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Chapter I

Generalities on Modules

All rings are associative and unital.

1 Modules and algebras

1.1 Module over a ring

Definition 1.1 Let R a ring. A left R-module M is an abelian group
together with a map R ×M → M sending (a,m) to a.m satisfying for any
a, a′ ∈ A, m ∈M

• (a+ a′).m = a.m+ a′.m;
• a.(m+m′) = a.m+ a.m′;
• (aa′).m = a.(a′.m);
• 1A.m = m.

Example 1.2 R = k field then k-vector space. R = Z then abelian group.
R is an R-module over itself.
If M is an abelian group, then M is a left EndZ(M)-module.

Representation point of view.

Proposition 1.3
Let M be an abelian group. Then M is a left R-module if and only if
there exists a ring homomorphism ρ : R→ End(M).
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Difference between left and right modules.
If R is commutative, then a left R-module is a right R-module.
A left R-module is a right Rop-module.

Definition 1.4 Let R and R′ be rings. A R-R′-bimodule M is an abelian
groupM which is a leftR-module, a rightR′-module, and such that (a.m).b =
a.(m.b) for any a ∈ R, m ∈M and b ∈ R′.

If R is commutative, then a R-module is automatically a R-bimodule.

Definition 1.5 LetM andN beR-modules. A morphism ofR-modules (or
a R-linear application) is a morphism of abelian groups such that f : M → N
such that f(xm) = xf(m)

1.2 Algebras

In all what follows, k will be a commutative ring.

Definition 1.6 A k-algebra is a unital ring with a structure of k-module
such that λ(ab) = (λa)b = a(λb) for λ ∈ k and a, b ∈ A.

Example 1.7 Typical examples in this course: k = Z or k is a field. The
algebra A could beMn(k), k[X], k[X, Y ], T +

n (k) ⊂Mn(k) upper triangular
matrices. A = kG where G is a group.

A morphism of k-algebras is a map f : A→ B which is a ring morphism
and a k-module morphism.

Notions of subalgebras and ideals (left, right and two-sided).

Remark 1.8 A ring is always a Z-algebra.
The map k → A sending λ to λ1A is a k-algebra morphism whose image

is in the center of A.

1.3 Modules over algebras

Definition 1.9 A left A-module M is a left A-module thinking of A as a
ring.

Because of the map k → A, a A-module is automoatically a k-module.
And we have (λa)m = λ(am) = a(λm). (Scalars commute with everything).

So in other words, any ring map A→ End(M) factors through a k-algebra
map A→ Endk(M).



Proposition 1.10
Let G be a group, and k be a field. Let M be a k-vector space. It has
a structure of kG-modules if and only if there exists a group morphism
ρ : G→ Aut(M). (ρ,M) is called a representation of the group G.

1.4 Submodules, quotients and direct sums

Submodules

Definition 1.11 Let M be a left A-module. A submodule N ⊂ M is a
subgroup which is stable under A-multiplication.

.
For example, the submodules of A seen as a left A-module are the left

ideals of A.

Quotient

Proposition 1.12
Let M be a A-module, and N ⊂ M a submodule, then M/N has a
natural structure of A-module, and the projectionM →M/N is A-linear.

If N,N ′ are submodules of M , so are N +N ′ and N ∩N ′.

Submodules and morphisms

Proposition 1.13
Let f : M → N ba a morphism of A-modules, then Kerf and Im f are
A-modules.

IfM ′ ⊂M is a submodule. Then there exists a unique f̄ : M/M ′ → N
such that f̄ ◦ p = f if and only if M ′ ⊂ Kerf .

In particular f induces an isomorphism M/Kerf ' Im f .



Definition 1.14 For f : M → N a morphism, we define Cokerf := N/Im f
the cokernel of f . It is a A-module.

Direct sum

Proposition 1.15
Let M and N be A-modules. Then M ×N has naturally a structure of
A-module.

We denote it as M ⊕N (external direct sum).

Note that if M1 and M2 are submodules of M , such that M1 ∩M2 = {0},
then M1 + M2 ' M1 ⊕M2. (so internal direct sums coincide with external
ones).

If M and N are modules, M is naturally isomorphic to a submodule
of M ⊕ N and its quotient is isomorphic to N . However, if N ⊂ M is a
submodule, M is not isomorphic in general to N ⊕M/N .

Proposition 1.16
Let X be a A-module.

If there exist p1, p2 ∈ EndA(X) such that

p1 ◦ p2 = p2 ◦ p1 = 0 p2i = pi and p1 + p2 = IdX ,

then X is isomorphic to Im p1 ⊕ Im p2.

Example 1.17 Assume 1A = e1 + e2 with e2i = ei (idempotent), e1e2 =
e2e1 = 0 (orthogonal), then A ' Ae1 ⊕ Ae2 as a left A-module.

For example if A =Mn(k), then one can prove that A ' (kn)n as a left
A-module.

2 Tensor products and Hom

2.1 Homomorphism module

LetM andN be A-modules. Then HomA(M,N) has a structure of End(N)-
End(M)-bimodule (in particular it is a k-bimodule) given by right and left



composition.
As a consequence, ifM is a A-B-bimodule and N a A-C-bimodule. Then

HomA(M,N) has a structure of B-C-bimodule, given by

b.f.c(m) := f(mb)c, for m ∈M , b ∈ B, c ∈ C and f ∈ Hom(M,N).

