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I started working on the new methods used by Michel Campillo

and collaborators in seismology using the time correlation of

noisy fields. Providing semi-classical models for these could be

interesting for 2 reasons:

• Giving rather quantitative results it may helps in studying the

source of the noise

• As in quantum mechanics, it provides intuition on these

methods based on more geometry.
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I would like to emphasize first several messages:

• In these dynamical problems, it is easier, contrary to what

people often do, to use directly the approximation of dynam-

ics, without using mode decompositions

• Polarizations can be really described giving more informations
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The aim of these lectures is to show how the modern theory
of linear partial differential equations (pseudo-differential opera-
tors) builded on the geometry of phase space (symplectic geom-
etry, Hamiltonian formalism) can be used in order to study PI
and TRM in the high frequency regime and under smoothness
assumptions.

I will first review the basic formulae:

• Calculus of the field correlation from the correlation of the
source

• Calculus of the time reversed wave

I will then give a very brief introduction to ΨDO calculus and
applications to asymptotics of previous formulae.
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1. Passive imaging

2. Time reversal mirrors

3. Semi-classics: (a) Pseudo-differential operators (ΨDO’s);

(b) Ray dynamics; (c) Green’s function/propapagator; (d)

Egorov Theorem.

4. Application to PI and TRM
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Important remarks:

I will mostly discuss the case of Schrödinger equation for several

reasons:

• Technically simpler than wave equations: first order w.r. to

t, dispersive waves

• Closer to my own knowledge, it includes the very geometric

case of the Laplace operator on Riemannian manifold

• Starting from wave equation (acoustical waves, seismic waves)

we get non trivial dispersion relations when looking at surface

waves with a stratified medium.
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I will try to avoid writing done too much explicit formulae and

concentrating more on the ideas:

“All waves behave in a similar way” (Brillouin, 1960)

“In high frequency regime, many things can be calculated

using the classical (ray) dynamics”
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1. Passive imaging Goal: assuming some source of noise

being propagated by a linear wave equation, there is a relation

between

• The correlation CA,B(τ) of noisy waves between 2 points A

and B

• The Green function (or the propagator) for the (determinis-

tic, smooth) wave equation without source.

Following Brillouin, it is more or less independent of the kind

of waves. We will show an exact relation in case of a white

noise and an asymptotic relation in case of high frequency

propagation.
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Here is the starting point:

du

dt
+ Ĥu = f (1)

• u(x, t), x ∈ Xd the field (scalar or vector)

• Ĥ the deterministic smooth (matrix) Hamiltonian, acting on

L2(X,CN) includes the attenuation:

∃k > 0, Re < Ĥu|u >≥ k‖u‖2

• f(x, t) the noisy source field
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• A model case will be the Schrödinger operator:

−ihut −
h2

2
∆u+ V (x)u− ihku = −ihf, k > 0 .

• A more complicated case will be any kind of wave equation:

u(x, t) :=

(
u
ut

)
and

utt + aut −∆u = f, a ≥ 0

which corresponds to

Ĥ =

(
0 Id
−∆ a

)
and

f :=

(
0
f

)
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The causal solution of Equation (1) is given by:

u(x, t) =
∫ 0

−∞
ds
∫
X
P (−s, x, y)f(t+ s, y)|dy| (2)

where P (called the propagator) (closely related to the Green
function) is defined as follows:

P is the integral kernel of Ω(t) = exp(−tĤ)

(Ω(t)v)(x) =
∫
X
P (t, x, y)v(y)|dy| .

In what follows, we will denote [A](x, y) the integral kernel of the
operator A.

