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Abstract: The object of this paper is to present a geometrical formulation of the singular
Bohr—Sommerfeld rules given in [8], in a more general context, including characteris-
tic manifolds with several saddle points. Several examples are detailed and numerical
checkings of the results are provided.

Introduction

Bohr—-Sommerfeld rules allow to describe the semi-classical behavior of eigenvalues
for a completely integrable Hamiltonian system; in fact, they are only concerned with
the open dense subset of the phase space foliated by invariant Lagrangian tori and are
expressed as quantization rules which select some discrete set of these tori (see [3,13]
or [20]). These rules make use of action integrals and integrals of the sub-principal
symbol along the cycles of the invariant torus. It is possible to reinterpret these rules
outside any spectral context as existence conditions for solutions of a pseudo-differential
equation for which this torus is a Lagrangian submanifold of the characteristic manifold.

In dimension 1, ify is a smooth compact connected component of the characteristic
manifold ( is a topological circle), let us denote by, = fy &dx the action integral

and byr, = fy Hidt (Hy is the sub-principal symbol). K g, is the Hamiltonian vector
field associated with the principal symheb, dr is defined bydt (Xr,) = 1 andm(y)
is the Maslov index. A necessary and sufficient condition for the existence of a function
u satisfyingﬁu = 0 (h?) with L2 norm bounded from below, can be written as follows:

1

b4

In dimension 1 already, a generic Hamiltoni&fig(x, &) admits, in general, critical
values with singular corresponding level sets. Near some local non degenerate extremum,
itis always possible to regularize the equations using harmonic oscillators (see [4]). This
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is no more true for saddle points. There exists, however, a microlocal normal form (semi-
classical Morse lemma, see [7,6]). In the paper [8], we described the quantization rules
associated with the singular manifold in the case of a double potential well for the
Schrédinger equation.

The aim of the present paper is to reformulate and extend the quantization rules
of [8]. The reformulation is purely geometrical: the action integrals do not need to be
regularized, but the integrals of the sub-principal symbol are divergent and need to be
regularized using the symplectic geometry of the phase space (see 2.2).

In such a way, it becomes possible to describe the semi-classical spectrum in cases
where the characteristic manifold do admit several saddle points: multiple wells with
saddle at the same energy, pendulum on the torus. The case of coupled systems (see the
local theory in [6]) will be described in [5].

It is also possible to study scattering problems. The case of a potential with one
threshold only and the volcano-top are presented (see Sect. 13). In [5], we study the
adiabatic limit for aN-levels system with avoided eigenvalues crossings (see [18] and
also [16]). For comparison with existing texts, we insist on the fact that our methods are
situated in the smooth context and do not use analytic extensions. Subtle combinatorics
of Stokes lines (see [12] and [11]) is replaced by some algebraic mechanism on the
characteristic manifold which is a tetravalent graph.

The paper is organized as follows: microlocal solutions of the pseudo-differential
equation are sections of a sheaf on the characteristic magifdie abstract description
ofthese sheafsis provided in Sect. 4. The geometric description@tied)) of this sheaf
is given in terms of the classical invariants of cycles (Sect. 2) and saddle points (Sect. 3).
We consider in particular some canonical regularization of the integﬁyrdlﬁdt, where
y is a cycle of the characteristic manifold.

After that, we show how to perform the computations on several examples: eigen-
values of the Schrodinger operator with a double wellRom order to recover results
of [8] (Sect. 8), with a triple well (Sect. 9), discriminant and spectra of Hill's equation
(Sects. 10 and 11), system of two Schrédinger operators with a small coupling parame-
ter (Sect. 12), computation of the scattering matrix for potential on the real line with 1
(Sect. 13.1) or 2 channels (Sect. 13.2).

At the end, in the appendices (Sect. A), the theoretical results are compared with
direct numerical computations.

The cases of systems of Schrédinger equations (Born—Oppenheimer approximation)
and of the adiabatic limit for avoided crossings forMslevels system will be described
in [5].

The case of dimensions 2 will be studied in some future work with application to
semi-excited states in the resonaditcase (see [17] and [2]Focus-focusingularities
are discussed in [24] and [25]. General Morse-Bott singularities in dimension 2 will be
described in [10].

1. The Context

1.1. Classics.Let (X, w) be a 2-dimensional symplectic manifolkl {s the phase space)
and Hp : X — R a smooth Hamiltonian. In this pape¥, is the cotangent bundle of
M = Rorof M = R/Z, but it is also possible to work with a Riemann surface
(Toeplitz operators).

Let us assume that O is a critical valuerf and letZ be some connected component
of the characteristic manifoldy 1(0). Let us assume that all critical pointsE§ located
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Moo =4
mp = 10
n==6
N=5

Fig. 1. The characteristic manifold

on Z are non degenerated saddle points. For eigenvalues prolifeima, compact set,
while Z admits some open edges for the scattering problems. Let us denatg tiye
number of open edges &, Zg the set of all critical points and = #Zg. The setZ is

a tetravalent graph embeddedXn We will denote bys;, j = 1,---, n the points of

Zo (vertices ofZ), ¢;, | = 1,--- ,m the edges o (compact or open), let us define
m=mp+mx.Lety;, j=1,---, N beabasis of cycles &, i.e. abasis o 1(Z, Z)
(freeZ—module of rankV) which consists of geometric oriented cycles. Euler-Poincaré
formula implies:

N=b1(Z)=1—n+ myp,

with 4n = 2m — my,. In the compact castf = 1 + n.

1.2. Microfunctions.In this section we will give precise definitions and notations con-
cerningmicrolocalization(useful references are [7,22] and [25]). We want to study the

solutionsu of a differential equation of orden, Hu = 0, on the real line, depending
on the small real parametkr The general form oH is

m
H =" ay(x,h)DY,
a=0

h
i

whereD, = % and thea, (x, h)’s are classical smooth symbols

o
Ao (x, 1) ~ Y ag j(X)h7.
i=0
We will always assume that
m
Ho(x,€) = ) aq 0(x)§"
a=0

is real valued Hy is theprincipal symbolor classical Hamiltoniarassociated wittf .

Our goal is to study solutions #Hu = O(h™) intheh — O limit (semi-classical limit)

by using microlocal analysis: it means first studying solutions locally in the phase space
X = T*R and then gluing the pieces together.
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Definition 1. uy(x), h €]0, ho], a family of distributions«;, (x) € D'(R)), is anad-
missible functionalif, for any x € C5°(R), there exisk and N such that

I xunlls = O™,

where]||.||; is the Sobolev norm. For example arindependent distribution is an ad-
missible functional. Let us denote [, the quotient ring of (germs of) functions
1 110, ho] — C which satisfyr(h) = O(h—") for someN by the ideal of.’s which
satisfyr(h) = O (h™) (the field of formal Laurent series inis a subring ofCp).

We can also defineegligible functionalsu,, by

Vs, N, x. lxunls = O™)
and themicrosupport W Fj, (u;,) by

(x0, &0) & W Fp(up)

if and only if there existyy € CS° such thatF(xup)(E) = O(R*) in some fixed
neighbourhood op.

HereF is theh-Fourier transform defined by

Fu(€) = (2rh)~} / eIy ()
R

Important remark W Fj, (us) = # does not imply that, is negligible.u, (x) = ei*/"*
is an example. But, if we know moreover that is a solution ofHu, = 0, where
Ho(x, &) = am.o(x)E™ + - - - with a,,, o NnoN vanishing, then it is true by usual ellipticity.

The most appropriate language for what follows is to speakeavegsee [26]). We
will define the sheafM xy on X = T*R of microfunctionson X on which the sheaf of
pseudo-differential operators is acting. We will view it as a sheaf of modules on the ring
Cy. If U C X is an open set, the modulet x (U) of sections ofM x on the open sdt/,
is the quotient of admissible functionalgs by the equivalence relatidne, ~ vy, if and
only if WE,(up, — vy) NU = @']. We will call M x(U) the set ofmicrofunctionson U.
We will write u, = O (h*°) nearzg as a way to say thay ¢ W Fj, (uy).

Solutions of Hu = O (h™) can be studied by introducing the subshiaf of My
which is the kernel off (microlocal solutions off) whose support i€ = H, *(0) and

solutions ofHu = O (h™) are global sections o€ .
A typical example of equation is

H=P —Eq— Eh, 2)

where P is a fixed formally selfadjoint operator and E is a parameter which stays in a
compact domain of and with respect to which all estimates are uniform. Schrédinger
operators

h? d2

P=—— 4V —Eo—Eh 3
> 22 TV~ Eo : 3
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whereV is a smooth real valued function, are the most usual examples.

If E is real, solutions offu = O(h*°) correspond to eigenfunctions &f with
eigenvalueko + A E. In this exampleHo = 362 + V (x) — Eo.