Example 2.1 If M is a left A-module, then Homk(M,k) = M∗ and M∨ :=
HomA(M,A) are right A-modules. A∗ = Homk(A, k) is a left A-module (in
fact it is a A-bimodule.)

If A = kG, since g 7→ g−1 is an isomrophism kG → kGop, then is V is a
G-representation, then V ∗ is naturally a kGop-module, hence a kG-module.

If B is a sublagebra of A, then A is naturally a B-module. Then for a
A-module M , we have

BM ' HomA(AB,M)as B-modules

Proposition 2.2
1. For each A-module M , there is an isomorphism of A-module

HomA(A,M) 'M .
2. There is an algebra isomorphism EndA(A) ' Aop.

Hom(M ⊕M ′, N ⊕N ′) '
[

Hom(M,N) Hom(M ′, N)
Hom(M,N ′) Hom(M ′, N ′)

]
as k-module.

Proposition 2.3
LetM and N be modules. Then we have an isomrophism End(M⊕N) '[

End(M) Hom(N,M)
Hom(M,N) End(N)

]
as a k-algebra.

2.2 Tensor product

Let M be a right A-module and N be a left A-module. We define the space
M ⊗A N as the k-free module generated by the m ⊗ n mod out by the
submodule generated by

• (m1 +m2)⊗ n−m1 ⊗ n−m2 ⊗ n



• m⊗ (n1 + n2)−m⊗ n1 −m⊗ n2

• (ma)⊗ n−m⊗ (an), a ∈ A, m ∈M , n ∈ N ;

If M is a B-A-bimodule, and if N is a A-C-bimodule, then M ⊗A N is a
B-C-bimodule.

Proposition 2.4
1. there is a canonical isomorphism A⊗A X ' X.
2. there is a unique isomorphism (X⊗Y )⊗Z ' X⊗ (Y ⊗Z) sending

(x⊗ y)⊗ z to x⊗ (y ⊗ z)
3. If A is commutative then there is a unique isomorphism X ⊗ Y '
Y ⊗X sending x⊗ y to y ⊗ x.

4. There is a canonical isomorphism

(M ⊕M ′)⊗A N ' (M ⊗A N)⊕ (M ⊗A N)

5. If f : X1 → X2 and g : Y1 → Y2 are module morphisms, then there
exists a unique module morphism f⊗g : X1⊗Y1 → X2⊗Y2 sending
x⊗ y on f(x)⊗ g(y).

Extension of scalars

If A → B is a morphism of algebras, it makes B a A-module, hence we can
define B ⊗AM for any A-module M .

Example 2.5 B ⊗A A[X] ' B[X].
If G is a group and H is a subgroup. We have an injection kH → hG.

So for any kH-module M , there is a KG-module defined by IndHG (M) :=
kG⊗kH M .

Tensor product of algebras

Theorem 2.6
A⊗K B is an algebra.

The data of a A-B-bimodule is the same of a A ⊗ Bop-module. And same
for the morphisms.



2.3 Adjunction formula

Theorem 2.7
Let A and B be algebras, let X be a A-module, let Y be a B-A-bimodule
and let Z be a B-module. Then there is a canonical isomorphism

HomA(AX,HomB(BYA,B Z)) ' HomB(BY ⊗A X,B Z).

Example 2.8 Let H be a subgroup of G. Let M be a representation of H
and N bea representation of NThen we have

HomkG(IndHG (M), N) ' HomkH(M,ResGH(N)).

3 Finite and infinite modules

3.1 Product and sums

Let I be a set and (Mi)i∈I be a collection of A-modules. Then∏
i∈IMi := {(mi, i ∈ I),mi ∈Mi}

is naturally a A-module.
We define

⊕
i∈IMi the subset of

∏
iMi consisting of finitely supported

I-uples. It is a A-submodule.

Proposition 3.1
For any sets I and J , and modules (Mi), (Nj), there is an isomorphism

HomA(
⊕
i

Mi,
∏
j

Nj) '
∏
(i,j)

Hom(Mi, Nj).

3.2 Free modules

If I a set, defineAI := {f : I → A} andA(I) := {f : I → A with finite support }.



Definition 3.2 A A-module is called free if it admits a basis, that is a
family of elements (xi)i∈I that is linerarily independant (every finite linear
combination...) that generates it.

Theorem 3.3
Any free A-module is of the form A(I).

Theorem 3.4
Every A-module is a quotient of a free A-module.

As a corollary, any A-module M is the cokernel of a A-module morphism
between free modules.

3.3 Finite modules

Definition 3.5 A finitely generated A-module (or module of finite type )
M is a module of the form 〈X〉 for X a finite subset of M .

A module M is of finite type if and only if there exists a map An → M .
However, in general it could happen that the kernel of this map is not finitely
generated. If it is, M is called finitely presented and there exists a map
Am → An such that M is isomorphic to the cokernel.

Particular cases:

If A is a finite dimensional k-algebra, then

module of finite type= module of finite dimension= module of finite presentation

In this case, it is clearly closed under kernel and cokernel.
The same is true if A = Z. Any subgroup of a finitely generated abelian

group is finitely generated.
Moreover any subgroup of a finitely generated free abelian group is a free

abelian group.
We know well the structure of finitely generated abelian groups (built

from Z and Zpα) but non finitely generated abelian groups are much more
complicated: R, Q, ...



