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Abstract: The object of this paper is to present a geometrical formulation of the singular
Bohr–Sommerfeld rules given in [8], in a more general context, including characteris-
tic manifolds with several saddle points. Several examples are detailed and numerical
checkings of the results are provided.

Introduction

Bohr–Sommerfeld rules allow to describe the semi-classical behavior of eigenvalues
for a completely integrable Hamiltonian system; in fact, they are only concerned with
the open dense subset of the phase space foliated by invariant Lagrangian tori and are
expressed as quantization rules which select some discrete set of these tori (see [3,13]
or [20]). These rules make use of action integrals and integrals of the sub-principal
symbol along the cycles of the invariant torus. It is possible to reinterpret these rules
outside any spectral context as existence conditions for solutions of a pseudo-differential
equation for which this torus is a Lagrangian submanifold of the characteristic manifold.
In dimension 1, ifγ is a smooth compact connected component of the characteristic
manifold (γ is a topological circle), let us denote byAγ = ∫

γ
ξdx the action integral

and byIγ = ∫
γ
H1dt (H1 is the sub-principal symbol). IfXH0 is the Hamiltonian vector

field associated with the principal symbolH0, dt is defined bydt (XH0) = 1 andm(γ )
is the Maslov index. A necessary and sufficient condition for the existence of a function
u satisfyingĤu = O(h2)withL2 norm bounded from below, can be written as follows:

1

h
Aγ − Iγ + π

2
m(γ ) ∈ 2πZ. (1)

In dimension 1 already, a generic HamiltonianH0(x, ξ) admits, in general, critical
values with singular corresponding level sets. Near some local non degenerate extremum,
it is always possible to regularize the equations using harmonic oscillators (see [4]). This
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is no more true for saddle points. There exists, however, a microlocal normal form (semi-
classical Morse lemma, see [7,6]). In the paper [8], we described the quantization rules
associated with the singular manifold in the case of a double potential well for the
Schrödinger equation.

The aim of the present paper is to reformulate and extend the quantization rules
of [8]. The reformulation is purely geometrical: the action integrals do not need to be
regularized, but the integrals of the sub-principal symbol are divergent and need to be
regularized using the symplectic geometry of the phase space (see 2.2).

In such a way, it becomes possible to describe the semi-classical spectrum in cases
where the characteristic manifold do admit several saddle points: multiple wells with
saddle at the same energy, pendulum on the torus. The case of coupled systems (see the
local theory in [6]) will be described in [5].

It is also possible to study scattering problems. The case of a potential with one
threshold only and the volcano-top are presented (see Sect. 13). In [5], we study the
adiabatic limit for aN -levels system with avoided eigenvalues crossings (see [18] and
also [16]). For comparison with existing texts, we insist on the fact that our methods are
situated in the smooth context and do not use analytic extensions. Subtle combinatorics
of Stokes lines (see [12] and [11]) is replaced by some algebraic mechanism on the
characteristic manifold which is a tetravalent graph.

The paper is organized as follows: microlocal solutions of the pseudo-differential
equation are sections of a sheaf on the characteristic manifoldZ. The abstract description
of these sheafs is provided in Sect. 4.The geometric description (modO(h2)) of this sheaf
is given in terms of the classical invariants of cycles (Sect. 2) and saddle points (Sect. 3).
We consider in particular some canonical regularization of the integrals

∫
γ
H1dt , where

γ is a cycle of the characteristic manifold.
After that, we show how to perform the computations on several examples: eigen-

values of the Schrödinger operator with a double well onR in order to recover results
of [8] (Sect. 8), with a triple well (Sect. 9), discriminant and spectra of Hill’s equation
(Sects. 10 and 11), system of two Schrödinger operators with a small coupling parame-
ter (Sect. 12), computation of the scattering matrix for potential on the real line with 1
(Sect. 13.1) or 2 channels (Sect. 13.2).

At the end, in the appendices (Sect. A), the theoretical results are compared with
direct numerical computations.

The cases of systems of Schrödinger equations (Born–Oppenheimer approximation)
and of the adiabatic limit for avoided crossings for anN -levels system will be described
in [5].

The case of dimensions≥ 2 will be studied in some future work with application to
semi-excited states in the resonant 2d case (see [17] and [2]).Focus-focussingularities
are discussed in [24] and [25]. General Morse-Bott singularities in dimension 2 will be
described in [10].