Ω(t+ s) = Ω(t) ◦Ω(s) rewrites∫
X
P (t, x, y)P (s, y, z)|dy| = P (t+ s, x, z)
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Correlation of the field

We define the correlation matrix

CA,B(τ) := lim
T→+∞

1

T

∫ T
0

u(A, t)⊗ u?(B, t− τ)dt

or

C
αβ
A,B(τ) := lim

T→+∞
1

T

∫ T
0

uα(A, t)uβ(B, t− τ)dt

Putting u(A, t), u(B, t− τ) as given by Equation (2), we get:

CA,B(τ) = lim
T→+∞

1

T

∫ T
0

Φ(Ttf)dt (3)

with

Φ(f) =
∫ 0
−∞ ds

∫ 0
−∞ ds′

∫
X×X |dxdy| · · ·

· · ·P (−s,A, x)f(x, s)⊗
(
P (−s′, B, y)f(y, s′ − τ)

)?
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Assuming

E(f(x, s)⊗ f?(y, s′)) = δ(s− s′)K(x, y)

and ergodicity, we get, for τ > 0:

CA,B(τ) =
∫ 0

−∞
ds
∫
X2

|dx||dy|P (τ − s,A, x)K(x, y)(P (−s,B, y))?

(4)

and C
αβ
A,B(−τ) = C

βα
B,A(τ).



We can rewrite Equation (4) in an operator form:

CA,B(τ) = [Ω(τ)Π](A,B) (5)

with

Π :=
∫ ∞
0

Ω(s)KΩ?(s)ds (6)

where K is the integral operator whose kernel is K(x, y). This

is the completely general relation between the correlation and

the propagator. We will need to compute Π in some asymptotic

regime.
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We are lead to the following problem: find the high fre-

quency behaviour of Ω(s)KΩ?(s) (and
∫
ψ(s)Ω(s)KΩ?(s)ds)

under some appropriate assumptions on K (and ψ).
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If f is a white noise, i.e. K = Id, we have

CA,B(τ) = [Ω(τ)
∫ ∞
0

Ω(s)Ω?(s)ds](A,B)

If we assume Ĥ = Ĥ0 + kId with Ĥ0 self-adjoint, we get

CA,B(τ) =
e−k|τ |

2k
P0(τ, A,B) (7)

In general, i.e. for non homogeneous noises, Equation (7) is only

valid approximatively ; that is the purpose of what follows.
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Case of the wave equation:

utt + 2kut −∆u = f (8)

Let Q =
√
−∆− k2 and G(t, x, y) the integral kernel of sin tQ

Q .

We get

u(x, t) =
∫ ∞
0

e−ksds
∫
X
G(s, x, y)f(y, t− s)|dy|

And the correlation, for τ > 0,

CA,B(τ) = [cos τQ Π+ + sin τQ Π−](A,B)

with

Π± =
∫ 0

−∞
dsek(2s−τ)

sin sQ

Q
K


sin sQ
Q

cos sQ
Q
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In case of a white noise, we get

CA,B(τ) =
e−k|τ |

4(Q2 + k2)

[
cos τQ

k
+

sin τQ

Q

]
(A,B)

whose high frequency limit is:

CA,B(τ) ≈
e−k|τ |

4∆

[
cos τ

√
−∆

k

]
(A,B)

The τ derivative of CA,B(τ) is

≈ −
e−k|τ

4k
G(τ, A,B)
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2. Time reversal mirrors

Goal: we record a wave generated from of source at t = 0 during

the time intervall [0, T ]. We want to reemit the recorded wave

after reversing time and amplification. We look at that new wave

at time 2T and want this u(2T ) to be quite close of u(0) or at

least located at the same point with some amplification.
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Here we consider a wave equation inside a Riemannian manifold

(X, g) without boundary (for simplicity)

utt −∆gu = f (9)

Puting A :=
√
−∆g, we get:

u(t) =
∫ ∞
0

sin sA

A
f(t− s)ds

19



The scheme of TRM

We start with f(x, t) = δ(t = 0)u0(x) and, for 0 ≤ t ≤ T , the

propagated pulse

u(t) =
sin tA

A
u0

and we record data from u(t), for 0 ≤ t ≤ T , with an operator

Ω : L2(X) → H with H an auxiliary (finite dimensional) vector

space. We call it the recording operator.
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We then use, for T ≤ t ≤ 2T ,

f(t) = ψ(2T − t)K (Ωu(2T − t))

with ψ ∈ C∞o (]O, T [) as the r.h.s. of Equation (9). K : H →
L2(X) is called the amplification operator.

