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Abstract

Our aim in this note is to build quite general random fields with cor-
relation distances given by a small parameter ε. It seems to be natural
for that purpose to use ε−pseudo-differential operators. We will see how
to compute the generalized power spectrum using Wigner measures. Using
the previous tools, we will discuss natural statistics of waves, which we call
“microcanonical”.

1 White noises

Let (H, 〈.|.〉) be an Hilbert space. There exists a canonical Gaussian random
field on it called the white noise and denoted by wH (or simply w if there is no
possible confusion). This random field is defined by the properties that:

• For all ~e ∈ H,
E(〈w|~e〉) = 0

• For all ~e, ~f ∈ H,

E(〈w|~e〉〈w|~f〉) = 〈~e|~f〉

More concretely, if (~ei) is an orthonormal basis of H and w =
∑

wi~ei, we have
E(wiwj) = δij and hence E(〈Aw|w〉) = Trace(A).

Unfortunately, w is not a random vector in H unless dimH < ∞ , but only a
random Schwartz distribution. If w were a vector inH, we would have w =

∑
wi~ei

and we see that
E(‖w‖2) =

∑
E(|wi|2) = dimH = ∞ .

We have nevertheless the following usefull proposition:
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Proposition 1 If A is an Hilbert-Schmidt operator on H, the random field Aw
is almost surely in H.

Proof.–

E(〈Aw|Aw〉) = E(〈A?Aw|w〉) = Trace(A?A) which is finite, by defi-
nition, exactly for Hilbert-Schmidt operators.

�

2 Examples

Example 2.1 Stationnary noise on the real line: let us take a random field on
the real line which is given by the convolution product f = F ? w with F smooth
and compactly supported. Then f is stationnary: it means that the correlation
kernel K(t, t′) = E(f(t)f(t′)) is a fonction of t − t′. On the level of Fourier

transforms f̂ = F̂ ŵ, E(f̂(ω)f̂(ω′)) = |F̂ |2(ω)δ(ω − ω′) and the positive function
|F̂ |2(ω) is usually called the power spectrum of the stationnary noise.

Example 2.2 If X is a d-dimensional bounded domain. Let us denote the Sobolev
spaces on X by Hs(X). If P : L2(X) → Hs(X) with s > d/2, Pw is in L2(X).

Example 2.3 Brownian motions: if X = R, w is the derivative of the Brownian
motion: if b(t) =

∫ t

0
w(s)ds, b : [0, +∞[→ R is the Brownian motion which is in

L2([0, T ]) for all finite T .

Example 2.4 If X is a smooth compact manifold or domain and P is smoothing,
meaning that P is given by an integral smooth kernel

Pf(x) =

∫
X

[P ](x, y)f(y)|dy| ,

F = Pw is a random smooth function. Its correlation kernel

C(x, y) := E(F (x)F (y))

is given by:

[PP ?](x, y) =

∫
X

[P ](x, z)[P ](y, z)|dz| .

Example 2.5 Random vector fields: let us consider H = L2(X, RN). For ex-
ample, in the case of elasticity, X is a 3D domain and N = 3. The field here are
just fields of infinitesimal deformations (a vector field).
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3 Modelling the noise using pseudo-differential

operators

The main goal of the present section is to build natural random fields which are
non homogeneous with small distances of correlation of the order of ε → 0. The
noise is non homogeneous in X, but could also be non isotropic w.r. to directions.

3.1 Pseudo-differential operators

Let us recall that an ε-pseudo-differential operator P (a ΨDO) on Z, a d-
dimensional manifold, is given locally by

[P ](z, z′) = (2πε)−d

∫
Rd

ei〈z−z′|ζ〉/εp(z, ζ)|dζ|

where p(z, ζ), the so-called symbol of P , is smooth, compactly supported in z and
of Schwartz class in ζ, and ε a small parameter. We are only interested into the
asymptotic behaviours as ε → 0. We will denote

P = Opε(p) .

The kernel of P is then given by:

[P ](z, z′) = ε−dp̃

(
z,

z − z′

ε

)
with p̃ the partial Fourier transform of p(z, ζ) w.r. to ζ. Very often, one is only
able to compute the symbol mod O(ε) which is called the principal symbol of P .

The most basic fact about ΨDO’s is the fact they can be composed: if P =
Op(p) and Q = Op(q), we have PQ = Op (pq + O(ε)).