We can also define treib-principal symbolH; of A by using the Weyl quantization

H = Opw(Ho + hHy) + 02,

whereQ has degree 2 with respectipmeaning that,, (x, #) = O (h?). In example 3,
H; = —E. TheWeyl quantizationOpw, is defined by

1 i X
Opw (H)u(x) = —— / ew—ﬂfH(%,s)u(y)|dydé|.

1.3. SpectrumAssume thatd is formally symmetric orC°(R) C L%(R, dx) and let
us denote byd, any self-adjoint extension df whose spectrum is denoted byH,,).
Let us suppose tha is compact, then if we can find non-negligible solutionsf
Hu = 0(h®) (with compact support) it implies that distari®es (H,)) = O (h™) by
the minimax principle.

Singular Bohr—Sommerfeld rulese geometric rules which are equivalent to the
existence of functions which satisfies

Hu = 0(h?),

are microlocalized orZ and satisfy the lower bounfl lu(x)|2dx > 1. In fact we will
prove existence of non-trivial functionswvhich satifiesHu = O (h™) but,in Example 2,
geometric conditions will be computed only to the first non-trivial order and determine
Eo+ Eh up to O (h?).

1.4. Regular Bohr—Sommerfeld ruledle can reformulate the usual Bohr-Sommerfeld
rules using the previous definitions.

1.4.1. WKB solutionsAssumeZ = Ho_l(O) is compact and smooth. Then the sheaf
K is locally free of rank one ofd. We will call W K B-solution neato € Z a generator

of the free moduldC ; (U), whereU is a small neighbourhood @p. Any WKB solution
can be written outside the caustic in the following form:

uh(x) = (Z aj()C)hj)e;‘;S(x)_i f):() Hldt' (4)
j=0

If = : X — R is the canonical projection, the half-density = n*(ao(x)|dx|%) is
invariant by the Hamiltonian flow od = {(x, $’(x))}. Remark that the principal symbol
of u, (after the definition of [13]) ise " 0 719 which isap if Hy is real valued. We can
choose a normalization (dependingxif Hi is not real valued) such thay = |dz|%.
We will say then thai, (x) is anormalized WKB solutioof Hu = O (h*°) at the point
X = XQ.

Itis the result of efforts of many people like Maslov and Hérmander that it is possible
to define also WKB solutions near the caustic points.
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1.4.2. Holonomies and Bohr—Sommerfeld rulésr any oriented connected component
C of Z (atopological circle) we can define the holonomy(ddl of the restriction taC
of this sheaf. .

hol(C) = e @™

wherea (h) is a formal series it

m .
a(h) ~ Y ajh!
j=0

with o = [ €dx anday = — [ Hidt + 5m(C), wherem(C) is the Maslov index.
Writing hol(C) = 1 gives a necessary and sufficient condition for the existence of non-
zero solutions microlocalized ahof Hu = O (h™). Using the main example (Eq. (2)),
we get then implicit relations foE which describe the spectrum ma@(#*°) in the
interval[Eg — Mh, Eo + Mh].

Theorem 1. Let ac(h) be a function which admits the formal serieé:) as Taylor
expansion ak = 0. If Z is compact and smooth, there is, fosmall enough, a bijection
between eigenvalues jitg — Mh, Eq + Mh] and the solutions afi“c/" — 1 for all
component& of Z which associate eigenvalues and solutions which are at a distance
O (h®™).

In one direction, one uses the minimax principle. In the other one uses the fact that the
sheaf is locally of dimension 1.

1.5. S matrix. Let us assume in this section thétis formally self-adjoint and that
Z admitsmy, = 2~ Open edges. Leb be a compact domain with boundaiyp in
X which contains the compact edgessfin his interior and such thatD intersects
transversally each open edge at 1 point. Each edge is oriented by the Hamiltonian flow
of Hg. There are as many out-going edges as in-going edges, they alternate when we
turn around D, because domains wheky > 0 andHy < 0 alternate. We assume that
thee;’s are in-going fori = 1, - - -, e @and out-going fol = oo + 1, -+ -, Meo.

Let Q2 be a neighborhood afD in X which intersects only open edges alid=
D U Q. We defineH; = K ;(Q Ne;) (free module of rank 1 ovet,), Hin = &3 H,,

i=1
Hout - @?1:0;100+1Hi a-nleoo - Hin (&) Hout-

Definition 2. We call theS-matrix of A thesubspace ofH{ ., defined as the restrictions
from functions ok , (2) to H, i.€. the sets of microlocal solutions G = 0 on open
edges which admit an extension as solutions on the whol&. §dtis space is in general
the graph of a linear mapping, also denoted®jrom H;,, into H,,,;.

We want to define theurrentsas an Hermitian forny onH ..

Let IT be a self-adjoint PDO of order 0 whose microsupport is containéd amd
which is microlocally equal to Id in some neighborhood®f\ 2. Let X be another
self-adjoint PDO which vanishes microlocally in some other neighborhoad ©f2
and which coincides with Id wher@ does not.

Definition 3. We defineurrents as the Hermitian form

J(u,v) = %(< SHAMu | v > — < u | THIv >).
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Fig. 3. How to defineJ

Itis possible to computé (u, 1) for any microlocal solutiom on the edge in terms
of his principal symbodbq(2) which is an half-density oainvariant by the Hamiltonian
flow of Hp.

Lemma 1.
ool

J(u,u) = :I:W + O(h),

with the+ sign for an out-going edge and thesign for an in-going edge. Heteo|?/dt
denotes the quotient of a density (square of an half-densityy layd not a derivative.

Proof. In fact, we have:

T, v) = % <[, AMu|My >= % <[, Hlulv > +0(h™).
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If u is a microlocal (WKB) solution ore;, we denote by € Q%(ei) his principal
symbol and we have for any PD@®whose symbol vanishes outsitke

< Aulu >=f Aolool? + O(h),
y

i

and the lemma follows from the computation of the symbol of the bre[dkeﬁ] which

is ’llfl—‘t’ if we denote by the principal symbol o&. We have then

do
J(u,u>=/ E|00|2+ o(h),
€

which gives the result becaué‘-@}t'—2 is time independent for a self-adjoift. O

The microlocal solutions on different open edges.&@rthogonals (by the fact that
PDO's reduce the WF) and, by Lemma 1, the fofris positive (resp. negative) definite
on the out-going (resp. in-going) edges.

The following result is not useful for what follows. The sketch of the proof is post-
poned to Appendix B.

Theorem 2. TheS-matrix is the graph of an unitary mapping frok;, to H,,, with
respect to the metrics induced respectivelybon #,,,; and—J onH;,, .

2. Semi-Classical Invariants of Cycles

To each cycley of Z, we associate 3 numbers: thencipal action A,, (more precisely
exp(;l—'Ay)), thesub-principal actior/,, and theMaslov indexm (y).

2.1. Principal actions4, . If y is a cycle ofZ, we put:

A, = /y Edx. (5)

If y = dD is the boundary of a compact domdinof the phase space, the numbgr
is the symplectic area of the.

2.2. Sub-principal actions, . If Xy, is the symplectic gradient dfp, we denote byl
the associated differential form dh\ Zg defined by:

dt(Xpy,) = 1. (6)

The numberd, areprincipal parts of the divergent integralﬁy Hidt. Itis enough
to describe how principal parts should be derived near saddle points.
Let AB be an arc ofy on which the unique singularity is We define

) ; (7

B a B
vp/ Hidt = |im / Hldt+/ Hldt+a(Sj)|n/ w
A a,b—0 A b Rap
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Fig. 4. Computation of the principal part cﬁ, Hydt

where
E£Hi(s;)

|detHo" () |1/ ®)

a(sj) =
andR, ; is the parallelogram built on the vectarsz ands ;b drawn on the figure. The
sign+ is + if AB is oriented in the same direction dsand— otherwise.

Lemma 2. The previous limit exists and is independent of the choices.

Proof. Performing firsta canonical transformation, we may assuméia) = Wx&+
0(|z|®). Of course, we havéV = j:|detl—l"0(sj)|1/2 with the same sign convention
as in formula (8). We can then computg +be)Hl dt by replacingHp by Wx&
(thendr = & = _5}_&5)1 which gives the following divergent part of the integral:

Wx
—Hi(sj)/Wlin(ab). O

If the cycley is smooth at;, we define

-4 y(—e) A
/ Hidt = lim ( + f )Hadt, 9
B e—0t Jp y(e)

whereu — y(u) is aC! parameterization of and withy (0) = s;. This choice is
compatible with the previous oneg:— I, is aZ—linear mapping.

Remark 1.1t is possible to check that the map— I, which is at the moment only
defined for cycles oz which have corners (angles =) extends (uniquely) by.—
linearity to H1(Z, Z).