We get easily:

u(2T ) =
∫ T
0
ψ(s)

sin sA

A
L
sin sA

A
u0ds

with L := KΩ. The problem is to study the operator R : u0 →
u(2T ) and, for example, see how close it is from Id. Using

sin a =
eia − e−ia

2i
we get integrals like ∫

ψ(s)e±isAL̃e±isAds

which are similar to the integrals to be studied in PI.
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3. Semi-classics

We want a nice class of operators for which we can study the

high frequency limits of U(s)BU?(s). They are called the pseudo-

differential operators (ΨDO’s) and were introduced in the sixties

by Calderon, Zygmund, Nirenberg, Hörmander as a tool in the

study of linear partial differential equations with non constant co-

efficients. In some sense, they give the geometrical extension of

Hamiltonian formalism of classical mechanics to wave mechan-

ics. In applications to physics, it is often called the ray method.

The same tools apply to the study of the semi-classical limit

of quantum mechanics and to the high frequency limit of wave

equations (acoustic, electromagnetic or seismic waves). There

is a small paramater ε > 0 in the theory which can be ~ or ω−1.
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• (a) ΨDO’s

• (b) Ray dynamics

• (c) Green’s function/propapagator

• (d) Egorov Theorem
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(a) ΨDO’s

ε will be a small parameter: in what follows

• ε can be the inverse of the frequency

• ε can be the typical correlation distance of the noisy field,

i.e. K(x, y) = k(x, y, x−yε )
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A pseudo-differential operator (ΨDO)on Rd

Aε := Opε(a)

is defined using a function a(x, ξ) : Rd ⊕ Rd → C on the phase

space. a is assumed to be

• smooth

• homogeneous near infinity in ξ

Aε(f)(x) =
1

(2π)d

∫
ei(x−y|ξ)a(x, εξ)f(y)dydξ
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Simple examples:

• Opε(ξj) = h
i
∂
∂xj

• Opε(xj) is the multiplication by xj

• Opε(χ(ξ)) is a frequency cut-off
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Pseudo-differential operators act nicely on WKB functions:

Opε(a)(A(x)eiS(x)/ε) ≈ a(x, S′(x))A(x)eiS(x)/ε

The integral kernel of Opε(a) is

ε−dâ(x,
x− y

ε
)

where â(x,X) is the partial Fourier transform w.r. to ξ of a(x, ξ).
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The main properties are the following ones which hold as ε→ 0:

• Composition:

Opε(a) ◦Opε(b) ≈ Opε(ab)

• Brackets:

[Opε(a),Opε(b)] ≈
ε

i
Opε{a, b}

where

{a, b} =
d∑

j=1

(
∂a

∂ξj

∂b

∂xj
−
∂a

∂xj

∂b

∂ξj

)

is the Poisson bracket
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Localization properties and Wigner measures:

ΨDO’s are almost local; more precisely, if Support(u) = D ⊂ X,
we have, on X \D, Pu = O(ε∞)

More precise quantitative informations are given by Wigner mea-
sures.

Wigner measures define the localisation of energy in phase space.
The Wigner measure Wu of u is the measure on the phase space
defined by ∫

adWu =< u|Opε(a)u > .

The projection of Wu on X is ≈ |u|2dx.

If P = Opε(p), we have:

WPu ≈ |p|2Wu
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Main examples:

1. Hamiltonians:

• Riemannian Laplacian:

Opε(g
ij(x)ξiξj) = −ε2∆g

• Schrödinger operators:

Opε(‖ξ‖2 + V (x)) = −ε2∆ + V (x)
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2. Noisy fields:

Let us denote by w the white noise on X:

E(w(x)w(y)) = δ(x− y)

If d = 1, w is the “speed” of the Brownian motion. Of course w

is a very bad function (a distribution). But, if P is an Hilbert-

Schmidt operator, Pw is a random L2 field.

Examples

Ex 1: d = 1,

f = Op1(p)w

were p = p(ω). |p|2(ω) is called the power spectrum.
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Ex 2: f = χw were χ : X → R and D = support(χ). We have a

random field localized in D.