3.2 Noises from pseudo-differential operators

It is therefore natural to take for noise on a manifold Z the image of an homo-
geneous white noise by a pseudo-differential operator N of smooth compactly
supported symbol n(z, ζ). The correlation C(z, z′) will then be given as the
Schwartz kernel of NN? which is a ΨDO of principal symbol |n|2. We have

C(z, z′) = ε−d ˜|n|2
(

z,
z − z′

ε

)
.

This construction gives smooth random fields which can be localized in some
very small domains of the manifold Z, which are non isotropic and which have
small distance of correlations. Moreover it will allow to use technics of microlocal
analysis with the small parameter given by ε.
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4 Power spectrum and Wigner measures

4.1 Wigner measures

If fε is a suitable family of functions, we define the Wigner measures Wfε which
are signed measures on the phase space T ?Z defined by∫

adWfε := 〈Opε(a)fε|fε〉 .

The measures dWfε are the phase space density of energy of the functions fε.
Wigner measures are not always ≥ 0, but they are ≥ 0 in the limit of small ε.
It allows to replace our quantization by another one denoted Op+ which satisfies
the basic laws of ΨDO calculus, but also Op+(a) ≥ 0 is a ≥ 0. For more on
Wigner measures, see the nice book [5].

4.2 Power spectrum

Let us give a:

Definition 1 The power spectrum of a random field fε is the measure 〈dWfε〉
on the phase space defined as the averaged Wigner measure:

〈dWfε〉 := E(dWfε) .

We can now compute the power spectra of our random fields Opε(n)w as follows:

Proposition 2 If fε = Opε(n)w, the power spectrum of fε, 〈dWfε〉, converges
as ε → 0 to the measure (2πε)−d|n|2(x, ξ)|dxdξ|.

Proof.–

Let us put N = Opε(n), we have

〈Opε(a)Nw|Nw〉 = 〈N?Opε(a)Nw|w〉

and E(〈Aw|w〉) = trace(A). We get

E(

∫
adWfε) = trace(N?Opε(a)N)

which can be evaluated using the ΨDO calculus as

E(

∫
adWfε) ∼ (2πε)−d

∫
a|n|2dxdξ .

�
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4.3 Space-time noises

If Z = X × R is the space-time, we will take our noise as before f = Nw; we
will assume the noise homogeneous in time, the symbol n of N is assumed to be
given by n(ω; x, ξ).

In this case, the correlation is given by:

K(u; x, y) = [NN?](0, u; x, y) (1)

which is the Schwartz kernel of a ΨDO of principal symbol |n|2(ω; x, ξ).

4.4 The matrix case

If fε is a family of vector valued functions fε : X → CN , the Wigner measures
are as follows:

Definition 2 ∫
adWfε := 〈Op(a)fε|fε〉

where a : T ?X → Herm(CN).

The power spectrum of the white noise associated to L2(X, CN) is∫
a〈dWw〉 = (2πε)−d

∫
Trace(a)|dxdξ| .

5 Microcanonical white noise

5.1 General result

Let us give now a self-adjoint operator Ĥ on some Hilbert space L2(X, CN). For
example, the Lamé operator of elastic waves is acting on L2(X, R3) where X is
3D manifold. Let us choose some intervall I ⊂ R and the Hilbert space HI which
is the image of L2(X, CN) by the spectral projector PI of Ĥ. In case of a discrete
spectrum, HI admits an orthonormal basis of eigenmodes with eigenvalues in I.
The associated white noise wI is called the microcanical white noise.

In the semi-classical limit, its power spectrum is given as follows:

Theorem 1 Let H : T ?X → Herm(CN) be the classical limit (principal symbol)
of Ĥ, then the power spectrum 〈dWI〉 admits the following asymptotic behaviour:∫

A〈dWI〉 ∼ (2πε)−d

∫
Trace(χI(H) ◦ A)(x, ξ)|dxdξ| .

If A = aId, we get∫
A〈dWI〉 ∼ (2πε)−d

∫
Trace(χI(H))a(x, ξ)|dxdξ| .
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Let us recall that, if M is an Hermitian matrix, χ(M) is the Hermitian matrix
defined as χ(M) :=

∑
j χ(µj)Πj where the µj’s are the eigenvalues of M and Πj

the associated spectral projectors.