Remark 2.Sub-principal actiong, do admit a natural interpretation in symplectic ge-
ometry. Let us assume thatis a simple cycle o¥Z = {Hp = 0} such thaty = 9D and
that Hp is < O insideD. Denote bys;, j = 1,--- N the saddle points of located on
y.LetH; : X — Rbesuchthatj, 1 <j < N, we haveH1(s;) < 0. Fort <0, let
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Fig. 5.AreaA(t)

us define

A(r) = / |dxd&|.
Ho+tH1<0

Then, ift — 0~, A(r) admits the following expansion:

N

A(t) = AQ©) + (> _eo(s)) (L —In|reo(s))))—71, + O(?In|z]).  (10)
j=1

2.3. Maslov indices:(y). We define the Maslov index of a smooth logfollowing
the usual recipe which is summarized on Fig. 6.

+1 -1

Fig. 6. Recipes for Maslov indices

Assuming that the tangent vectors to edges at singular points of the singular loop
are non vertical (i.e. non-parallel to tli§eaxis), we take the same definition counting
with 1 the caustics points of the non-singular part of the loop. If a tangent vector to
at a singular point is vertical, we make a small movezah order to remove it: there
are essentially 2 ways to do that. We choose one and keep the result in memory for the
labeling of edges (see Fig. 8) coming at these singular points following Fig. 7.
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Fig. 7. Desingularizations

3. Semi-Classical Invariants of the Saddle Points

3.1. Normal form.We may reformulate the semi-classical Morse lemma (see
[7, pp. 1546f.] and [6]) in the following way:

Theorem 3. There exists a (germ of) canonical transformatipriefined on(R?, 0),
(x, &) = x(y, n) which satisfyHgo x = W(yn)ynandx(0O) = s, s € Zg. Then there
exists an elliptic FIOU associated withy, a PDO W, elliptic at the pointO, and a
unique formal series

e(h) ~ iejhj (11)
j=0
such that:
HU = UW(y¥n — he(h)), (12)
microlocally nearQO.
¥n = ? (y% + %) (13)

is the Weyl quantization ofy. We have:

Hi(s)
|det(H{ (s))|1/2"

The signt- is the opposite of that d¥ (0).

== (24)

Proof. A very similar theorem is proved in [6] or in [7]. For completeness, we will give
a simpler proof here not using the Morse lemma of [9].

o We first prove the existence gf We may assume that= O and both branches &
nears are tangent respectively to the axgs= 0} and{y = 0} by an affine canonical
transformation. Itis now enough to use canonical transformajie6s n) = (v, n —
a(y)) andyx2(y, n) = (y — b(n), n) with appropriate functions andb in order that
the branches of nearO are the axes. We get then a functigiiy, n) vanishing on
the axis which can be divided by, inside smooth functions.
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/
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e
! /
el Ol  x1¢1 -
y
/
ey

Fig. 8. The choices of the;’s and of

e If U is any FIO associated with we get by Egorov’s theorem
Uy AU = Wo(yn + h Py),

whereWy and 1 are PDO’s of order 0. The first step is to fifiland R1, PDO’s of
order 0, such that

171y + hPOTT = (Id + hR1) (' + eoh + h2Py),

where P, is of order 0. Denoting by the same small letters the principal symbols we
get

1
E{yn, T} =¢&0+r1yn — p1.

This equation can be solved i if and only if the Taylor expansion of the right-
hand side does not contain powersygf (see [9, p.286] or [15, p.175]) which can
be achieved by appropriate choicesspfandr;. This is the first step of a proof by
induction. Next steps are similar.

e Uniqueness ofthe formal serie@) is proved in ageometrical way in [6]: we associate
to the microlocal situation a natural invariant usingrass-ratia

o We will prove formula (14). BecausHp vanishes and is critical at the poinitthe
sub-principal symboHi (s) of H ats is the same as that 8 (yi — heg) at 0. The
last one is—W (0O)eg. In order to evaluaté& (0), we compute the determinant of the
Hessian ofH at the critical point which is preserved ky We find:

W(0)| = |det(H"o(s))|2. (15)

For applications, it may be better not to assuingD) > 0. We prefer to assume that
the image byy of the first quadrant is pointing to the top (see Fig. 8), thié(D)

is > 0 or < 0 according to the sign aflp in that domain. The sign aofy has to be
exchanged according to the same rule.

Definition 4. The formal series(h) = g9 + O(h) is thesemi-classical invariantof
the saddle point.
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3.2. Microlocal solutions.Using the previous normal form it is easy to describe the
microlocal solutions ofHu = 0 near the vertex of Zg. We have the following:

Theorem 4. Assuming the same hypothesis as in Theorem 3, the module of microlocal
solutions neas is a free module of rank 2. More precisely, taking the choices of Fig. 8,
letus denote b ;, j =1, 2, 3, 4the free module of dimensidrof microcal solutions
onthe edge; there exists basis; of M ; such that the collectio(x;¢;) j—1,... 4 extends

to a microlocal solution near if and only if

() =re )

whereT (¢) is given by

l 1, —ET
T(e)=¢ (l.em T ) , (17)
with:
1 1 T
1 . L
_ ol gl (1/2+ie)+ie In(h). (19)
=g

Proof. Using Eq. (12), it is enough to prove the result fig = yn — he(h) and to find
microlocal solutionsy; of Hp which satisfies the statements of the theorem. ghe
are small variations of the formulae given in [7], formulae are as follows:

P1(y) = Y(y)|y| " Y2ele b1 (20)
@2(y) = Y (—y)|y| Y21, (21)
p3(y) = / Y ()n| Y2 W et Ml gy, (22)
0a(y) = / Y (-l Y2 F el gy, (23)

where

/ — (Zﬂh)_l/ze_iﬂ/4/

andY is the Heaviside's function. The;’s are generators of the microlocal solutions of
Eq. (6) on the edgaéj (see Fig. 8).

We define thewp; = Ug;. O
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4. Sheaves or¥

4.1. Linear algebra.Let Z be a connected tetravalent graph, embedded in the plane
X, which may have some open edges. Let us denote thne generic edge. We also
assume that we have chosen for each vertex some labeling of the four attached edges:
e1, e2, e3, e4 (for example, by following the convention of Fig. 8). We will always assume
that the direct cyclic order i€l, 3, 2, 4).

Definition 5. We define a sheadf = (Z, E., F;) on Z in the following way: to each
edgee, we associate a 1-dimensional vector spagever a fieldK (or a free modulus
over some ring) and, to each vertexwe associate a generic 2-dimensional subspace
F, of the direct sun@?zlEej. Generic means thdt; is not included into a sum of 3 of
the E,.; and does not contain any lings; & 0.

We can interprefy as the graph of a linear mappifg : E., @ E., - E.; @ E,,.
There exists some basis, which we cafindard basisf the E,; such that the matrix of
T satisfiesl; ; = 1for (i, j) = (1, 4), (2,3), (2,4) andTy 3 = p;:

T = (‘f i) . (24)

ps is @ non-zero scalar which is independent of the chosen hgsis: le%‘s‘ We may

interpret it using some cross-ratio as in [6]. Let us define the Iih;esc F as the
vectors whose projection oB,; vanishes. Them is the cross-ratio of the four lines
D;. Standard basis are umque up to some global similarity.

Such a choice of standard basis can be interpreted as a sub#hefaf on Z. The
germs ofF1-sections at each vertex is now of dimension 1. Ldde a cycle ofZz. We
associate with it a non-zero scalar ol which is the holonomy along of the sheafF;
defined using the following prescription:df; is a section on the edge(¢; € E. \ 0)
which we follow as section af; alongy, we get a new vectap_ in E, and we put:

Definition 6. The holonomyol(y) of y is then defined by:

¢— = hol(y).

We then have:

Theorem 5. Thern+ N non-zero scalarg, andhol(y) define the shed = (Z, E., Fy)
up toisomorphism. If we call treectionof F the data of one vector & E, which belongs
to F; for each vertex, the dimension of the space of sectig®) is only dependent
of these invariants. The same statement is true forSthmatrix (up to conjugacy by
diagonal matrices) in case whe#&admits some open edges.

Proof. By cutting some edges o, we get a maximal tre& of Z. Eachorientedcut
edge is associated to some unique cycle H1(Z, Z) and that way we get a bijection
between the set of cut edges and a basis of cycl@s dhe data permit to trivialize the
sheafF; on T and to rebuildF on 7. Holonomies haly) can then be read on the cut
edges using Definition 6.0
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Fig. 9. Recipe for the holonomies

4.2. The semi-classical cas®loduli F; are given by microlocal solutions near the
saddle poink. The numbelp is computed in terms of the serie§:) associated to the
saddle point by Theorem 3. More precisely, we get

ps = —e?"¢. (25)

Of course, we may have used another normal form in order to define the sub*heaf
We then take the normal form given in Eq. (17) for the definition of a standard basis.
As e — +oo, Stirling’s formula allows to show the following asymptotics;

T () = ¢ INlhel ((1, 2) 1+ 0(3», g — +00, (26)
&
and
T(e) = e'eMlhel (f’ ’0) 1+ 0(3», g — —o0. (27)
£

These asymptotics describe the transition between the singular and the smooth case.
They allow in particular to check the validity of the quantization rules!