Chapter II

Categories of modules

1 Linear categories and functors

1.1 Definition

Definition 1.1 A k-linear category C is a collection of objects (also de-
noted by C) and for each X, Y a k-module HomC(X, Y ) together with a
k-bilinear map

HomC(X, Y )× HomC(Y, Z) → HomC(X,Z)
(f, g) 7→ g ◦ f

satisfying h ◦ (g ◦ f) = (h ◦ g) ◦ f and with the following properties

• for each X ∈ C, there is 1X ∈ EndC(X) such that f ◦ 1X = f and
1X ◦ g = 1X for any f ∈ HomC(X, Y ) and g ∈ HomC(Y,X);
• there is an object 0 ∈ C such that HomC(X, 0) = HomC(0, X) = 0 for

all X;
• for each X, Y in C there is an object X ⊕ Y such that

Hom(X ⊕ Y, Z) ' HomC(X,Z)⊕ HomC(Y, Z) and

Hom(Z,X ⊕ Y ) ' HomC(Z,X)⊕ HomC(Z, Y ) (as k-modules).

The category of A-modules ModA is such a category. The category of
finitely generated A-modules modA is also such a category.

Note that in ModA, the ismorphisms above are given by

HomA(X ⊕ Y, Z) ' HomA(X,Z)⊕ HomA(Y, Z)

f 7→ (f ◦ iX , f ◦ iY )

f ◦ pX + g ◦ pY ←[ (f, g)
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1.2 Linear functors

Definition 1.2 A k-linear covariant (resp. contravariant) functor F between
two k-linear categories C1 and C2 is the data of an object FX ∈ C2 for each
object X ∈ C1, and a k-linear map

FX,Y : HomC1(X, Y )→ HomC2(FX,FY )

such that

• F (f ◦ g) = F (f) ◦ F (g) (resp. F (f ◦ g) = F (g) ◦ F (f));
• F (1X) = 1FX for each X ∈ C1;
• F (0) = 0;
• F (X ⊕ Y ) ' FX ⊕ FY and these maps are compatible with the iso-

morphisms for the Hom, i.e. the following commutes
HomC1(X ⊕ Y, Z) ∼ //

∼

��

HomC2(F (X ⊕ Y ), Z)

∼
��

HomC2(FX ⊕ FY, Z)

∼
��

HomC1(X,Z)⊕ HomC1(Y, Z) ∼ // HomC2(FX,FZ)⊕ HomC2(FY, FZ)

A composition of linear functors is clearly a linear functor.

Definition 1.3 Let F : C1 → C2 be a k-linear functor. If for any Y ∈ C2
there exists X ∈ C1 such that FX is isomorphic to Y , we say that F is
dense . If for any X, Y , the map FX,Y is an isomorphism, we way that F
is fully faithful . A functor which is dense and fully faithful is called an
equivalence , and the categories C1 and C2 are said to be equivalent k-linear
categories.

A natural transformation η : F → G between two functors F : C1 → C2
and G : C1 → C2 assigns ηX ∈ HomC2(FX,GX) for each X ∈ C1 such that
ηY ◦ FX,Y (f) = GX,Y (f) ◦ ηX for any f ∈ HomC1(X, Y ).

If moreover each ηX is invertible, we say that there is a functorial isomorphism
between F and G.

For example if B → A is a morphism of algebras, then AM 7→B M
from ModA → ModB is a functor. For example, ModA → Mod k, or
ModA→ ModZ are functors called forgetful functors .



1.3 Functors Hom and ⊗
Hom and ⊗ are the main examples of functors in representation theory.

Theorem 1.4
Let AMB be a A-B-bimodule, then

• HomA(M,−) is a covariant functor ModA→ ModB;
• HomA(−,M) is a contravariant functor ModA→ ModB;
• − ⊗AM is a covariant functor ModAop to ModBop

• M ⊗B − is a covariant functor ModB → ModA.

Proposition 1.5
All the isomorphisms described in the previous chapter subsections 2.1,
2.2 and 2.3 are functorial isomorphisms.

For example the functor HomA(A,−) is isomorphic to Id : ModA →
ModA.

The contravariant functors (from ModA to Mod k) HomA(−,HomB(BYA,B Z))
and HomB(BY ⊗A −,B Z) are isomorphic.

2 Short exact sequences

2.1 Abelian category

Definition 2.1 LetX, Y and Z beA-modules. A sequence X f // Y
g // Z

of morphisms is called exact if Kerg = Im f .
A short exact sequence is an exact sequence of the form

0 // X
f // Y

g // Z // 0;

so equivalently, f is injective, Kerg = Im f and g is surjective.



For example if N ⊂M is a submodule, there is a natural short exact sequence
of the form

0 // N
i //M

p //M/N // 0.

Here is the fundamental property of the module category:

Proposition 2.2
Let f : M → N , then there exist two short exact sequences:

0 // K //M
p // I // 0 0 i // I // N // C // 0

such that i ◦ p = f .

This is the property that makes the category ModA an abelian category.
NB: if k is a field, and A is a finite dimensional k-algebra, then modA is

also an abelian category. Indeed, if M and N are finitely generated so are
K, I and C. The same is true for finitely generated abelian groups.

2.2 Monomorphisms and epimorphisms

Definition 2.3 A morphism f : X → Y is called a monomorphism if f ◦g =
f ◦ h⇒ g = h (or equivalently f ◦ g = 0⇒ g = 0).