5.2 The power spectrum and the density of states

Definition 3 The density of states dEI(x) is defined by dEI(x) := [PI ](x, x)|dx|
where PI is the spectral projector associated to the intervall I.

Example 5.1 If φj is an eigenmode orthonormal basis associated with eigenval-
ues λj, we have:

dEI(x) = (
∑
λj∈I

|ϕj(x)|2)|dx| .

Example 5.2 If we start with the Laplace operator in Rd, we have

dEI(x) = (2π)−d

(∫
k2∈I

dk

)
|dx| ,

hence

dEI(x) =
bd

(2π)d
(E

d/2
+ − E

d/2
− )|dx| .

Example 5.3 If we have continuous spectrum described by scattered plane waves
ek(x) = eikx + sk(x), then

dEI(x) = (2π)−d

(∫
k2∈I

|ek(x)|2dk

)
|dx| .

Theorem 2 The density of states is the projection of the power spectrum on the
configuration space:∫

T ?X

a(x)〈dWI〉 =

∫
X

trace (a(x) ◦ dEI) .

It is well defined and not only defined in the semi-classical limit.

5.3 The case of body elastic waves

Recall the following simplified form of Lamé’s equation:

utt + Ĥu = 0, − Ĥu = (λ + µ)div gradu + µ∆u .

The principal symbol of Ĥ is

H = (Hij) = (µ‖ξ‖2δij + (λ + µ)ξiξj)
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whose eigenvalues are λP = (2µ + λ)‖ξ‖2 with a 1d eigenspace EP and eigenpro-
jector πP , and λS = µ‖ξ‖2 with a 2d eigenspace ESand eigenprojector πS. The
corresponding speeds are vP =

√
2µ + λ and vS =

√
µ.

The corresponding power spectrum is∫
A〈dWI〉 = (2πε)−3

(∫
λP∈I

Trace(AP )|dxdξ|+ 2

∫
λS∈I

Trace(AS)|dxdξ|
)

where AP = πP AπP and AS = πSAπS.
It leads to a natural equipartition of energy between P− and S−waves given

by ratio of the 2 terms in the previous formula:

EP

ES

=
µ3/2

2(λ + 2µ)3/2
.

5.4 The problem of surface waves: wave guides

Let us consider now the case of scalar waves in a stratified medium as in [3].
More precisely, we consider on X = R2

x × R−
z the differential operator:

Ĥ = −divN(z)grad = −N(z)∆x − ∂z(N(z)∂z)

with N > 0, equal to 1 for z << 0 and Dirichlet boundary conditions. We have

Ĥu(x, z) = (2π)−2

∫
ei〈ξ|x−y〉Lξu(y, z)dydξ

with Lξ := N(z)|ξ|2 − ∂z(N(z)∂z). The spectral theory of a Sturm-Liouville
operator like Lξ is reviewed in the Appendix.

Let us try to compute the density of states of the micro-canonical white noise
associated to I.

We get:

dEI = (2π)−2

(∫
[Πξ

I ](z, z)dξ

)
|dxdz| .

where Πξ
I is the spectral projector of Lξ. [Πξ

I ] splits into the (finite) discrete part
and the continuous part. We get

[Πξ
I ](z, z) :=

∑
λj(x,ξ)∈I

|φj|(z)2 + dξ
I(z) ,

with

dξ
I(z) =

1

4π

∫
k2+|ξ|2∈I

|eξ
k(z)|2dk

with eξ
k(z) ∼ eikz + r(k)e−ikz as z → −∞ is the “scattered” plane wave. For

z << 0, we recover the usual body waves while near z = 0, both terms contributes
in a non universal way.
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5.5 The case of surface waves: toy model of Rayleigh
waves

Let us take on R2
x ×R−

z , H = −∆ with boundary conditions ∂u
∂z
− cu = 0 on ∂X.

We will assume that c > 0. We can perform the same computation as before
in a more explicit way. Our operator Lξ is now −d2/dz2 + |ξ|2 with boundary
condition u′(0)− cu(0) = 0.