Problem. How should we write the conditiobg(F) # 0 in terms of these invariants?
How should we compute the scattering matrix?

Here is a possible way to derive the quantization rules. We firgijcetiges ofZ in
order to get a maximal treg. We recall that once chos@hthere is a canonical bijection
between cut edges and a basighfZ, Z): to any cut edge is associated the unique non-
trivial cycle of Z which is contained iff" except for this edge. We choose a non-zero
sectiong of F1 on T. We then try to get a solution such that = x.¢., e € E(T).

The (x.)’s should satisfy
(iij) =T(s) <f€:> . (28)

e at each vertex, we have
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e x., = (hol(y))x._ for any pair of edgese., e_) of T which comes by cutting the
edge ofZ associated with the cyche.

Putting these last equations in the first system produces a systeradn homoge-
neous linear equations withunknown. The quantization rule can then be written as the
vanishing of a x v determinant where = 2n.

The self-adjoint caself each space, is equipped with an Hermitian metric and if the
T, are unitary maps, it is possible to choose as a normal forififarunitary matrix and
the moduli of the holonomies h@t) are 1: they are just phase shifts. It is easy to check
that the conditiorbg # 0 can be rewritten as follows: “1 is an eigenvalue of a unitary
matrix”. We can take for example tl&matrix associated to a maximal treeof

Let us assume that we are looking at eigenvalues of a Schrodinger opg&rédér
Sect. 1.3). The equatiaby # O is equivalent to 1 is an eigenvalue of a unitary ma-
trix which depends of the spectral parametefThis equation with complex entries
depends on areal parameter. In fact this equation is equivalent to a real one, the singular
Bohr—Sommerfeld rule: if we puk = {A € U(n)|1 € o(A)}, K is a codimension 1
submanifold ofU (n).

5. Computation of the Holonomies up toO (h)

We should first computg; and the holonomies h@t) as in § 4. We have already seen
thatp, = —e?™®. We are left with the computation of holonomies, which is the main
statement of this paper:

Theorem 6. Assuming the choice of the normal form given by Eq. (17) and the conven-
tions of Fig. 8, the holonomidwl(y) are given by:

hol(y) = e &r=ily+3m) (1 1 O (h)), (29)

whereA,, I, andm(y) are defined in Sect. 2.

6. Justification

Lety;(y), j =1, 2,3, 4 be the functions defined by Eq. (20). Thenfidie a microlocal
solution in some neighborhood of of the equation

(Yn —he) f = O(h™),

f is microlocally outside of O equal tp;¢; on e/j. We have then:

(ys) —T() (n) .
Y4 y2
Let us put (assuming we are in the generic case and restricting to the adyes

e4) .

' _(ab .
X(O)_(cd) witha > 0, b < 0O,

wherey is the canonical map of Theorem 3 (see Fig. 8).
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We may assume that the singular pains the originO. Let S(x, y) = So(x, y) +
O((|x] + |y))3) be the generating function gf defined by:

as as
e el G
Y ay ox

1
So(x, y) = 2—b<dx2 — 2xy +ay?).

andS(0) = 0. We get:

The FIOU is then given by:
0f@x) = f ST Cy(x, y) f )y,

whereCy(x, ) ~ Y% C;(x, y)h/ andCo(0) = [b] 2.
Let us defingp; = Ugoj. By Eq. (12), thep;’s are microlocal solutions aoff on the
e; 's.
We compute the WKB form op; (resp.¢4) for x1 > 0 (respxs > 0), but close to
0, in order to compute their phase shift. We apply the stationary phase method to the
integral (wherex; > 0):

Pr(x) = f 5L Cy (xp, Vg1 (g (Y,

whereg(y) € Cg°(R \ 0) is 1 nearyg and such thag (yo, 0) = (x1, 1) = z1. We get:
ISy e 2y 13
P1(x1) = —ier 1" |x—1|2(Ao(X1) + O0(h)),

whereAp(x) = 14+ O(x) andSy1(x1) = fOZl &dx is the generating function of the arc
x (R x 0) which vanishes at = 0. In the same way, fot; > 0,

i

. X 1
ba(xa) = —ieh 90D ~ie IR 213 (Bo(va) + O(h)),
X4

whereBo(x) = 1+ O(x) andSa(xa) = 54 &dx is the generating function of the arc
x (0 x R) which vanishes at = 0. We now already from 1.4.1 thAt)(x)/|x|% |dx|% =
ao(x)|dx|% lifted to Z is invariant by the flow. Knowing that ligg .0 Ao(x1) = Limplies
that this half-density is the canonical one. The same is trugfevith bo(x)|dx|%.

Let us evaluate(x4) (resp.¢4(xp)) starting from their values at; (resp.xs) in

order to calculate their phase shift, using the usual WKB formulae.
Puttingz; = (x;, S’ (x;)), j =14, we get:

i A . . rA
7 [ Edx+igln %L—l fZl Hidt

$1(xa) = —iao(xa)e 1+ O(h)),

where the integrals are computed Bnin the same way:

i B . X, . rB
$u(xp) = —ibo(xg)el b EXTIENTII L Hadt g 4 o py).
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Fig. 10.Computation of the holonomy

Using the preceding computations, we can find the phase shift

¢alxp) i $1(xa)

_ , 30
bo(xp) ap(xa) 59
1 (B A B
Q= _/ tdx + | Hidr— | Hidr +eln) 222, (31)
hJa a1 24 ab

Going to the limit wherezy, z4 — s and usinglw(sz1, sz4)| ~ f}ljﬁ“‘ and the defini-
tion 2.2, we get:

1 B B
Q= —/ Edx — vp/ Hidt + O(h). (32)
hJa A

7. Summary of Quantization Rules

Summarizing, we start with a semi-classical Hamiltonian whose principal syfiisl

real and whose sub-principal symbol is denotedfyWe first look at the characteristic
manifold Z = Ho‘l(O), and calculate the invariantsof the saddle points. They are
formal series irh whose first ternzg is given by the formula (14). We then choose some
maximal treel’ of Z and some orientation of the cut edges. Itis then possible to calculate
the holonomies of the corresponding cycles using formula (29). We then describe any
microlocal solution in terms of the trivialisation @ in the following way:

U = BeXelle,

where the sum is on the edges®f The conditions on the,’s are then given by the
matricesT, associated to each saddle point and the holonomies- hol(y)x._ if the
cycley corresponds to the cut edge= e Ue_ following e_ and there,.. The relative
error on these conditions is of ordén2>°); it is of order O (h) when we approximate
the holonomies using Eq. (29); in that case, it is also possible to replacey without
changing the relative error.
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8. The Double Well Potential

8.1. Generic study of the double well potentith.this section, we will apply the previous
theory to the situation of [7] and [8] wheté = T*R andV : R — R is a function
with a double well. Without loss of generality, we may suppose that:

V(0 =0, V/(0)=0, V=V"(0) <0,

e.g0.V(x) = x%((x — b)2 —a®) witha > b > 0.

V(x)

Fig. 11.A double-well potential

Let

A h? d?
H=———4+Vx)—X\h 33
5otV (33)
be the corresponding Schrodinger operator. A normalized solutidiuot= O (h*)

exists if and only if\ is an eigenvalue 0#% % + V(x) up to arelative error of order
O (h*) (relative to the closest eigenvalue).

We have:

(34)

det(H"g) =V, eo
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Let us denote by:; = ¢'%i the holonomies of the loops;. The holonomy equations
read:

x1 = hixa, x2 = hax3, (35)

and the critical point relations are:

(2)-ro(2)

We get the following quantization relation:

0 hyt _
det(( Y ) _ T@) _o. (37)

or equivalently “1 is an eigenvalue of the matrix”:

T(a)<2zgl), T(s):é’(l.le_m ile_ )

This matrix is unitary, hence we may apply [8, Appendix] and rewrite the quantization
rule as a real equation, like [8, Proposition 3]:

Proposition 1. The equatioriu = O (h*°) has a normalized eigenfunction if and only
if A satisfies the following condition:

1 61— 62 01+ 62
mcos( 5 )_cos< 5 +2+elnh+argF( +zs)> (38)

wheres = g9 + O (h) (cf. (11) and (34)) and:
o0 — ha. ol — ho

with

Edx — kvp/ di + % Y
Vi

1
yi

J
We want to calculate more explicitly (38) up to a relative error of o@dék). Hence
we replaces by ¢p, and calculat®#; andé, using (29). We observe that the Maslov
indices are +1 and that th#,, values are opposite to the area inside the cyglésince
d(édx) = —dx A dE). It remains to do the calculation of the regularized integfgls

Note that along a trajectory of the Hamiltoniagh= £2/2 + V (x) one has:

d
d—): —t = +/2V(x).