1. The Context

1.1. Classics.Let(X, ω)be a 2-dimensional symplectic manifold (X is the phase space)
andH0 : X → R a smooth Hamiltonian. In this paper,X is the cotangent bundle of
M = R or of M = R/Z, but it is also possible to work with a Riemann surfaceX
(Toeplitz operators).

Let us assume that 0 is a critical value ofH0 and letZ be some connected component
of the characteristic manifoldH−1

0 (0). Let us assume that all critical points ofH0 located
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Fig. 1.The characteristic manifoldZ

onZ are non degenerated saddle points. For eigenvalues problems,Z is a compact set,
whileZ admits some open edges for the scattering problems. Let us denote bym∞ the
number of open edges ofZ, Z0 the set of all critical points andn = #Z0. The setZ is
a tetravalent graph embedded inX. We will denote bysj , j = 1, · · · , n the points of
Z0 (vertices ofZ), el, l = 1, · · · , m the edges ofZ (compact or open), let us define
m = mb+m∞. Letγj , j = 1, · · · , N be a basis of cycles ofZ, i.e. a basis ofH1(Z,Z)

(freeZ−module of rankN ) which consists of geometric oriented cycles. Euler-Poincaré
formula implies:

N = b1(Z) = 1 − n+mb,

with 4n = 2m−m∞. In the compact caseN = 1 + n.

1.2. Microfunctions.In this section we will give precise definitions and notations con-
cerningmicrolocalization(useful references are [7,22] and [25]). We want to study the
solutionsu of a differential equation of orderm, Ĥu = 0, on the real line, depending
on the small real parameterh. The general form ofĤ is

Ĥ =
m∑
α=0

aα(x, h)D
α
x ,

whereDx = h
i
d
dx

and theaα(x, h)’s are classical smooth symbols

aα(x, h) ∼
∞∑
j=0

aα,j (x)h
j .

We will always assume that

H0(x, ξ) =
m∑
α=0

aα,0(x)ξ
α

is real valued.H0 is theprincipal symbolor classical Hamiltonianassociated withĤ .
Our goal is to study solutions of̂Hu = O(h∞) in theh → 0 limit (semi-classical limit)
by using microlocal analysis: it means first studying solutions locally in the phase space
X = T ?R and then gluing the pieces together.
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Definition 1. uh(x), h ∈]0, h0], a family of distributions (uh(x) ∈ D′(R)), is anad-
missible functional if, for anyχ ∈ C∞

o (R), there exists andN such that

‖χuh‖s = O(h−N),

where‖.‖s is the Sobolev norm. For example anh-independent distribution is an ad-
missible functional. Let us denote byCh the quotient ring of (germs of) functions
λ :]0, h0] → C which satisfyλ(h) = O(h−N) for someN by the ideal ofλ’s which
satisfyλ(h) = O(h∞) (the field of formal Laurent series inh is a subring ofCh).

We can also definenegligible functionalsuh by

∀s, N, χ, ‖χuh‖s = O(hN)

and themicrosupport WFh(uh) by

(x0, ξ0) /∈ WFh(uh)
if and only if there existsχ ∈ C∞

o such thatF(χuh)(ξ) = O(h∞) in some fixed
neighbourhood ofξ0.

HereF is theh-Fourier transform defined by

Fu(ξ) = (2πh)−
1
2

∫
R

e−ixξ/hu(x)dx.

Important remark.WFh(uh) = ∅ does not imply thatuh is negligible.uh(x) = eix/h
2

is an example. But, if we know moreover thatuh is a solution ofĤuh = 0, where
H0(x, ξ) = am,0(x)ξ

m+· · · with am,0 non vanishing, then it is true by usual ellipticity.

The most appropriate language for what follows is to speak ofsheaves(see [26]). We
will define the sheafMX onX = T ?R of microfunctionsonX on which the sheaf of
pseudo-differential operators is acting. We will view it as a sheaf of modules on the ring
Ch. If U ⊂ X is an open set, the moduleMX(U) of sections ofMX on the open setU ,
is the quotient of admissible functionalsuh by the equivalence relation[ uh ∼ vh if and
only ifWFh(uh − vh) ∩U = ∅ ]. We will call MX(U) the set ofmicrofunctionsonU .
We will write uh = O(h∞) nearz0 as a way to say thatz0 /∈ WFh(uh).

