Algebras

Exercise 1. Let k be a commutative ring. Show that

$$
A:=\left\{\left(\begin{array}{lll}
a & 0 & 0 \\
0 & b & 0 \\
c & d & e
\end{array}\right), a, b, c, d, e \in k\right\}
$$

is a k-algebra.

Exercise 2. Let k be a field and A be a finite dimensional k-algebra. We consider the map $\phi: A \rightarrow \operatorname{End}_{k}(A)$ sending $a \in A$ to $\varphi_{a}: b \mapsto a b$.

1. Show that ϕ is an injective algebra morphism.
2. Deduce that any finite dimensional k-algebra is the subalgebra of a matrix algebra.
3. Construct the corresponding morphism for $\mathbb{C Z}_{2}$.
4. Show that $\mathbb{C Z}_{2}$ is isomorphic to \mathbb{C}^{2} and conclude.

Exercise 3. A quiver (=oriented graph) Q is the data of two finite sets Q_{0} (the vertices) and Q_{1} (the arrows) and two maps $s, t: Q_{1} \rightarrow Q_{0}$ (source and target). A path on the quiver Q is either

- a concatenation of arrows $p=a_{n} \ldots a_{1}$ with $s\left(a_{i+1}\right)=t\left(a_{i}\right)$. Then we define $s(p):=s\left(a_{1}\right)$ and $t(p):=t\left(a_{n}\right)$.
- a element e_{i} for each $i \in Q_{0}$ with $s\left(e_{i}\right)=t\left(e_{i}\right)=i$ called a trivial path.

Let k be a unital commutative ring. The path algebra $k Q$ on Q is defined to be the free k-module generated by the paths, and whose multiplication is defined by concatenation of paths extended by linearity.

1. Describe Q_{0}, Q_{1}, s and t for

$$
Q:=1 \xrightarrow{a} 2 \xrightarrow{b} 3
$$

2. Show that $k Q$ is isomorphic to $\mathcal{T}_{3}(k)$ the subalgebra of upper triangular 3×3 matrices.
3. Let Q be the quiver with $\left|Q_{0}\right|=\left|Q_{1}\right|=1$. Show the $k Q$ is isomorphic to $k[X]$.
4. Find a quiver Q such that the algebra A defined in Exercise 1 is isomorphic to $k Q$.

Exercise 4. Let A be a k-algebra and M be a A - A-bimodule. We consider the k-module $A \oplus M$ and define a multiplication

$$
(a, m) \cdot\left(a^{\prime}, m^{\prime}\right):=\left(a a^{\prime}, a m^{\prime}+m a^{\prime}\right) .
$$

1. Show that this makes $A \oplus M$ a k-algebra.
2. Show that the canonical maps $\iota: A \rightarrow A \oplus M$ and $\pi: A \oplus M \rightarrow A$ are algebra morphisms.
3. Show that $\left\{0_{A}\right\} \oplus M$ is a two-sided ideal of $A \oplus M$.
4. What is $A \oplus M$ for $A=k$ and $M=k$?

Exercise 5. Let k be an algebraically closed field. Let A be a k-algebra of dimension 2 .

1. Let x be an element of A which is not in vect $\left(1_{A}\right)$. Show that there exists a unique algebra morphism $k[X] \rightarrow A$ sending X to x.
2. Considering its kernel show that any 2-dimensional algebra is isomorphic to $k[X] /(X-$ $\alpha)(X-\beta)$ for some α, β in k.
3. Deduce that A is isomorphic to $k[X] /\left(X^{2}\right)$ or to $k[X] /\left(X^{2}-1\right)$. Are these two algebras isomorphic?
4. To which of these is k^{2} isomorphic to ?
5. Same question for $\left(\begin{array}{ll}a & b \\ 0 & a\end{array}\right)$.