Let y denote one of the two cycles, Iatbe the intersection of with the x axis. Let
x4 be thex-coordinate ofd (e.g. forV(x) = x2((x — b)®> — a?), x4 = b + a). From
Definition (8), we get:
a A
L, = lim (| Hdt +ﬁ Hidt + a(0) In/ )

ab—s; JA R& [

In|2xy/ =2V (x)]).

= Imye / m J_
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8.2. Non-singular limit.In this section, we show that the limit of the singular Bohr—
Sommerfeld quantization rules as» +oo are the usual quantization rules.
We apply the Stirling formula:

1
argF(z +ie)=¢ln|e| — e+ 0(D),
and evaluate the area inside the cu§;/e+ V(x) = 7 ast tends to 0. From Eq. (10)
(Sect. 2.2), we get:

T kd

N

whereH; = 1in the definition of thd,, integrals.
Heretr = Ah and we must change the sign4fr) since the cycles are oriented using
the trigonometric convention:

A(r) = A(0) + 2= (1~ | — (L + Iyt + O(22In ),

M |AR| 2.2
édx:f Edx+2——(IN—— -1 + U, + I,,) h + O(A°h“Inh)
/H:M H=0 N ner

= / £ dx + 2e0h(In |heo| — 1) — (L, + L,,)H1 + O(A%h%Inh),
H=0

whereH; = —A.
If X tends to+oo, Eq. (38) is satisfied if the argument of the cosine of the right-hand
side ist/2 modulorw, hence:

01+ 0
£+slnh—e+sln8+og(1)=kn. (39)
On the other hand:
1+6> =« 1 1
==+ dx — =(I, + I,)(H
2 2 o /;-1:05 X 2( n+t yz)( 1)

r 1 5

= -+ = & dx —eo(In|hegl — 1) + O(hInh &f),
2 2h Jg—in

therefore (39) becomes:
1 b4 2
EA(hs) o+ OhInh &%) 4 0ps 400(1) = km

which is the usual Bohr—-Sommerfeld quantization rule. We leave the same verification
asa tends to—oo as an exercise for the reader.

8.3. Analytic calculations for polynomial potentials of degreeln this section we
examine further the examplé(x) = x2((x — b)? — a?).
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8.3.1. ResultsUsing our preferred CAS (computer algebra system), we determine an-
alytically theA,,’s:

2va% — b b 2b
Ay, = ﬁ( — Va2 — b2b? — ba? arcsw(;) e n) ,

2

Ay

8

2V a? b b
_ «/é( S — Va2 —b2? — batarcsin2) + a 2”)
a

andl,’s:

7 7
I, = o (E In2(a® — b%) — 2 Ina) =& (5 In(2(a? — b%)) — 2 Ina) . (40)

We observe that,, = I,,, this will be explained in Sect. 8.3.2.

Hence (29) reads, up to a relative error of orddr:):
a’bm

h 9
7 2 2

0L+60=m — 280(— In(2(a® — b%)) — 2Ina) +

+«/§%( 2vat = b7 — Va2 — p2b? — bazarcsir(g)) ,

91—92=\/§

then we apply (38) and we get:

Proposition 2. The solutiongg of:

1 a’brw 7 ,
WCOS( o ) = COS(T[—ZSO <— In(2(a“—b ))—2|na>+ (41)
a2 —p2°

+§ {_2 - —Va?2—b2b?—ba? arcsin~ )]

1
+é&gln h+argl“(§ +i80))

correspond to the eigenvalugs = /2(a2 — b2)soh of the Schrodinger operator

H= h2d2+V()—2(< b)? — a?)
= 2dx2 X)) =X X a

up to a relative error of ordeiO (k) (relative means relative to the closest eigenvalue).

If we want to get the numerical values of the eigenvalues, we are left to solve (41). In
Appendix A, we will compare the corresponding eigenvalukso the eigenvalue that
we calculate using purely numerical techniques (Runge—Kutta’s method here) to show
the accuracy of the singular Bohr—-Sommerfeld quantization rules. The semi-classical
method is very useful for small values bbecause the computation time is essentially
independent of:, as it grow linearly for the Runge—Kutta method since we have to
choose a step of sizé: (therefore we must make/{sh) steps).



Singular Bohr—Sommerfeld Rules 481

8.3.2. Equalityl,, = I,,. The equalityl,, = I,,, for polynomial potentials of degree
4 can be shown directly. From (10), we have to show thatE) — A_(E) = constant,
whereAL(E), E < 0, stand for the areas of the two componentgof £) /624 V (x) <

E}. Let y. denote the border of these two domains, one has:
dA d
= | = (42)
dE ve &

The 1-formds—" is holomorphic on the smooth holomorphic projective compactification

of the curvet? + V(x) = E. This curve is a torus i¥/ is a polynomial of degree 4,
hence the curveg, andy_ are homotopic (for they are non degenerate and they don't
intersect), which completes the proof of (42).

9. The Triple Well Potential

Same context as in Sect. 8, Buis a potential with three wells so that the corresponding
saddle points are at the same height.

V(x)

Fig. 13.A triple well potential

+ X

Fig. 14.The triple well potential in the phase space

We construct a maximal tree (see Fig. 14) with 7 edges denoted py*, ¢+ and
x. The holonomy equations corresponding to the three cyglegg andy¢ are:

at =aa”, b+:/3b_, c+:yc_.
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Lete andn denote the semi-classical invariants of the two vertices, the following relations

hold:
a” bt b~ ct
(3)-ras). (£)-ro(s)
Hence:
bt a~
T() O at ] | x _0
0 T )| ¢t b- | T
X c
Since:
a” 0 =t 0 0\ /bt
x| | 0 0 0 1f|]|a*
b=~ |pto o0o0]|ct
c” 0 0ylto) \«x
the system has a non-trivial solution if and only if:
0ol 00O
T O 0 0 0 1}]_
0 o0 ylo

Let £ and N denote the common factors of the coefficients of the matrites and
T (n) defined by (18) fo€ and a similar formula foA/. Dividing the first two lines of
the determinant by and the last two lines b/, we get:

. 1
:-L —em e - af 0 91

lel 1 0 = _0
w0 1 jemmm | T
0 o0 e — 51

Now we expand the determinant with respect to the first column:

L—ie (e — i))(1 —ie (e — i)) +
af

yN
1 . 111
— - )= ——)=0.
e o) g e TN
Defining:
1 1
A:eienﬁ—iﬁ, C:einﬂ—i-in/, (43)

we rewrite the previous equation as:

AC

—nm —eT _
A+eC)A+e "A) = _,3/\/'5.

(44)
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We want to show that this complex equation reduces to a real equation for real values of
E. For this we will prove that the modulus of both sides are equal. Let us introduce the
following notations:

@ = —arga —argl, y = —argy — arg\. (45)
Using this notation we may rewrite:
A= 414274 C = 4 /14~ 217el7
since|&| = 1/v/1+ =27, Hence:
14 e A =14e 27 4 ¢ 781 4 ¢—216,i4
=14 e 2704

and Eq. (44) becomes:

AC

BEN

It is now clear that both sides have the same modulus, therefore this equation reduces
to:

ei&+i’7\/1 + 6_28”\/1 +e~2m AC = —

7+a=m—argp —argf —argN +2argA +2argC (2n).
Eventually we get:

Proposition 3. The eigenvalues of the triple well potential Schrodinger operator cor-
respond to the solutions of:

argB) — argla) — arg(y) = 7w +2argA + 2argC  (2r) (46)

up to a relative error of ordeiO (h*°). Herew, 8 andy denote the holonomies of the 3
cycles andA, C as defined in (43), (18).

Exercise.Leta > 0,5 > 0 and define:
V) =ax? - 1% —b(x? - 1% = (x? - 1%@ax®—a —b).

Calculate the singular Bohr—-Sommerfeld quantization rules and compare with purely
numerical techniques, as for the quadratic potential of Sect. 8.3.

Hints:
We have:
V/(x) = 2x(Ba(x2 — 1)% — 2b(x% — 1)) = 2x(x2 — 1)(3ax? — 3a — 2b),

hence this potential has five critical points=61, /1 + 2b/(3a). The corresponding
critical values are—a — b < 0, 0, —4b3/(27a%) < 0 and the corresponding Hessians
are: G+ 4b > 0, —8b < 0 and 24 + 16b2/(3a) > 0. HenceV has two local maxima
at+1 with V(£1) = 0. Itis possible to calculate analytically the action integrals since
forx e [-1,1]:

Wx)=v/-Vx) =1 - x)Vb+a—ax?

and I W both admit an explicit anti-derivative.
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10. Hill's Equation
In this section we are concerned with the Schrédinger operator

h? 42

H=—-——+Vx),
st (x)

whereV : R — Ris aC* periodic potential of period > 0 such that supg V (x) =
0.