A morphism f : X → Y is called an epimoprhism if g ◦f = h◦f ⇒ g = h
(or equivalently g ◦ f = 0⇒ g = 0).

Proposition 2.4
1. A A-linear map f : X → Y is a monomorphism if and only if f is

injective.
2. A A-linear map f : X → Y is an epimorphism if and only if f is

surjective.

Proposition 2.5
Let f : X → Y be morphism in ModA. Then



1. for any morphism g : U → X such that f ◦ g = 0 there exists
a unique morphism h : U → Kerf such that g = i ◦ h where
i : Kerf → X.

2. for any morphism g : Y → Z such that g ◦ f = 0 there exists
a unique morphism h : Cokerf → Z such that g = f ◦ p where
p : Y → Cokerf .

Corollary 2.6
Let X

f //

ϕ
��

Y

ψ
��

X ′
f ′ // Y ′

be a commutative square (that is ψ ◦ f = f ′ ◦ ϕ), then

it can be completed into a commutative diagram

Kerf //

��

X
f //

ϕ

��

Y

ψ
��

// Cokerf

��
Kerf ′ // X ′

f ′ // Y ′ // Cokerf ′

2.3 Split short exact sequences

Definition 2.7 A short exact sequence 0 // X
f // Y

g // Z // 0 is
a split short exact sequence if there exists an isomorphism h : Y → X ⊕ Z
such that there is a commutative diagram

0 // X
f // Y

g //

h
��

Z // 0

0 // X
i // X ⊕ Z p // Z // 0

A morphism f : X → Y is said to be a section if there exists f ′ : Y → X
with f ′ ◦ f = 1X .

A morphism g : Y → Z is said to be a retraction if there exists g′ : Z →
Y such that g ◦ g′ = 1Z .



Proposition 2.8
A short exact sequence 0 // X

f // Y
g // Z // 0 if and only if

one of the following occurs:

• f is a section;
• g is a retraction.

Example 2.9 In the category Mod k, every short exact sequence splits.
As we will see later, it is also the case in ModCG where G is a finite

group.
It is not the case in ModZ, for instance 0 // Z2

// Z4
// Z2

// 0
does not split.

2.4 Push forward and pull back

Pull back

Definition 2.10 Let g1 : Y1 → Y and g2 : Y2 → Y be morphisms. Then a
pull back of g1 anf g2 is a commutative square

X
f1 //

f2
��

Y1

g1
��

Y2
g2 // Y

;

such that for any commutative square

Z
h1

''
h2

��

��
X //

��

Y1

g1
��

Y2
g2 // Y

;

there exists a unique h : Z → X such that h1 = f1 ◦ h and h2 = f2 ◦ h.



Definition 2.11 Let f1 : X → X1 and f2 : X → X2 be morphisms. Then a
push forward of f1 anf f2 is a commutative square

X
f1 //

f2
��

X1

g1
��

X2
g2 // Y

;

such that for any commutative square

X
f1 //

f2
��

Y1

��
h1

��

Y2 //

h2
''

Y

��
Z

;

there exists a unique h : Y → Z such that h1 = h ◦ g1 and h2 = h ◦ g2.

Example 2.12 Let f : X → Y be a morphism. The commutative square
Kerf //

i
��

0

��
X

f // Y

is a pull back.

The commutative square X1 ×X2
p1 //

p2
��

X1

��
X2

// 0

is a pull back.

Proposition 2.13
There exist pull backs and push outs in the category ModA.

Proof : The pull back of (g1 : Y1 → Y, g2 : Y2 → Y ) is given by

X := Ker(g1 − g2 : Y1 ⊕ Y2 → Y ).

The push-out of (f1 : X → X1, f2 : X → X2) is given by

Y = Coker((f1,−f2) : X → X1 ⊕X2).



�

Theorem 2.14
Let 0 // X

f // Y
g // 0 be a short exact sequence.

1. For any z : Z ′ → Z, there exists a commutative diagram where the
horizontal lines are exact

0 // X // Y ′

��

// Z ′

z
��

// 0

0 // X
f // Y

g // Z // 0

2. For any x : X → X ′, there exists a commutative diagram where
horizontal lines are exact

0 // X
f //

x
��

Y

��

g // Z // 0

0 // X ′ // Y ′ // Z // 0

3 Short exact sequences and functors

3.1 Exact functors

Definition 3.1 1. A covariant functor F is left exact if for any 0 →
X → Y → Z the sequence 0→ FX → FY → FZ is exact

2. A covariant functor is called right exact if for any exact sequence
X → Y → Z → 0, the sequence FX → FY → FZ → 0 is exact.

3. A contravariant functor F is left exact if for any X → Y → Z → 0,
the sequence 0→ FZ → FY → FX is exact.

4. A contravariant functor F is right exact if for any 0→ X → Y → Z,
the sequence FZ → FY → FX → 0 is exact.

5. A functor is called exact if it is both left and right exact. So it sends
any short exact sequence to a short exact sequence.



Theorem 3.2
Let M be a A-B-bimodule. We have the following:

1. the functors HomA(M,−) and HomA(−,M) are left exact;
2. the functors M ⊗B − and −⊗AM are right exact.