Modules

Exercise 6. 1. For N, N^{\prime} submodules of M. Show that there is a canonical isomorphism

$$
N /\left(N \cap N^{\prime}\right) \simeq\left(N+N^{\prime}\right) / N^{\prime} .
$$

2. For $M^{\prime \prime} \subset M^{\prime} \subset M$ modules, show that there is a canonical isomorphism

$$
\left(M / M^{\prime \prime}\right) /\left(M^{\prime} / M^{\prime \prime}\right) \simeq M / M^{\prime} .
$$

3. If $f: M \rightarrow N$ is a morphism and N^{\prime} is a submodule of N, show that $f^{-1}\left(N^{\prime}\right)$ is a submodule of M and that f induces an isomorphism

$$
M / f^{-1}\left(N^{\prime}\right) \simeq \operatorname{Imf} / \mathrm{N}^{\prime} \cap \operatorname{Imf}
$$

Exercise 7. Let p be a prime number and $n \in \mathbb{Z}$. Define $f: \mathbb{Z}_{p^{2}} \rightarrow \mathbb{Z}_{p^{2}}$ to be the multiplication by n. Compute the kernel and the cokernel of f depending on the value of n.

Exercise 8. Let $A=\mathcal{M}_{n}(k)$, and let $M=k^{n}$ be the A-module defined by left multiplication.

1. Show that M has no trivial submodules.
2. Let $B:=\mathcal{T}_{n}^{+}(k)$ be the subalgebra of A of upper triangular matrices. And let ${ }_{B} M$ the restriction of the module M. Determine all the submodules of M.
3. For each $X \subset Y \subset M$, determine the structure of the quotient Y / X.

Exercise 9. Let k be a field. For M be $k[X]$-module denote by $\rho_{M}: k[X] \rightarrow \operatorname{End}_{k}(M)$ the corresponding algebra map.

1. Show that two a finite dimensional $k[X]$-modules M and N are isomorphic if and only if the endomorphisms $\rho_{M}(X)$ and $\rho_{N}(X)$ are conjugate.
2. Deduce that for any n, there are infinitely isomorphism classes of $k[X]$-modules of dimension n.
3. Describe the isomorphism classes in the case $n=2$.

Hom and \otimes

Exercise 10. Let k be a field and M and N be k-vector spaces.

1. Show that there exists an isomorphism $\operatorname{Bilin}_{k}(M \times N, P) \simeq \operatorname{Hom}_{k}\left(M \otimes_{k} N, P\right)$.
2. Show that if M and N are finite dimensional, we have $\operatorname{dim}_{k} M \otimes_{k} N=\operatorname{dim}_{k}(M) \operatorname{dim}_{k}(N)$.
3. Denote by $M^{*}=\operatorname{Hom}_{k}(M, k)$ the k-dual. Show that there exists an isomorphism $\operatorname{Hom}_{k}(M, N) \simeq$ $M^{*} \otimes_{k} N$ of M and N are finite dimensional.

Exercise 11. Compute $\mathbb{Z}_{m} \otimes_{\mathbb{Z}} \mathbb{Z}_{n}$.

Exercise 12. Let G be a group k be a field and $\left(V, \rho_{V}\right)$ and (W, ρ_{W}) be representations. We define a structure of representation on $\operatorname{Hom}_{k}(V, W)$ by

$$
g . f=\rho_{W}(g) \circ f \circ \rho_{V}(g)^{-1}
$$

Traduce this structure in terms of $k G$-modules. Can we generalize this construction for any algebra A ?

Exercise 13. Let M be a A-module.

1. Show that $M \otimes_{k} M$ has a natural structure of $A \otimes_{k} A$-module. Deduce its natural A-module structure induced by the diagonal embedding $A \rightarrow A \otimes_{k} A$.
2. Show that $\tau: M \otimes_{k} M \rightarrow M \otimes_{k} M$ defined by $\tau(x \otimes y)=y \otimes x$ is a A-module morphism.
3. Defining $S M:=\operatorname{Ker}\left(\tau-\operatorname{Id}_{\mathrm{M}}\right)$ and $\Lambda M:=\operatorname{Ker}\left(\tau+\operatorname{Id}_{M}\right)$. Show that if k is a field of characteristic different from 2 there is an isomorphism $M=S M \oplus \Lambda M$.

Exercise 14. Let k be a commutative ring and A be a k-algebra. Show the following isomorphism of k-algebras $\mathcal{M}_{n}(k) \otimes_{k} A \simeq \mathcal{M}_{n}(A)$.

Exercise 15. Let M be a A-module. Assume that N is a submodule of M which is finitely generated and such that M / N is finitely generated. Show that M is finitely generated.