10.1. Hill's Equation: Spectrum and discriminantet us recall some well known facts
about the spectrum of the Hill equation and its discriminant.

The operato# is essentially self-adjoint and has a continuous spectrum made of the
union of intervals callethandsseparated bgaps

In order to get quantitative information on these bands, let us introduckdt@Emi-
nantfunctionA(E). Let P : C2 — C? be the linear map defined B (1 (0), u’(0)) =
w(T), u'(T)) whereu is a solution of(ﬁ — E)u = 0. Itis easy to prove thalg has
determinant 1.

Definition 7. Thediscriminant of the Hill equation is defined by:
A(E) = trace Pg).

The graph ofA (E) looks like Fig. 15.

A(E)

12 N

Fig. 15.The discriminantA (E)

We define the periodic spectruﬁ‘f < ... < E,j < ... as the spectrum of the
operatorH restricted to the periodic functions. TIE%*'S are precisely the solutions of
A(ET) = 2. We have a similar definition for the anti-periodic spectrBin < --- <
E, <---,thisis the spectrum off restricted to anti-periodic functions. THg ’s are
the solutions oA (E~) = —2. The following inequalities hold:

Ef <E] <E; <EJ <Ef <E3 <---
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and the bands are given by:
Baj1=1E3; 1. Ey; 4l j=12,--,
Byj = [Ey;, Exjl, j=1,2,---.

More generally, the spectrum &f overkT-periodic functions is the union of the solu-
tions of: A(E) =2 cosz%.

The sizes of the bands are exponentially small Bor< 0 ash — 0" and the
sizes of the gaps are exponentially small o= 0. We want to describe the transition
between this two regions, for this we will compute the asymptotic expansion series of
A1(A) = A(h)). Moreover, we will use this asymptotic to describe the spectrui of
restricted tok 7 -periodic functions.

10.2. Semi-classical asymptotic of the discriminant if the potential has a unique max-
imum per period.In this section, we assume thit 1(0) = 27Z and V"(0) < O,

e.g.V(x) = cosx — 1. Letyy denote the 2 cycles af* (o) defined byy, (s) =
(s,/—2V(s)), 0<s <2randy_(s) = (2r —s, —/—2V (27 —s)), 0< s < 271.

V(x)

Fig. 16.An example of periodic potential

Theorem 7. The holonomies of; andy_ are equal. Letr be their common value:
o=t L o), 47)

whereQ = fy+ &dx andJ = vpfy+ dt. Lete be the semi-classical invariant of the
critical point (0, 0):

A

o0
£ = 8-(k)hj, g=——.
,X:;) ! 2%

The following relation holds fofA| < M:
1
A1(L) = 2/ 1 + e~ 2ne cos(— arga +¢elnh + argl"(é + is))+0(h°°), (48)
hence

Q 1
A1(}) = 2¢/1 + e—27¢0 cos(—z —AJ +eolnh + argl“(é + igo)>+0(h Inh).
(49)
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This result extends to thé> case the result of Marz ([19]) which was valid under
analyticity assumptions.

Corollary 1. It follows immediately that in the region whexe— 0, we have:

A1) = 22 cos(9 n th>+0(x) +O(Inh). (50)
h vz

Hence the gaps and bands have asymptotically the same length

_ wh|V"(0)]?
~ 2/Inh|

Proof. Nearx = O™, a solution of the Schrédinger equation is characterized by its
coordinatesxy, x, x3, x4)) in the basig¢;) of microlocal solutions. Letys, - - - , y4)
denote the coordinates of the same solution neat 27 with respect to the basis
(¥;) The Pr matrix is conjuguated to the matrix defined @, y2) = Pr(x3, x2). Its
expression is easily deduced from thenatrix and the holonomies:

¥3 = ax1, X4 = ayz, (ij) =T(e) <§;> : (51)

Fig. 17.The phase portrait for the Hill's equation

Factoring€ in the T (¢) matrix (cf. (18)), we get:

g —ioe ¢
Pr=|(¢
E=\ je™ Ed4eZ) |-
o

o

Hence detPg) = 1 as it should be and:

tr(Pg) = 2y 14 e—27¢ cos(— arga) + eIn(h) + argl“(% + is)) R (52)
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10.3. The periodic spectruniThe periodic spectrum is easily deduced from the equation
A1(2) = 2. We will now determine it by a direct method. We will also describe these
two methods in Sect. 11 in the more complicated case of the spectrum of the Hill's
equation on Z and & periodic functions. The situation is similar to the double well
potential, but here the pairs of exponentially close eigenvalues occur for energy value
that aregreater (instead of smaller) than the critical energy, these pairs come from the
microlocal effect between the two classical symmetric trajectories.

In the transition energy interval, one has (cf. Fig. 18):

X3 = OX], X4 = QX2 (ii) =T(e) (i;) . (53)

Hence 1 is eigenvalue of the unitary matrix:

ab a0
(cd) = T(8)<Oa)’

As for the double-well potential, we apply the following equation from [8, Appendix]:

la] cos(argzad - arga> = Cos(arg;d)

and we get the singular Bohr—Sommerfeld quantization rules:

1

= cos(— arga +elInh + argI‘(% + is)) . (54)

Fig. 18.The 0 energy trajectory in the phase space for the pendulum
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This equation may be deduced from (48) angA) = 2 as well. Let us remark the
minus sign in front ofe in the exponential of the left-hand side of (54); it confirms
the existence of pairs of eigenvalues #or> 0 instead ofE < 0 (as obtained for the
symmetric double-well potential). A more precise study of the solutions of (54) could
be done, and would show the same universal transition of the eigenvalue ladders.

Example. For the Mathieu Equatiol (x) = cosx — 1, we findQ2 = 8andJ = —5In 2.
We have done a numerical comparison of the eigenvalues obtained by applying the
singular Bohr—-Sommerfeld rules and by using direct numerical methods, see Sect. A.2.

10.4. The semi-classical asymptotic of the discriminant for two maxima per pdrod.
this section, we study the Hill's equation assuming that the potential has two maxima
per period. With the notations of Fig. 19, it suffices to calcula@#, Y) as a function

of (b™, ). The holonomy equations read:

Fig. 19.The double well for the pendulum

_X
C B

with @ = hol(y4) andB = hol(yp), and the critical invariant equations are:

() =mn( ) (5)mo ()

a+=a_%, b+=b_,82, xT
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Using again our preferred CAS, we determine the functioh, y) — (B, Y). We
check that the corresponding matrix has determinant 1, and its trace is given by:

A =21+ e2t6/1+ 210 coqarge + argpB + arg€ + argN) +
+2¢ 7 cogargB — arga).

It is now easy to get information about the lengths of the bands and gapeads
to 0. Modulo a relative error of order/[in(h)|, we get:

A = 4cogarga + argB + (¢ + n) In(h)) + 2 cogargp — arge),

and we rewrite this equation as:
A=2+4 [Cos(arga +argp + (¢ + ) In(h)) — sir? <—arg’3 > arg“)} .

Therefore the inequalith > 2 is equivalent to:

cosarga + argp + (¢ + n) In(h)) > sir (M)
up to a ¥|In(h)| relative error. Hence, the bands and gaps do not have generically the
same length near the 0 energy, except K= «. These lengths depend on the value of
argp — arga. For example it is possible to have gaps of asymptotically small length or,
conversely, bands of asymptotically small length.

11. The Periodic Spectrum Over I and 3T Periodic Functions

We proved in the previous section that the pendulum showed the same universal transition
as the double well potential. It is natural to explore the situation of the double and triple
translation-symmetric well oveld = R/(2rxZ). The reference models afé(x) =

1 - co92x) and 1— cog3x).

11.1. The translation-symmetric double well.

11.1.1. Direct methodIn this situation, we will have pairs of exponentially close eigen-
values in both energy domaing (>~ 0 andE < 0), but the tunneling trajectories that
explain these couplings are different.