Proof : Here we need to show a statement a bit more precise. We will show
that a sequence 0→ X → Y → Z is exact if and only if for all M ∈ ModA
the sequence 0 → Hom(M,X) → Hom(M,Y ) → Hom(M,Z) is exact, and
the similar statement for the other functors. �

3.2 Projective, injective and flat modules

Definition 3.3 An A-module P is said to be projective if the functor
HomA(P,−) is exact.

An A-module I is said to be injective if HomA(−, I) is exact.
An A-module F is said to be flat if F ⊗A − is exact.

The following is clear from the definition.

Proposition 3.4
1. A A-module P is projective if and only if for any epimorphism
f : X → Y and morphism u : P → Y , there exists a morphism
v : P → X such that f ◦ v = u.

2. A A-module I is injective if and only if for any monomorphism
f : X → Y , and any morphism u : X → I, there exists a morphism
v : Y → I such that v ◦ f = u.

Lemma 3.5
1. Let (Mi)i∈E be a family of A-modules. Then

⊕
i∈EMi is projective

if and only if Mi is projective for any i ∈ E.



2. Let (Mi)i∈E be a family of A-modules. Then
∏

i∈EMi is injective
if and only if Mi is injective for any i ∈ E.

3. Let (Mi)i∈E be a family of A-modules. Then
⊕

i∈EMi is flat if and
only if Mi is flat for any i ∈ E.

3.3 Existence of projective and flat modules

Theorem 3.6
A module M is projective if and only if it is a direct summand of a free
module.

Proof : The proof here comes from the fact that HomA(A,M) ' M , it is
then clear that A is projective. Then by the previous lemma we clearly have
that any free module is projective and so is any direct summand of a free
module.

Now given a projective module P , we can take a free cover F → P → 0
of P . Then since P is projective, the map F → P is a retraction therefore
P is isomrophic to a direct summand of F .

�

Theorem 3.7
Free ⇒ projective ⇒ flat.

Proof : This is an easy consequence of the previous lemma, and of the fact
that A is flat. �

We will wee later that for certain nice rings (Noetherian) finitely gener-
ated projective modules coincide with finitely generated flat modules.



3.4 Existence of injective modules

Case where k is a field

Lemma 3.8
If k is a field, then k is injective in Mod k.

Proof : This comes from the fact that all short exact sequences splits in
Mod k. �

As a consequence, and using the natural embedding M → M∗∗ we obtain
the following.

Theorem 3.9
Let k be a field and A be a k-algebra. Then we have

M ∈ ModA is projective ⇒ M∗ = Homk(M,k) ∈ ModAop is injective.

As an immediate corollary, we obtain that A∗ is naturally a left A-module
injective.

Note that in the case of where A is finite dimensional, the k-duality
induces a bijection between projective and injective objects in modA (finite
dimensional A-modules).

Case of abelian groups

The general case is much more complicated. Already for A = Z it is difficult
to exhibit injective Z-modules. For example, using the embedding Z → Q,
one can see that Z is not an injective object.

However, the aim here is to prove that Q is injective. To prove this, we
will use the following criterion.



Theorem 3.10 (Baer’s criterion)
Let A be a k-algebra. Then a A-module M is injective if and only if
for any submodule J ⊂ A, the map HomA(A,M) → HomA(J,M) is
surjective.

Necessity is clear. The converse direction is more involved and uses Zorn
lemma, we refer to Assem (Theorem 3.4 in Chapter IV) for a complete proof.

But this lemma implies easily the following:

Proposition 3.11
Q and Q/Z are injective as Z-modules.

General case

This leads us to introduce an other notion of dual.

Definition 3.12 Let M ∈ ModA, we define M∧ := HomZ(M,Q/Z) ∈
ModAop the Pontryagin dual of M .

We have then the same kind of properties that for the k-dual.

Lemma 3.13
A map X → Y in ModA is injective if and only if the corresponding map
Y ∧ → X∧ in ModAop is surjective.

Theorem 3.14
A right A-module X is flat if and only if the A-module X∧ is injective.

As a corollary, we then obtain that A∧ is an injective left A-module. It
is unfortunately in general not finitely generated.



Chapter III

Decomposition theorems

1 Noetherian and Artinian

1.1 Noetherian and Artinian modules

Definition 1.1 1. A A-module M is said to be Artinian if for any de-
craesing sequence M0 ⊇ M1 ⊇ · · · of submodules there exists n such
that Mj = Mn ∀j > n.

2. A A-module M is said to be Noetherian if for any increasing sequence
M0 ⊆ M1 ⊆ · · · of submodules there exists n such that Mj = Mn

∀j > n.

Example 1.2 If k is a field, then any finite dimensional A-module is both
Artinian and Noetherian.

Z or more generally any principal ring is Noethrian. But Z is not Artinian.
The ring Z/nZ is Artinian and Noetherian.

Proposition 1.3
Let 0 → X → Y → Z → 0 be a short exact sequence of A-modules.
Then we have

1. X and Z are Artinian if and only if so is Y .
2. X and Z are Noetherian if and only if so is Y .

Proof : If Y is Artinian, then so is X since it is a submodule of Y . If Z0 ⊇
Z1 ⊇ · · · is a dcreasing chain of submodules of Z, then p−1(Z0) ⊇ p−1(Z1) ⊇
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· · · is a decreasing chain of submodules of Y . So p−1(Z`) = p−1(Z`+1) which
implies Z` = Z`+1.

