Fall 2020

Algebras and Modules

Algebras

Exercise 1. Let k be a commutative ring. Show that

$$A := \left\{ \begin{pmatrix} a & 0 & 0 \\ 0 & b & 0 \\ c & d & e \end{pmatrix}, \ a, b, c, d, e \in k \right\}$$

is a k-algebra.

Exercise 2. Let k be a field and A be a finite dimensional k-algebra. We consider the map $\phi: A \to \operatorname{End}_k(A)$ sending $a \in A$ to $\varphi_a: b \mapsto ab$.

- 1. Show that ϕ is an injective algebra morphism.
- 2. Deduce that any finite dimensional k-algebra is the subalgebra of a matrix algebra.
- 3. Construct the corresponding morphism for \mathbb{CZ}_2 .
- 4. Show that $\mathbb{C}\mathbb{Z}_2$ is isomorphic to \mathbb{C}^2 and conclude.

Exercise 3. A quiver (=oriented graph) Q is the data of two finite sets Q_0 (the vertices) and Q_1 (the arrows) and two maps $s, t : Q_1 \to Q_0$ (source and target). A path on the quiver Q is either

- a concatenation of arrows $p = a_n \dots a_1$ with $s(a_{i+1}) = t(a_i)$. Then we define $s(p) := s(a_1)$ and $t(p) := t(a_n)$.
- a element e_i for each $i \in Q_0$ with $s(e_i) = t(e_i) = i$ called a trivial path.

Let k be a unital commutative ring. The path algebra kQ on Q is defined to be the free k-module generated by the paths, and whose multiplication is defined by concatenation of paths extended by linearity.

1. Describe Q_0, Q_1, s and t for

$$Q := 1 \xrightarrow{a} 2 \xrightarrow{b} 3$$

- 2. Show that kQ is isomorphic to $\mathcal{T}_3(k)$ the subalgebra of upper triangular 3×3 matrices.
- 3. Let Q be the quiver with $|Q_0| = |Q_1| = 1$. Show the kQ is isomorphic to k[X].
- 4. Find a quiver Q such that the algebra A defined in Exercise 1 is isomorphic to kQ.

Exercise 4. Let A be a k-algebra and M be a A-A-bimodule. We consider the k-module $A \oplus M$ and define a multiplication

$$(a, m).(a', m') := (aa', am' + ma').$$

- 1. Show that this makes $A \oplus M$ a k-algebra.
- 2. Show that the canonical maps $\iota: A \to A \oplus M$ and $\pi: A \oplus M \to A$ are algebra morphisms.
- 3. Show that $\{0_A\} \oplus M$ is a two-sided ideal of $A \oplus M$.
- 4. What is $A \oplus M$ for A = k and M = k?

Exercise 5. Let k be an algebraically closed field. Let A be a k-algebra of dimension 2.

- 1. Let x be an element of A which is not in $vect(1_A)$. Show that there exists a unique algebra morphism $k[X] \to A$ sending X to x.
- 2. Considering its kernel show that any 2-dimensional algebra is isomorphic to $k[X]/(X \alpha)(X \beta)$ for some α, β in k.
- 3. Deduce that A is isomorphic to $k[X]/(X^2)$ or to $k[X]/(X^2-1)$. Are these two algebras isomorphic ?
- 4. To which of these is k^2 isomorphic to ?
- 5. Same question for $\begin{pmatrix} a & b \\ 0 & a \end{pmatrix}$.

Modules

Exercise 6. 1. For N, N' submodules of M. Show that there is a canonical isomorphism

$$N/(N \cap N') \simeq (N + N')/N'.$$

2. For $M'' \subset M' \subset M$ modules, show that there is a canonical isomorphism

$$(M/M'')/(M'/M'') \simeq M/M'.$$

3. If $f: M \to N$ is a morphism and N' is a submodule of N, show that $f^{-1}(N')$ is a submodule of M and that f induces an isomorphism

$$M/f^{-1}(N') \simeq \mathrm{Im}f/\mathrm{N}' \cap \mathrm{Im}f.$$

Exercise 7. Let p be a prime number and $n \in \mathbb{Z}$. Define $f : \mathbb{Z}_{p^2} \to \mathbb{Z}_{p^2}$ to be the multiplication by n. Compute the kernel and the cokernel of f depending on the value of n.

Exercise 8. Let $A = \mathcal{M}_n(k)$, and let $M = k^n$ be the A-module defined by left multiplication.

- 1. Show that M has no trivial submodules.
- 2. Let $B := \mathcal{T}_n^+(k)$ be the subalgebra of A of upper triangular matrices. And let $_BM$ the restriction of the module M. Determine all the submodules of M.
- 3. For each $X \subset Y \subset M$, determine the structure of the quotient Y/X.

Exercise 9. Let k be a field. For M be k[X]-module denote by $\rho_M : k[X] \to \operatorname{End}_k(M)$ the corresponding algebra map.

- 1. Show that two a finite dimensional k[X]-modules M and N are isomorphic if and only if the endomorphisms $\rho_M(X)$ and $\rho_N(X)$ are conjugate.
- 2. Deduce that for any n, there are infinitely isomorphism classes of k[X]-modules of dimension n.
- 3. Describe the isomorphism classes in the case n = 2.

Hom and \otimes

Exercise 10. Let k be a field and M and N be k-vector spaces.

- 1. Show that there exists an isomorphism $\operatorname{Bilin}_k(M \times N, P) \simeq \operatorname{Hom}_k(M \otimes_k N, P)$.
- 2. Show that if M and N are finite dimensional, we have $\dim_k M \otimes_k N = \dim_k(M) \dim_k(N)$.
- 3. Denote by $M^* = \operatorname{Hom}_k(M, k)$ the k-dual. Show that there exists an isomorphism $\operatorname{Hom}_k(M, N) \simeq M^* \otimes_k N$ of M and N are finite dimensional.

Exercise 11. Compute $\mathbb{Z}_m \otimes_{\mathbb{Z}} \mathbb{Z}_n$.

Exercise 12. Let G be a group k be a field and (V, ρ_V) and (W, ρ_W) be representations. We define a structure of representation on $\operatorname{Hom}_k(V, W)$ by

$$g.f = \rho_W(g) \circ f \circ \rho_V(g)^{-1}.$$

Traduce this structure in terms of kG-modules. Can we generalize this construction for any algebra A?

Exercise 13. Let M be a A-module.

- 1. Show that $M \otimes_k M$ has a natural structure of $A \otimes_k A$ -module. Deduce its natural A-module structure induced by the diagonal embedding $A \to A \otimes_k A$.
- 2. Show that $\tau: M \otimes_k M \to M \otimes_k M$ defined by $\tau(x \otimes y) = y \otimes x$ is a A-module morphism.
- 3. Defining $SM := \text{Ker}(\tau \text{Id}_M)$ and $\Lambda M := \text{Ker}(\tau + \text{Id}_M)$. Show that if k is a field of characteristic different from 2 there is an isomorphism $M = SM \oplus \Lambda M$.

Exercise 14. Let k be a commutative ring and A be a k-algebra. Show the following isomorphism of k-algebras $\mathcal{M}_n(k) \otimes_k A \simeq \mathcal{M}_n(A)$.

Exercise 15. Let M be a A-module. Assume that N is a submodule of M which is finitely generated and such that M/N is finitely generated. Show that M is finitely generated.