We can keep the notations of Fig. 19 but we have aow 8. there is a little cycle
of holonomya2, and two big cycles of holonomies 2 and 1. The two critical points
have the same semi-classical invariant

We get:
a~ bt 0 O 1 bt
y | _ (TG 0O x| [0 O 0 1) ([ x
b=l =\ 0 Te))lat ] " |a?2 0 0 0| at
xt y 0 a2 00 y
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This homogeneous system has a non-trivial solutioh x—, a™, y) if and only if its
determinant is 0. Factoring in each line (cf. (18)) gives:

1 Pl -1/£ O
ie 7" 1 0 -1/& _0
—1/Ex® 0 1 ie T | T
0 —1/Ea? ie”" 1
and eventually:
. 1 L 1
EAQ—ie )=+~ where EQ+ie ) =+—. (55)
o o

As a consequence, we obtain the equidistribution of the eigenvalues near energy 0 in the
semi-classical limit (here “near” means after a zoom-out of factdr) 1

11.1.2. The trace method he eigenvalues may be distinguished by parity properties:
the periodic [respectively anti-periodic] eigenvalues correspond to eigenfunctions that
satisfy f (x +7) = f(x) [resp.f(x + 7) = —f(x)]. Hence we have to check if 1 and

—1 are eigenvalues of the translation matrix over a half period, or, since the determinant
of this matrix is 1, to check that the trace is 2 (periodic eigenvalue}®fanti-periodic).
Therefore we are lead to the equation:

1

Fore = 0, we find again the equidistribution of the eigenvalues with the following
parity: periodic, anti-periodic, anti-periodic, periodic.

We can compare (56) and (55): since all members of (55) have modulus 1, these 4
equations are equivalent to the equations obtained by taking the arguments. Getting (56)
is now easy.

Let us apply Eq. (10.4) with = 8 ande = 5. Observing that cag@x) = 2cogx —1
and that the orientation convention of the cycles are reversed to those of (47) (hence
holonomies are inverses), we eventually get (56).

cos(— arga) + eIn(h) + argl“(% + is)) =+ (56)

11.2. The translation-symmetric triple well.

11.2.1. Direct methodThe critical energy area makes here a transition between triplets
(E < 0) and pairs £ > 0) of exponentially close eigenvalues.
The semi-classical invariants of this situation are:

e two “small” cycles having the same holonomy denotedBy
e two “big” cycles, their holonomies awe™! ande—3 = a3,
o three vertices having the same invariant

With the notations of Fig. 20, we get:

a c+ 0 0 o 0 0 O c+

Z X 0 0 0 0 01 X

b Te) 0 0\ + 0 0 0 0a20]|a+
= 0 T(E) 0 = -3

X 0 0 T() y 0 « 0O 0 0O y

c” bt «a®> 0 0 0 0 o]|b"

y z 0O 0 O 1 0O b4
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Fig. 20.The translation-symmetric triple well potential

Factoring€ in the T'(¢) matrix (see (18)), we get the quantization rule as the nullity of
the determinant of a & 6 matrix:

1 ieT™¢ —a/E 0 0 0

ieT™ 1 0 0 o©0 -1/€

0 0 1 ie™™ —1/a?E 0 _0
0 —1/a3€ ie7™ 1 0 0 -
—1/a?€ 0 0 0 1 ie ¢

0 0 0 —1/Eie7 ™ 1

This determinant can be factored as:
2
(1—aE@L—ie ™))L —afd+ie ™)) (1 taf + a2+ e—z’““)) —0.

Hence we find two simple eigenvalues, solutions of:

1
El—ie ™) =+
o

and two eigenvalues of multiplicity 2, solutions of:

_ —l+iyAd+e2e) — 1

E =
200(1 + e 2m¢)

If we make a zoom-out of the eigenvalues near 0, their repartition will be asymptotically
the same as the repartition of the following complexes on the unit circle:

—lii(sim 0 —14+iJ7
P 22

Therefore the transition area looks like Fig. 21 where we have used a bold level for
double eigenvalues on the ladder.

(double.
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E=0 E>0
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Fig. 21.Universal transition for the triple well

11.2.2. The trace methodVe study the trace of the translation matrix on one third of a
period. The periodicity/anti-periodicity of eigenfunctions is replaced by the relation:

flx+ %) = 2T £ (x)

Remark that = 1 andk = 2 correspond to eigenfunctions that are conjugated, this
explains the fact that eigenvalues of multiplicity 2 correspond to a trace of(2.e63).

The non degenerate eigenvalues correspond to eigenfunctions thay ange2iodic, the
transition of these eigenvalues will therefore be similar to the transition of the eigenvalues
of the single pendulum. For multiplicity 2 eigenvalues, we get:

1
214 e~ 27

As an easy consequence, we obtainsfes 0 the same description as in Fig. 21.

cos(— argla) + eIn(h) + argl“(% + ie)) =+

12. System of Schrédinger Operators with a Small Coupling Parameter

This section is related to [21] and [6], see also [5]. Ff’(ﬁi j =1, 2 be two Schrédinger
operators with potential®; (x) defined byP; = —"—5% + V;(x) with smoothV;’s.

Assume that the characteristic manifolds = {%52 + V;(x) = 0} are smooth cir-
cles intersecting transversally at the points= (xo, +£0). We are interested to study
existence of microlocal solutions for the system:

ﬁlu +ev =0,

eu + f’zv =0.
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If ¢ = 0, we get two independent equationse i« 0, u is solution of the fourth order
equation

Hu = (ﬁzﬁl — 82)14 =0.

If ¢ £ 0is small and independent bfwe get a smooth characteristic manifold. If we
assume = O(+/h), we get a singular case which can be studied using the previous
tools. It is then natural to put = w+/A with w # 0. Let us denote by, the matrices

Fig. 22.Phase space fdf

associated with the singular points. If y4, yp andyc are the cycles defined by Fig. 22

anda = hol(y4), 8 = -- -, we have the following equations:
()= () (2)==(2)
X4 X2 ya y2
X2 =y3, Y4 =YyX1, y1=PX4, y2 = ax3. (57)

Hence, the singular Bohr—Sommerfeld rule reads:

oo (379)(2)) -

Let us sketch the way to compute the holonomiessyglof singular points.
We haveHy = (362 + Vo(x)) (362 + Vi(x)) andHy = 2 &(V3 — V])(x) — o2 We
get

w2

o
2i - |&o(Vy, — V) (x0)l
The matricesT are not unitary becausi; is no longer real, but it is possible to

check that
0yt 08
r(17%) (2 6)

eo(z+) = F

belongs taU (1, 1).
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13. Scattering Matrices

13.1. One channel scatteringVe are interested in an example studied by Rouleux
([23]). Let V (x) be aC*® potential such that (see Fig. 23):

e V(x)=0forx >b > 0.
e V(0O)=Vy>0,V'(0) =0andV”(0) < 0.
e V1(Vp) = {a, 0} for ana < 0 such that/’’(a) < O.

HenceV ~1((—o0, Vo)) = [a, +0oo(.

Fig. 23.1 channel scattering potential

Fig. 24.1 channel scattering in the phase space

Letk > 0. The Schrddinger equation

h2 1 2
—5¢ t V(x)g =k
has a unique solutiop € L2(R™), such that:

0= r(k)eiﬁkx/h +e—i\/§kx/h, x> b.
It is well known thatr (k) has modulus 1 (k) is called thereflection coefficientJsing
the previous methods, we will calculatgék) up to an error of ordeO (h) for k =

VVo+ O(h).
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Let W, = +/Vo. We may writek = Wy + hw With © = O(1). Hence,Hy =
162 + V(x) — Vo and Hy = —2Woo.

Fix A > b and letys be the simple path of the phase space joinidg Wp) to
(A, —Wp) inside the characteristic manifo%f2 + V(x) = Vo. The phase shift of a
standard solution alongy is given (see (32)) by:

1
oA = —/ Edx —v.p./ Hydt + O(h).
h YA YA

If ¢/% is the holonomy of the loopy and, if we putQ = 2v/2kA + @4 (Which is
independent of the choice df > b), we get:

y2 = e®ys,  y1=rk)e' %y,

y3\ _ y1
(M) _T(g)(yz>‘

O =—(Q+6p+2arg€)) + 2argl — ie ¢ Ee'P) + O (h). (58)

and

Hencer (k) = ¢'® with:

13.2. Two channel scatterind.et us consider the volcano-top example. Thisis a Schrédinger
equation orR like (33) with the following assumptions:

Vix) —> V_, V_ <0asx - 400,

Vx) > Vy, V4 <0asx - —oo,

supV =0,

V=10) = {x1, xo} with x1 < xo andV"(x;) < O.

This example has been studied by Fujiie and Ramond ([14]) in the analytic case.
The energy shell in phase space looks like Fig. 25.A.et ¢/? be the holonomy of

Fig. 25.The volcano-top

the cycle, and;, j = 1, 2 be the scalar coefficients factored in the matriges;) (cf.
(18)). Then the following equations hold:

in + out
b* = Bb-, ("x ) =T (e1) (fout), (f) =T(e2) ("x )
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By Gaussian elimination df andx, we get:

; &1
in __ . —&om —2e17 —e1m out out
a' = ) [1 <ﬂ5152e 1+e )+e ) a4+ B¢ ] ,

i &
= 52 [51610Ut +i (ﬂglgze_glﬂ (L+e 227y ¢ 6_82”> COUt] :
D=1+ e 27 BE1E.

