Exercise 1. Let A and B be k-algebras. Let M be a A - B-bimodule, let N be a right B-module and P be a left A-module.

1. Show that

$$
\begin{aligned}
F_{M, P}: \operatorname{Hom}_{B^{\text {op }}}(M, N) \otimes_{A} P & \longrightarrow \operatorname{Hom}_{B^{\text {op }}}\left(\operatorname{Hom}_{A}(P, M), N\right) \\
\varphi \otimes p & \longmapsto(f \mapsto \varphi \circ f(p))
\end{aligned}
$$

is a well defined k-linear map.
2. Show that the map $F_{M, P}$ is functorial in M and P.
3. Show that if N is injective and P is finitely presented, then $F_{M, P}$ is an isomorphism.

For $M \in \operatorname{Mod} A$ we denote by $M^{\wedge}:=\operatorname{Hom}_{\mathbb{Z}}(M, \mathbb{Q} / \mathbb{Z}) \in \operatorname{Mod} A^{\text {op }}$ the Pontrijagin dual of M.
4. Let $X \rightarrow Y$ be a A-linear map. Show that it is surjective if and only if $X^{\wedge} \rightarrow Y^{\wedge}$ is injective.
5. Deduce that any finitely presented flat module is projective.

Exercise 2. Let A be a k-algebra.

1. Let $0 \longrightarrow X \xrightarrow{u} Y \xrightarrow{v} Z \longrightarrow 0$ be a short exact sequence of A-modules. Assume that there are two short exact sequences

$$
0 \longrightarrow P_{1} \xrightarrow{f} P_{0} \xrightarrow{f^{\prime}} Z \longrightarrow 0 \quad 0 \longrightarrow Q_{1} \xrightarrow{g} Q_{0} \xrightarrow{g^{\prime}} X \longrightarrow 0
$$

with $P_{0}, P_{1}, Q_{0}, Q_{1}$ projective modules.
(a) Show that there exists a surjective map $P_{0} \oplus Q_{0} \rightarrow Y$.
(b) Show that there exists a map $h: P_{1} \rightarrow Q_{0}$ such that the sequence

$$
0 \longrightarrow P_{1} \oplus Q_{1} \xrightarrow{\left(\begin{array}{cc}
g & 0 \\
-h & f
\end{array}\right)} P_{0} \oplus Q_{0} \longrightarrow Y \longrightarrow 0
$$

is exact.
2. Let k be field, and Q be a quiver without oriented cycles. For $i \in Q_{0}$ a vertex, denote by S_{i} the 1-dimensional $K Q$-module associated to vertex i.
(a) For any $i \in Q_{0}$, show that there is a short exact sequence

$$
0 \rightarrow \bigoplus_{a \in Q_{1}, s(a)=i} k Q e_{t(a)} \rightarrow k Q e_{i} \rightarrow S_{i} \rightarrow 0
$$

(b) Deduce that if M is a finite dimensional $k Q$-module, then there exists a short exact sequence of the form

$$
0 \longrightarrow P_{1} \longrightarrow P_{0} \longrightarrow M \longrightarrow 0
$$

with P_{0} and P_{1} projective.
(c) Describe such a sequence for Q given by the following quiver

$$
4 \leftarrow 3 \longleftarrow 2 \longrightarrow 1
$$

and M given by the following representation

$$
0 \longleftarrow k \longleftarrow{ }_{1} k \longrightarrow 0
$$

Exercise 3. Let A be a k-algebra.
For X and Z in $\operatorname{Mod} A$, we denote by $\mathcal{E} x t_{A}^{1}(Z, X)$ the set of (Y, u, v) where Y is in $\operatorname{Mod} A$, and $u: X \rightarrow Y$ and $v: Y \rightarrow Z$ are A-linear maps such that

$$
0 \longrightarrow X \xrightarrow{u} Y \xrightarrow{v} Z \longrightarrow 0
$$

is a short exact sequence. We define on $\mathcal{E} x t_{A}^{1}(Z, X)$ the following equivalence relation $(Y, u, v) \sim$ $\left(Y^{\prime}, u^{\prime}, v^{\prime}\right)$ if there exists an isomorphism $\varphi: Y \rightarrow Y^{\prime}$ such that the following diagram commutes

We denote by $\operatorname{Ext}_{A}^{1}(Z, X)$ the set of equivalences classes.

1. Show that the set of split short exact sequences form a class in $\operatorname{Ext}_{A}^{1}(Z, X)$ that we will denote by $\epsilon_{Z X}$.
2. What can we say about the set $\operatorname{Ext}_{A}^{1}(Z, X)$ if Z is projective ?
3. Let $0 \longrightarrow K \xrightarrow{i} P \longrightarrow Z \longrightarrow 0$ be a short exact sequence. We define a map δ_{X} : $\operatorname{Hom}_{A}(K, X) \rightarrow \operatorname{Ext}_{A}^{1}(Z, X)$ as follows. If $f: K \rightarrow X$ be a A-linear map, $\delta_{X}(f)$ is defined to be the class of a short exact sequence defined by the following commutative diagram

where the left square is a push-out.
Show that δ_{X} is well-defined.
4. Show that the composition

$$
\operatorname{Hom}_{A}(P, X) \xrightarrow{\operatorname{Hom}_{A}(i, X)} \operatorname{Hom}_{A}(K, X) \xrightarrow{\delta_{X}} \operatorname{Ext}_{A}^{1}(Z, X)
$$

is the constant map to $\epsilon_{Z X}$.
5. Show that if $f, f^{\prime} \in \operatorname{Hom}_{A}(K, X)$ satisfies $\delta_{X}(f)=\delta_{X}\left(f^{\prime}\right)$, then $f-f^{\prime}$ is in the image of $\operatorname{Hom}_{A}(i, X)$.
6. Deduce that if P is projective, then $\operatorname{Ext}_{A}^{1}(Z, X)$ is in natural bijection (via δ_{X}) with the cokernel $\operatorname{Hom}_{A}(i, X)$ and that it induces a structure of k-module on $\operatorname{Ext}_{A}^{1}(Z, X)$ for which $\epsilon_{Z X}$ is the zero element.