Conversely, let Y0 ⊇ Y1 ⊇ · · · be a decreasing chain of submodules of Y .
Then we obtain the following commutative diagram

0 // X ∩ Y`+1� _

��

// Y`+1� _

��

// Z ∩ Y`+1� _

��

// 0

0 // X ∩ Y` // Y` // Z ∩ Y` // 0

If both left and right maps are equalities, then so is the middle one. �

Theorem 1.4
Let M be a A-module. Then M is Noetherian if and only if every sub-
module of M is finitely generated.

Proof :LetN be a submodule ofM , and consider the set E of submodules ofN
which are finitely generated. It is non empty since {0} is finitely generated.
Since M is Noetherian, any incraesing chain has an upper bound. So by
Zorn’s lemma, it has a maximal element L. If L 6= N , then there exists x ∈
N \ L, and 〈L, x〉 is a finitely generated submodule of N , which contradicts
maximality. So N is maximal, and so N is finitely generated.

Conversely, let M0 ⊆ M1 · · · be a increasing chain of submodules in M .
Then the union of the Mi is a submodule of M . It has a finite set of genera-
tors, so there exists n such that every generator is in Mn, and so the union
of the Mi equals Mn. �

Corollary 1.5
If A Noetherian as left module, then any finitely generated A-module is
finitely presented.



1.2 Noetherian and Artinian algebras

Definition 1.6 1. An algebra A is called left Artinian if the module AA
is Artinian.

2. An algebra A is called left Noetherian if the module AA is Noetherian.

Theorem 1.7
Let A be a k-algebra.

1. If A is left Artinian, then any A-module of finite type is Artinian.
2. If A is left Noetherian, then any A-module of finite type is Noethe-

rian.

Proof : It follows directly from Proposition 1.3.
�

Corollary 1.8
If A is Artinian or Noetherian, then the category modA of finitely gen-
erated A-modules is an Abelian category.

2 Indecomposable modules and algebras

2.1 Idempotents

Definition 2.1 An algebra A is said to be connected if it is not isomorphic
to the product of two non trivial algebras.

A A-module M is said to be indecomposable if it is not isomorphic to
the direct sum of two proper submodules.

The key notion here is the notion of idempotents . Indeed, if A =
∏

iAi,
then denoting by ei := (0, . . . , 1Ai , 0, . . .) we have the following relations

e2i = ei, eiej = 0 for i 6= j, 1A =
∑
i

ei and ei ∈ Z(A).



Moreover Ai ' eiAei.
Similarly, let M =

⊕
iMi be decomposable. Denote by pj and ij the

projections and injections, and setej := pj ◦ ij ∈ EndA(M). Then we have

e2i = ei, eiej = 0 for i 6= j, IdM =
∑
i

ei

So roughly speaking, an algebra will be connected if it has very few idem-
potent, and a moduleM will be indecomposable if its endomorphism algebra
has also very few idempotents.

2.2 Algebras and bloc decomposition

The first result show that the conditions above on the idempotents is suffi-
ciant to decompose an algebra.

Theorem 2.2
Let A be a k algebra. Assume that 1A =

∑s
i=1 ei with the properties

e2i = ei, eiej = 0 for i 6= j, and ei ∈ Z(A),

then A is isomorphic to
∏s

i=1Ai with Ai = Aei.

Proof : First note that Ai = Aei = eiAei is an algebra, and a tw-sided ideal
of A.

The isomorphisms A→
∏s

i=1Ai and
∏s

i=1Ai → A are given by

a 7→ (ae1, . . . , aes) and (b1, . . . , bs) 7→
∑
i

bi.

One easily checks that these are isomorphisms of algebras and inverse one of
each other. �

Theorem 2.3
Let A be a k-algebra which is Noetherian or Artinian. Then A is iso-
morphic to a finite product of connected algebras which are uniquely
determined.



Proof : The existence comes from Noetherianity ar Artinianity.
Unicity is quite easy, using the fact that the product of two two-sided

ideal is a two-sided ideal. So if we have

A1 × · · · × As = B1 × · · · ×Bt,

then we have Ai = AAi =
∏

j(BjAi) and since Ai is connected we obtain
Ai = BjAi. Using then Bj = BjA, we obtain Ai = Bj. Finally we use the
fact that ∏

6̀=i

A` = A/Ai = A/Bj =
∏
k 6=j

Bk

and conclude by induction. �

Theorem 2.4
Let A = A1 × A2 be the direct product of two k algebras. Then there is
an equivalence of categories

ModA ' ModA1 ×ModA2.

Proof : The functor is given by M 7→ (e1M, e2M) where the ei are the
idempotents defined above. One then needs to show that forM,N ∈ ModA,
then

HomA(e1M, e2N) = 0 and HomA(e1M, e1N) = HomA1(e1M, e1N).

�

2.3 Indecomposable modules and local rings

Definition 2.5 A k-algebra is said to be local if it has a unique maximal
left ideal.

The link between these two notions is given by the Theorem below.



Theorem 2.6
A module M which is Artinian and Noetherian is indecomposable if and
only if EndA(M) is local.

In order to prove this result, we need two lemmas.

Lemma 2.7
Let A be a k-algebra. Then A is local if and only if for any x ∈ A, x or
1− x is invertible.

Proof : One direction is clear, since if both x and 1 − x are non invertible,
then they are both in the maximal ideal J , which implies J = A.