Ex 3: putting together both examples, it is natural to take

f = Opε(p)(w) with p small at infinity. We get the correlations

Cf(x, y) := E(f(x)f(y)) ≈ ε−d|p̂|2(x,
x− y

ε
)

We see that ε is the order of magnitude of the correlation dis-

tance! The averaged density of energy E(Wf) is the measure

|p|2|dxdξ|. It is the phase space power spectrum.
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(b) Ray dynamics

If H(x, ξ) is the Hamiltonian function, the associated ray dynam-

ics is defined by the vector field XH defined by:
dxj
dt = ∂H

∂ξj
dξj
dt = −∂H

∂xj

If H = 1
2‖ξ‖

2 + V , we get Newton equations. If H = 1
2g
ijξiξj, we

get the geodesics.

We will denote by φt the flow of XH:

d

dt
(φt(z)) = XH(φt(z))
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If H is an Hermitian matrix, we consider the dispersion relation

D(x, ξ, ω) := det(H(x, ξ)− ωId) .

The local solutions of D = 0, ω = hj(x, ξ), give several dynamics

with polarizations the eigenspaces

ker(H − hjId) .

Elastic waves:

utt = (λ+ µ)grad divu+ µ∆u

D = det
(
(ω2 − µ‖ξ‖2)δij − (λ+ µ)ξiξj

)
D = (ω2 − (λ+ 2µ)‖ξ‖2)(ω2 − µ‖ξ‖2)2

The first factor corresponds to P−waves, while the second cor-

responds to S−waves.
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(c) Green’s function/propapagator

Let us assume that our wave dynamics, U(t) = exp(−tĤ), is

generated by Ĥ = i
εOpεH. What is the semi-classical behaviour

of P?

For simplicity, we will assume that the dynamics is dispersive and

we are outside caustic points.

P (t, x, y) is a sum of contribution from rays going from y to x

in time t. If such a ray is generic, the contribution is a WKB

function.
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Dispersion relation The dispersion relation D(ω, x, ξ) = 0 is a

frequency dependent hypersurface in the phase space defined by

the vanishing of the (determinant of) the symbol of the wave

equation. Rays starting in Dω stays inside.

• In the case of Schrödinger equation, D = {ω = ‖ξ‖2 + V (x)}.

• In the case of wave equation: D = {ω2 = ‖ξ‖2
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Dispersive waves

From the dispersion relation, we get the ray dynamics which

is the Hamiltonian dynamics on D. We say that the wave is

dispersive if the speed ‖dx/dt‖ depends on ω.

• Schrödinger equation is dispersive

• Wave equations are not

• Effective Hamiltonian of surface waves with horizontally strat-

ified media are dispersive
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Caustic points

In order to give a more effective definition of dispersivity using

what is called caustics:

Let us start with an Hamiltonian H(x, ξ). Let us consider a

ray (x0(t), ξ0(t)), 0 ≤ t ≤ T . We will say that x0(T ) lies in-

side the caustic of x0(0) if the map ξ → x(T ) with (x(t), ξ(t) =

ϕt(x0(0), ξ) is not locally bijective.

For example, if H = 1
2g
ij(x)ξiξj, we recover the usual defintion

of conjugate points.
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Van Vleck formula

Non caustic points are usefull in deriving nice approximate for-
mulae (WKB) for the propagator.

In quantum mechanics, they are called Van Vleck formulae:

P (T,A,B) ∼
∑

γ∈RTAB

Pγ (10)

with RTAB the set of rays from B to A in time T and

Pγ ∼ aγ(ε)e
i
εS(γ)

where S is the Lagrangian action S(γ) =
∫ T
0 (ξdx+ ωdt).

Let us remark that as a function of A and B, S is a generating
function of the flow at time T .
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Formally, as it is well known, vV formulae can be derived from
Feynman path integral, by applying stationnary phase:

(FPI) P (T,A,B) =
∫
ΩT
AB

eiS(γ)/hdγ

where

• ΩT
AB is the set of paths in the configuration space from B to

A

• dγ is a (mathematically ill defined) measure on ΩT
AB

• S(γ) =
∫ T
0 L(γ(t), γ̇(t))dt is the (Lagrangian) action integral.

