{\prime}: M \rightarrow L^{\prime}$ such that $f^{\prime} j=f$.
3. for any epimorphism $p: M \rightarrow N$ and any morphism $g: N^{\prime} \rightarrow N$ there exists a morphism $g^{\prime}: N^{\prime} \rightarrow M$ such that $p g^{\prime}=g$.

Exercise 10. Let k be a field, $G=\mathfrak{S}_{3}$, and $\rho: G \rightarrow \mathrm{GL}\left(k^{3}\right)$ be the representation acting by permuting the coordinates.

1. If char $k \neq 3$, decompose ρ into a sum of irreducible representations.
2. Show that ρ is not semi-simple if $\operatorname{char} k=3$.

Exercise 11. Determine how many isomorphism classes of 8-dimensional semi-simple algebras over \mathbb{C}.

Deduce that there exists non isomorphic groups G and G^{\prime} with $k G \simeq k G^{\prime}$.