For the other direction, we prove that the set J of non left invertible
elements of A is an ideal. It statisfies clearly AJ ⊂ J . Now let x and y be
in J such that x− y has a left inverse a. Since ax is in J , then 1− ax = ay
is invertible which is a contradiction. Finally J clearly contains all proper
ideals of A, so A is local. �

Lemma 2.8 (Fitting’s lemma)
Let f ∈ EndA(M) whereM is Noetherian and Artinian, then there exists
n > 1 such that

M = Kerfn ⊕ Im fn

Proof : By Artinianity and Noetherianity, there exists n suxh that Kerfn+1 =
Kerfn and Im fn+1 = Im fn. One easily checks that Kerfn ∩ Im fn = {0}.
And if y ∈M , taking x such that fn(x) = f 2n(y) we obtain

y = (x− fn(y)) + fn(y) ∈ Kerfn ⊕ Im fn.

�



2.4 Krull-Schmidt decomposition

Theorem 2.9 (Azumaya-Krull-Remak-Schmidt)
Let A be a k-algebra and letM ∈ ModA. IfM is Noetherian or Artinian,
then M is isomorphic to a finite direct sum of indecomposable modules.

If M is both Artinian and Noetherian, then the decomposition is
essentially unique.

Proof : The proof of exsitence is the same as for the bloc decomposition of
algebras.

Assume that
⊕m

i=1Mi =
⊕n

j=1Nj. We proceed on induction on m. Using
that End(M1) is local, we obtain a j such that pM1◦iNj ◦pNj ◦iM1 is invertible.
Then using the fact that End(Nj) is local, we prove that both pM1 ◦ iNj and
pNj ◦ iM1 are invertible. So Nj is isomorphic to M1. Finally we need to
construct an isomorphism ϕ : M →M such that there exists a commutative
diagram

M1
i1 //

pNj ◦iM1

��

M

ϕ

��
Nj

ij //M

.

And we apply the induction hypothesis.
�

Corollary 2.10
If k is a field and if A is a k-algebra, then any finite dimensional A-module
can be decomposed into a unique finite direct sum of indecomposable
modules.



3 Simple and Semi-simple

3.1 Simple modules

Definition 3.1 A A-module S 6= 0 is called simple if it has no non zero
proper submodule.

Example 3.2 If k is a field, then any 1-dimensional A-module is simple. In
mod k, there is only one simple module up to isomorphism k.

TheMn(k)-module kn is simple.
Any division k-algebra D over k is a simple D-module. So there might

be infinite dimensional simple module (e.g. D = C(X)).
Zn is simple if and only if n is prime.
For G = D4 the dihedral group, consider the 2-dimensional representation

given by
ρ : G −→ GL2(C)

r 7−→
(

0 1
−1 0

)
s 7−→

(
1 0
0 −1

)
is simple.

We have the following characterization for simple modules.

Lemma 3.3
For a A-module S the following are equivalent:

1. S is simple;
2. ∀x 6= 0 ∈ S, Ax = S;
3. ∀x 6= 0 ∈ S, S ' A/Ann(x);

Lemma 3.4 (Schur’s lemma)
Let S be a simple A-module.

1. then the k-algebra EndA(S) is a division algebra.
2. if moreover k = k̄ is an algebraically closed field and S is finite

dimensional, then EndA(S) ' k.



Proposition 3.5
Let k = k̄ be an algebraically closed field, and A be a commutative k-
algebra. Then any finite dimensional simple A-module is 1-dimensional.

3.2 Composition series

Definition 3.6 Let M be a non zero A-module. A sequence of submodules

0 = M0 ⊂M1 ⊂ · · ·Mm = M

is called a composition series for M if Mi+1/Mi is simple for any i. These
quotients are called composition factors .

Example 3.7 Zpm has a unique composition series:

pmZpm ⊂ pm−1Zpm ⊂ · · · ⊂ Zpm .

Z2 ⊕ Z2 has three composition series.
Let M` = k` be the Tn(k)-module given as in the exercises. Then Mn has

a unique composition series

M0 ⊂M1 ⊂ . . .Mn.

Proposition 3.8
A A-module has a composition series if and only if it is Artinian and
Noetherian.

Proof : We use Artinianity to prove that any module has a simple sub-
module. We then construct a composition series inductively, that stops by
Noetherianity.

The converse can be easily shown by induction on the length of the com-
position series using Proposition 1.3. �



Theorem 3.9 (Jordan Hölder)
If A-module M admits two composition series

0 = M0 ⊂M1 ⊂ · · ·Mm = M, 0 = N0 ⊂M1 ⊂ · · ·Nn = M,

then m = n, and there exists a permutation σ ∈ Sm such that
Mσ(i)+1/Mσ(i) ' Ni+1/Ni.

Proof : The proof is is done by induction on m. The idea is to extract from

0 ⊆Mm−1 ∩N1 ⊆ · · · ⊆Mm−1 ⊆ · · · ⊆Mm−1 +Nn−1 ⊆M

a composition series of M of the form

0 = M ′
0 ⊂M ′

1 ⊂ · · ·M ′
n−2 ⊆Mm−1 ⊂M,

such that each quotient is of the form Ni+1/Ni for some i, and then apply
induction. �

3.3 Semi-simple algebras

Definition 3.10 A A-module is called semi-simple if it is the direct sum
(possibly infinite) of simple modules.