Non caustic condition is equivalent to non degeneracy of the
Hessian of S.
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(d) Egorov Theorem

Let us consider first the scalar case with no attenuation (Ĥ is

self-adjoint, unitary dynamics) U(t) = exp(−itĤ/ε) with Ĥ =

Opε(H).

Théorème 1 (Egorov, 70’s) If A = Opε(a),

At := U(−t)AU(t) ≈ Opε(a ◦ φt)

where φt is the Hamiltonian flow of H.
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Proof:

it is enough to look at the derivative, say at t = 0:

d

dt|t=0
At =

i

ε
[Ĥ, A]

and by the ΨDO calculus:

d

dt|t=0
At ≈ Opε{H, a}

and remember

{H, a} = XHa (=
d

dt|t=0
(a ◦ φt) ) .
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4a. Application to PI

We will assume that the noisy field f is the image Opε(p)w
where w is the white noise on X ×R and p = p(x, ξ). The source
correlation is then of the form k(x, (x−y)/ε)δ(s−t) where k is the
partial Fourier transform of |p|2 w.r. to ξ. Applying the previous
tools, we see, that we are able to compute the leading terms in
the behaviour of CA,B(τ): assuming a scalar dynamics, we get

CA,B(τ) = [Ω(τ)Π](A,B)

where Π is a ΨDO whose symbol can be explicitely computed as a
(convergent) integral over the trajectories from B to A in time τ .
More precisely, if such a trajectory γ satisfies γ(0) = B, γ(τ) = A,
it is an integral over t ≤ 0. The non-vanishing corresponds to
the fact that this negative part of γ crosses the support of the
noise f .

If B and A are not conjugate along γ it gives a WKB formula
for CA,B(τ).
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We cannot apply directly Egorov Theorem to Ω(s)KΩ?(s). We

first split Ω(s) = U(s)A(s) where U(s) is unitary and A(s) is a

contracting ΨDO (the attenuation) and Ω?(s) = A?(s)U(−s).
We can apply Egorov Theorem to compute

Π =
∫ ∞
0

U(s)A(s)KA?(s)U(−s)ds .

It implies that Π is a ΨDO whose symbol can be commputed.
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Time reversal symmetry

On the classical level, it corresponds to the fact that the dis-

persion relation is invariant by (x, ξ) → (x,−ξ). On the quantum

level, it means that the symbol satisfies H(x,−ξ) =t H(x, ξ)(=

H?(x, ξ)). In that case, the correlation CAB(τ) and CAB(−τ)
share the same oscillating part, but in general with different am-

plitudes.

46



4b. Application to TRM

We will assume that the operator B = KΩ is a ΨDO whose
symbol is localized in phase-space (frequency cut-off + place of
recording).

We need to evaluate the following integrals

1.

I =
∫
ψ(s)eisABeisAds

with B a compactly supported ΨDO

2.

II =
∫
ψ(s)e−isABeisAds
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The first one is small: indeed we can rewrite it as

I =
∫
ψ(s)B(s)e2isAds

and integrating by part we get

I =
∫
ψ(s)Bk(s)A

−Ne2isAds

which is of order εN .
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The second one is more interesting, because we can apply Egorov

Theorem and we get

II = Op
(∫

ψ(s)b ◦ φsds
)

where φs is the geodesic flow.

It immplies that R (R is the operator which associate u(2T )

to u(0)) is a ΨDO whose symbol does not vanish if T is large

enough. More precisely T ≥ T0 is enough, where T0 is what is

called the diameter of the Riemannian manifold (speed=1 !).
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Using ergodicity:if we assume that the geodesic flow is ergodic,

the averages

1

T

∫ T
0
b ◦ φsds

will converge to the space average and it implies that the symbol

of R will be independant of x: R is just a frequency cut-off.
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