Note that the denominatd is never O for real energies singg | = (1+ e=26j7)=1/2,
The complex zeroes of the analytic continuatiorDoare named quasi-resonances. We
remark that theS matrix such thass (a°"t, c°'% = (a™", ¢'") is unitary as it should.

We will now calculate the modulus of the transmission and reflection coefficients (it
is of course possible to calculate the phase shifts in the spirit of the previous section).
Let us consider a solution which is micro-locally supported on one of the two incoming
branches, e.gi’". Hences" = 1, ¢ = 0 and|c®Y| = |¢|, [a®¥| = |r| = /1 — |1]2.
SinceS is unitary, we have:

Forexample, if we are interested in energiesuchthatE / htendsto 0, thepy = 2 =0
and we find the same result as Fujiie and Ramond ([14]):

A. Numerical Results

A.1. The symmetric double well potentidlet V(x) = x* — x2. In this section, we
calculate the eigenvalues of the corresponding Schrddinger operator for different values

of h by solving (41) or by applying the Runge—Kutta method to the first order differential

system:
d (¢ 0 1\ (¢
a(e)_ B , . 59
dx (@) (—2(”23 - 0) <¢>) )

More precisely, we calculate two solutions of (59), starting from two points in the
classically forbidden region, the first one is chosen in the connected componrest of
and the second in the componentiafo. We takep = 1 andy’ = 0 as initial conditions
atthese points. And we compute the WronskiafE) of these 2 solutions at= 0. Since

we start from the classically forbidden region, the numerical solution that we obtain in the
classically allowed region will behave like a solution which decreases exponentially fast
inthe component of the starting point region. Therefore, the WrondKi@m) will vanish

if and only if E is an eigenvalue. To find these values, we detect sign chandésmof

first by dichotomy, then by interpolation of the curze— W(E) for better accuracy
(this is the best method when Newton’s method can not be applied. The convergence
law of the sequence d is given by|E, — E| < |Eo— E| whereF, are the Fibonacci
numbers).
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On the other hand, rewriting Eq. (41) for the potentigk) = x* — x2 (¢ = 1 and
b = 0) gives:

! + cos| ¢In(h) + ar F(1+' ) ! In(2) 272
—_— € - +ig) — ¢ -—,
/1 + eZne 9 2 ! 2 3n

whereg = £,

All these functions are standard, except the argument of tfienction. We have
used thePARI library from the number theory laboratory of Bordeaux to calculate it.
Implementation has been done@AC++, programs are available at:
http://www-fourier.ujf-grenoble.fr/ “parisse/bs.tgz

Forh = 105, we get the following eigenvalues in the interyal2.10-6, 3.106];

Index Runge—Kutta  Bohr—Sommerfeld

1 —1.68092e-06 —1.68100e-06
2 —1.67670e-06 —1.67678e-06
3 —1.14072e-06 —1.14080e-06
4 —1.12697e-06 —1.12706e-06
5 —0.62743e-06 —0.62751e-06
6 —0.58579e-06 —0.58587e-06
7 —0.15515e-06 —0.15522e-06
8 —0.05032e-06 —0.05041e-06
9 0.29793e-06 0.29786e-06
10 0.48460e-06 0.48451e-06
11 0.78346e-06 0.78339e-06
12 1.02441e-06 1.02432e-06
13 1.30685e-06 1.30677e-06
14 1.57243e-06 1.57234e-06
15 1.85275e-06 1.85266e-06
16 2.12953e-06 2.12944e-06
17 2.41218e-06 2.41208e-06
18 2.69515e-06 2.69506e-06
19 2.98110e-06 2.98101e-06
20 3.26833e-06 3.26824e-06

Note the accuracy of the singular Bohr—Sommerfeld rules. This method is far cheaper
than the Runge—Kutta method (about ¥Ofaster).
Comparison 2: Fot = 0.1, we get the following eigenvalues in the interfab.3, 0.3]:

Index Runge-Kutta Bohr—Sommerfeld

0 —0.156568 —0.16038
1 —0.155061 —0.15861
2 —0.014654 —0.01358
3 0.021032 0.02162
4 0.116728 0.11546
5 0.212051 0.20839

Even for this relatively largé value, the singular quantization rules give an accurate
approximation of the eigenvalues. Note however that for this vallietbE Runge—Kutta
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method is faster! We remark that the mean gap between two consecutives eigenvalues
is about 1x  in this example and about»4  for 1 = 1078, Theoretically, we should
find a ratio of 6 instead of 4. This would require to calculate eigenvalues for energies
that are much closer t8 = 0.

Let us now compare the two methods (singular quantization rules and numerical
integration) in terms of the position of the ladders of even and odd eigenvalues near the
critical energy. We introduce the form factor:

_ Eop1 — Ex

R= ,
E2i2 — Eoy

where the eigenvalues are indexed starting from 0 (hence even eigenvalues corre-
spond to even eigenfunctions). HB§,.+1 >> h, eigenvalues are equidistributed, hence
R tends to ¥2 ; for —E»,+1 >> h, eigenvalues are coupled, henkgends to 0. If
E211/(h+/1V"(0)]) tends to a limiteg ash tends to O, it is possible to calculate the
limit of R:

_ arccoq (1 + e?7¢0)~1/2
lim R = S(( ) )
h—0 4

HenceR — 1/4 for ¢g = 0. Coming back to the second example abdve-(0.1), we
get(Es — E2)/(E4 — E2) = 0.27, a value which is close to the theoretical valugrof

(sinceEs/(+/2h) = 0.15 is close to 0).

A.2. The pendulumWe make the same kind of comparison for the pendulum (the peri-
odic Schrodinger equation), where we taker) = cogx) — 1 as potential. The singular
Bohr—Sommerfeld quantization rules read (see (54)):

1

8 1 .
ﬁ = COS(_Z — 5|n(2)8 +elnh + argF(E + 18))

with e = E/h.

We use a numerical method which s slightly different than that of the previous section:
here we will study the monodromy matri. Let (¢, ¢’) = (1, 0) and(p, ¢') = (0, 1)
be a couple of (linearly independent) initial conditions at 0. Using the Runge—Kutta
method, we integrate the Schrddinger equation from 0 tox = 27 and determine
the matrixM. EnergyE is an eigenvalue if and only if 1 is eigenvalue ™f We have
now to find the zeroes of dgif — I).

Let p be the length of a step of the Runge—Kutta method. Then the relative error is
of order p3/h* in the E > 0 energy area. The error is much bigger in the< 0 area
because starting and ending in the classically forbidden region multiplies the relative
error by an exponential coefficient which is proportionatté £/". Hence we can not
apply this numerical method £ < — DA (and if we choose a big value f@, we have
to choose a correspondingly small value fQr



Singular Bohr—Sommerfeld Rules 499

The comparison shows that the two methods give close results. In the following
example, we také = 102, and we obtain:

Index  Runge—Kutta Bohr—Sommerfeld
0 —0.00339886 —0.00339946

1 —0.00305773 —0.00305821

2 —0.00272065 —0.0027210

3 —0.00238812 —0.00238841

4 —0.00206018 —0.002060396

5 —0.00173847 —0.001738624

6 —0.00142077 —0.0014208684
7 —0.00111594 —0.001116004

8 —0.000805647 —0.000805677

9 —0.000541145 —0.000541155
10 —0.000212948 —0.000212945
11 —5.18091e-05 —5.18018e-05

12 0.000371877 0.0003718748
13 0.000420734 0.000420730
14 0.000978865 0.000978818
15 0.000978865 0.000978818

We note a better accuracy far > 0, as we could expect from the above remark about
the instability of the numerical method fér < 0.

B. Proof of Theorem 2

Isotropy is clear, becauseuifis a solution inU (« € M ;4(U)), SHTu = HIu.

We only need to get a lower bound by induction on the number of compact edges. If
there are no compact edges, we know already that the dimension of the space of solutions
is half the number of open edges because in that éagean union of simple crosses.
Gluing boundaries of a cut edge can be identified with a reduction as+thatrix. More
precisely, we use the:

Lemma3. Let H = H. & H_, whereH, and H_ are 2 Hilbert spaces of the same
finite dimension and/ : H_ — H, be a linear isometry whose graphlis e+ € Hy
are 2 vectors of length 1 anff+ are the orthogonals ofe.. Lete’® be a complex
number of modulu% and

M={(z—,z4) € K- ® K|y €C, (z— + ye_,z4 + €' %ye,) € T}.

ThenI'1 is the graph of an unitary mapping frof_ into K ;.

The proof is elementary.

We then apply the lemma. Given, Z; is obtained by cutting some compact edge
of Z and replacing it by one in-going and one out-going edg&:0fH,. are related to
Z1 andK 4 are related t&Z. The functions4. are J-normalized microlocal solutions at
both ends of the cut edge ang = ¢/“y_ expresses the gluing of both solutions.
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