A k-algebra is called semi-simple if it is semi-simple as a left module
over itself.

Theorem 3.11 (Mashke’s theorem)
Let G be a finite group and k be a field such that |G| is invertible in k.
Then any finite dimensional kG-module is semi-simple. In particular kG
is semi-simple.

Proof : If W ⊂ V is a submodule, the idea is first to construct a k-linear
retraction V → W , and to modify it, using the fact that |G| is invertible to
obtain a kG-linear retraction. �



Theorem 3.12 (Artin Wedderburn)
A k-algebra A is semi-simple if and only if it is isomorphic to

Mn1(D1)× . . .Mns(Ds)

where Ds are division k-algebras.

Proof : It is not hard to see thatMn(D) is semi-simple since Dn is a simple
Mn(D)-module.

Conversely, decomposing A into a sum of simple, we first show that the
sum is finite, since 1A is a finite sum of elements in this decomposition. Then
we conclude using Schur’s lemma 3.4, the fact that EndA(A) = Aop, and that

EndA(Sn) 'Mn(End(S)) and HomA(S, S ′) = 0 if S 6= S ′

�

Corollary 3.13
Let k = k̄ be an algebraically closed field. A finite dimensional k-algebra
A is semi-simple if and only if it is isomorphic to

Mn1(k)× . . .Mns(k).

Moreover, there exist exactly s isomorphism classes of simple modules,
of dimension n1, . . . , ns respectively.

3.4 The module category for a semi-simple algebra

Proposition 3.14
A moduleM is semi-simple if and only if every submodule ofM is a direct
summand of M (in other words, any inclusion N ⊂M is a section).



Proof : Assume first that M =
⊕

i∈I Si a semi-simple module, and N ⊂ M
be a submodule. Define

E := {J ⊂ I s.t. N ⊕
⊕
i∈J

Sj is in direct sum}.

We have ∅ ∈ E , so E 6= ∅. We now show that E is an inductive set. Assume
we have a increasing chain Jλ of subsets in E . Then if x is an element in
N +

∑
i∈∪Jλ Si, then there exists λ such that x ∈ N +

∑
i∈Jλ Sj. But then

the sum is direct, so the decomposition of x is unique. So we have

N +
∑
i∈∪Jλ

Si = N ⊕
⊕
i∈∪Jλ

Si.

Therefore the set E s an inductive set. By Zorn’s lemma, this set has a
maximal element I0. We would like to show that N0 := N ⊕

⊕
j∈I0 Si = M .

Let i ∈ I, then Si ∩ N0 is either 0 or Si since Si is simple. If it is zero,
then Si is in direct sum with N0 which is a contradiction with maximality
of I0. Thus Si ∩N0 = Si, meaning that M =

∑
i∈I Si = N0. Hence we have

N ⊕ L = M as required.

Let M be such that any submodule is a direct summand. First note that
any submodule of M satisfies also this property. Indeed if L ⊂ N ⊂M , then
there exists a map p : M → L such that the composition L ⊂ M → L is 1L
Now, define p′ to be the composition

p′ : N ⊂M → L.

We have then L ⊂ N ⊂M → L = 1L, thus L ⊂ N is a section.
Now, we would like to show that M admits a submodule which is simple.

Let x ∈M with x 6= 0. Then define N = 〈x〉, and E = {L ⊂ N s.t. L 6= N}.
This set contains the zero module. If (Nλ) is a ascending chain of submodules
in E , then if N =

⋃
λNλ, then there exists λ such that x ∈ Nλ and then

〈x〉 = N = Nλ which is not true. So the submodule
⋃
λNλ is a strict

submodule of N , so is in E . Hence the set E is an inductive set, and by
Zorn’s lemma, it has a maximal element N0. Then by hypothesis (and the
first remark), we can write N = N0⊕S. We want to check that S is simple. If
not, then S = T ⊕T ′ (again by the first remark), and then N0⊕T ′ is a strict
submodule of N containing strictly N0, which contradicts the maximality of
N0. Therefore, we have that N (hence M) has a submodule which is simple.

Now, we denote by I the set of simple submodules of M , and denote by
M ′ =

∑
S∈I S which is a submodule of M . If M ′ 6= M , then we can write

M = M ′ ⊕M ′′, but since M ′′ is a submodule of M , it admits a submodule



which is simple, which is a contradiction. Hence, we have M = M ′. The last
thing to show is the fact that there exists J0 ⊂ I such that∑

S∈J0

S =
⊕
S∈J0

S =
∑
S∈I

S = M.

We denote by E := {J ⊂ I |
∑

S∈J =
⊕

S∈J S}. It is clearly non empty, and
it is inductive (see the argument above for the other direction). Denote by
J0 its maximal element, and by M0 :=

⊕
S∈J0 S. Let S ′ ∈ I, then S ′ ∩M0

is either zero or S ′ since S ′ is simple. If it is zero, then S ′ + M0 = S ′ ⊕M0

which contradicts the maximality of M0. So S ′ ⊂ M0, and then M0 = M ,
and M can be written as a direct sum of simple submodules.

�

Theorem 3.15
For an algebra A, the following are equivalent:

1. A is semi-simple;
2. every A-module is semi-simple;
3. every short exact sequence in ModA splits;
4. every A-module is projective;
5. every A-module is injective.
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