Artinian-Noetherian

Exercise 1. Let M be a module and let $f \in \operatorname{End}_A(M)$.

- 1. Show that if M is Artinian and f is injective, then f is an automorphism.
- 2. Show that if M is Noetherian and f is surjective, then f is an automorphism.

Exercise 2. Let A be a Noetherian ring. The aim is to show that A[X] is Noetherian (Hilbert's basis theorem). Let I be a left ideal of A[X].

- 1. For any $n \in \mathbb{N}$, define I_n to be the set of $a \in A$ such that there exists a polynomial in I with aX^n as term of higher degree. Show that the I_n form a ascending chain of finite type ideals of A, and denote by n_0 an integer such that $I_{n_0} = I_m$ for any $m \ge n_0$.
- 2. For each $i \leq n_0$, denote by $\{a_{i,j}, j = 1, ..., m_i\}$ a generating set of I_i , and P_{ij} be a polynomial in I such that the non zero term of higher degree is $a_{ij}X^i$. Show that I is generated by the P_{ij} and conclude.

Indecomposable and connected

Exercise 3. Let Q be a quiver. Show that if k has no zero divisor, then kQ is connected if and only if Q is connected.

Exercise 4. Let Q be the quiver $1 \rightarrow 2 \rightarrow 3$. Prove that the following representations are indecomposable

$$\begin{array}{ll} k \rightarrow 0 \rightarrow 0 & 0 \rightarrow k \rightarrow 0 & 0 \rightarrow 0 \rightarrow k \\ k = k \rightarrow 0 & 0 \rightarrow k = k & k = k = k \end{array}$$

Show that there are no other indecomposable representations up to isomorphism.

Exercise 5. Let k be a field. Is A a local algebra in the following cases?

1.
$$A = \mathcal{T}_n(k);$$

2. $A = \{X \in \mathcal{T}_n(k), X_{ii} = X_{jj} \forall i, j\}$?

Simple and composition series

- **Exercise 6.** 1. Let Q be a quiver without any oriented cycles. Show that the only simple representations are the $(S_i)_{i \in Q_0}$ where $(S_i)_i = k$ and $(S_i)_j = 0$ $i \neq j$. Is it true if Q has oriented cycles ?
 - 2. Let A be a Noetherian and Artinian algebra. Show that there are finitely many isomorphism classes of simples. Is it true if A is assumed to be only Noetherian ?

Exercise 7. What are the composition series of kQe_1 where Q is the following quiver ?

Show that if Q is a quiver without oriented cycles and V is a representation of Q, then $\ell(V) = \dim_k V$ and the simple S_i appears exactly $\dim V_i$ times as a decomposition factor of V.

Exercise 8. Let $A = \mathcal{M}_2(\mathbb{R})$.

- 1. Show that A has a unique simple module up to isomorphism. What is the length of a composition series for A?
- 2. Find an infinite family of composition series for A.

Semi-simple

Exercise 9. Let M be a A-module. Show that the following facts are equivalent.

- 1. M is semi-simple;
- 2. for any monomorphism $j: L \to M$ and any morphism $f: L \to L'$, there exists a morphism $f': M \to L'$ such that f'j = f.
- 3. for any epimorphism $p: M \to N$ and any morphism $g: N' \to N$ there exists a morphism $g': N' \to M$ such that pg' = g.

Exercise 10. Let k be a field, $G = \mathfrak{S}_3$, and $\rho : G \to \mathrm{GL}(k^3)$ be the representation acting by permuting the coordinates.

- 1. If chark \neq 3, decompose ρ into a sum of irreducible representations.
- 2. Show that ρ is not semi-simple if chark = 3.

Exercise 11. Determine how many isomorphism classes of 8-dimensional semi-simple algebras over \mathbb{C} .

Deduce that there exists non isomorphic groups G and G' with $kG \simeq kG'$.