The spectrum consist of the “Rayleigh” mode
√

2cecz with eigenvalue |ξ|2−c2

and the continuous spectrum [|ξ|2, +∞[ with generalized eigenfunction ek(z) =
eikz + r(k)e−ikz and r(k) = (ik− c)/(ik + c). We have Lξek(z) = (|ξ|2 + k2)ek(z).
We get

dEI = (2π)−2

(
2ce2czArea(|ξ|2 − c2 ∈ I) +

1

4π

∫
k2+|ξ|2∈I

|ek(z)|2dkdξ

)
|dxdz| .

We can check the large energy asymptotics for z < 0:

dE[0,K2](x, z) ∼ K3

6π2
|dxdz| .

6 Dynamical equipartition

In this section, I will present 2 mathematical results on the case of quantum
dynmaical systems whose classical limit is “chaotic”.

6.1 Shnirelman semi-classical ergodic Theorem

Let us consider the Schrödinger operator Ĥ := −h2∆ + V (x) where we assume
that V is smooth, the following statement, known as the “semi-classical ergodic
Theorem”, was initially stated by Shnirelman [8] and proved in various context
in [11, 1]:

Theorem 3 Let I = [E0, E1] be so that V −1(I) is compact and the classical flow
of H = |ξ|2 + V is ergodic on each energy surface H−1(E) with E ∈ I. Let us
choose, for each value of h an eigenbasis (ϕh

j , λ
h
j ), λh

j ∈ I, with j ∈ Ah of PI(L
2)

where PI is the spectral projector. Then there exists subsets Bh ⊂ Ah so that the
Wigner measures of the φh

j with j ∈ Bh and λh
j → E converge to the Liouville

measure on H−1(E) and

lim
h→0

#Bh

#Ah

= 1 .
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6.2 Dynamical equipartition of a state which is localised
at time 0

Let us take φh so that Wφh
converges to δ(x, ξ). Then we expect that there exists

a windows of time of the order of | log h| (Ehrenfest time) so that the Wigner
measures of U(t)φh converges to the Liouville measure.

This result has been proved in [4] for the quantum cat map and a slighly
different version starting with WKB states has been proved in [9] for hyperbolic
flows.

It is expected that that such results are still valid for the elastic wave equation
in presence of interfaces. On the other hand, the quantum ergodic Theorem is
probably not valid for general matrix Hamiltonian even assuming the classical
limit to be ergodic as a classical random walk. It is clearly non valid for quantum
graphs as a result of explicit calculation for star graphs [7].

Appendix: review on spectral theory of some

Sturm-Liouville operators

Let us consider, on the half-line z ≤ 0, the formally symmetric differential op-
erator L = − d

dz

(
N(z) d

dz

)
+ V (z) with N > 0, N ≡ 1 as z << 0 and V ≡ a as

z << 0. Let us take some self-adjoint boundary conditions at z = 0:

(?) u′(0) = cu(0) or u(0) = 0 .

The self-adjoint operator (L, ?) admits a finite discrete spectrum

λ1 < λ2 < · · · < λj < · · · < λN < a

with L2−normalized eigenfunctions ϕj and a continuous spectrum [a, +∞[. The
eigenfunctions corresponding to the continuous spectrum are the functions ek(z), k ∈
R \ {0} which satisfy

• Lek = (k2 + a)ek

• ek(z) = eikz + r(k)e−ikz for z << 0; r(k) is called the reflexion coefficient
and satisfies:

|r(k)| ≡ 1 and r(−k) = r(k)

• ek satisfies the boundary condition (?) at z = 0.

A typical example is N ≡ 1, V ≡ 0 and u′(0) = 0. We have then ek(z) =
eikz + e−ikz = 2 cos kz.

The spectral projector ΠI is given by

[ΠI ](z, z
′) =

∑
λj∈I

ϕj(z)ϕj(z
′) +

1

4π

∫
k2+a∈I

ek(z)ek(z′)dk .
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The density of states of L is then given by

dEI(z) =

∑
λj∈I

ϕ2
j(z) +

1

4π

∫
k2+a∈I

|ek(z)|2dk

 |dz| .

For large values of z, the ϕj’s are small and we get

dEI(z) ∼ 1

4π

(∫
k2+a∈I

|eikz + r(k)e−ikz|2dk

)
|dz| .

For large values of z and k, we get dE[0,k2](z) ∼ k|dz|
π

.
For large values of k and any z, we get, by what is called the local Weyl law,

dE[0,k2](z) ∼ 1

π

√
k2 − V (z)

N(z)
|dz| .
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