Solutions ofĤu = O(h∞) can be studied by introducing the subsheafK
Ĥ

of MX

which is the kernel ofĤ (microlocal solutions ofĤ ) whose support isZ = H−1
0 (0) and

solutions ofĤu = O(h∞) are global sections ofK
Ĥ

.
A typical example of equation is

Ĥ = P̂ − E0 − Eh, (2)

whereP̂ is a fixed formally selfadjoint operator and E is a parameter which stays in a
compact domain ofC and with respect to which all estimates are uniform. Schrödinger
operators

P̂ = −h
2

2

d2

dx2 + V (x)− E0 − Eh, (3)
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whereV is a smooth real valued function, are the most usual examples.
If E is real, solutions ofĤu = O(h∞) correspond to eigenfunctions of̂P with

eigenvalueE0 + hE. In this exampleH0 = 1
2ξ

2 + V (x)− E0.

We can also define thesub-principal symbolH1 of Ĥ by using the Weyl quantization

Ĥ = OpW(H0 + hH1)+ Q̂2,

whereQ has degree 2 with respect toh, meaning thataα(x, h) = O(h2). In example 3,
H1 = −E. TheWeyl quantization,OpW , is defined by

OpW(H)u(x) = 1

2πh

∫
e
i
h
(x−y)ξH(x + y

2
, ξ)u(y)|dydξ |.

1.3. Spectrum.Assume thatĤ is formally symmetric onC∞
o (R) ⊂ L2(R, dx) and let

us denote byĤa any self-adjoint extension of̂H whose spectrum is denoted byσ(Ĥa).
Let us suppose thatZ is compact, then if we can find non-negligible solutionsu of
Ĥu = O(h∞) (with compact support) it implies that distance(0, σ (Ĥa)) = O(h∞) by
the minimax principle.

Singular Bohr–Sommerfeld rulesare geometric rules which are equivalent to the
existence of functionsu which satisfies

Ĥu = O(h2),

are microlocalized onZ and satisfy the lower bound
∫ |u(x)|2dx ≥ 1. In fact we will

prove existence of non-trivial functionsuwhich satifiesĤu = O(h∞)but, in Example 2,
geometric conditions will be computed only to the first non-trivial order and determine
E0 + Eh up toO(h2).

1.4. Regular Bohr–Sommerfeld rules.We can reformulate the usual Bohr–Sommerfeld
rules using the previous definitions.

1.4.1. WKB solutions.AssumeZ = H−1
0 (0) is compact and smooth. Then the sheaf

K
Ĥ

is locally free of rank one onZ. We will callWKB-solution nearz0 ∈ Z a generator
of the free moduleK

Ĥ
(U), whereU is a small neighbourhood ofz0. AnyWKB solution

can be written outside the caustic in the following form:

uh(x) = (

∞∑
j=0

aj (x)h
j )e

i
h
S(x)−i ∫ xx0 H1dt . (4)

If π : X → R is the canonical projection, the half-densityσ0 = π?(a0(x)|dx| 1
2 ) is

invariant by the Hamiltonian flow onZ = {(x, S′(x))}. Remark that the principal symbol

of uh (after the definition of [13]) isσ0e
=(∫ xx0 H1dt) which isσ0 if H1 is real valued. We can

choose a normalization (depending onx0 if H1 is not real valued) such thatσ0 = |dt | 1
2 .

We will say then thatuh(x) is anormalized WKB solutionof Ĥu = O(h∞) at the point
x = x0.

It is the result of efforts of many people like Maslov and Hörmander that it is possible
to define also WKB solutions near the caustic points.
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1.4.2. Holonomies and Bohr–Sommerfeld rules.For any oriented connected component
C of Z (a topological circle) we can define the holonomy hol(C) of the restriction toC
of this sheaf.

hol(C) = e
i
h
α(h),

whereα(h) is a formal series inh

α(h) ∼
∞∑
j=0

αjh
j

with α0 = ∫
C
ξdx andα1 = − ∫

C
H1dt + π

2m(C), wherem(C) is the Maslov index.
Writing hol(C) = 1 gives a necessary and sufficient condition for the existence of non-
zero solutions microlocalized onC of Ĥu = O(h∞). Using the main example (Eq. (2)),
we get then implicit relations forE which describe the spectrum modO(h∞) in the
interval[E0 −Mh,E0 +Mh].
Theorem 1. Let aC(h) be a function which admits the formal seriesα(h) as Taylor
expansion ath = 0. If Z is compact and smooth, there is, forh small enough, a bijection
between eigenvalues in[E0 −Mh,E0 +Mh] and the solutions ofeiaC(h)/h = 1 for all
componentsC of Z which associate eigenvalues and solutions which are at a distance
O(h∞).
In one direction, one uses the minimax principle. In the other one uses the fact that the
sheaf is locally of dimension 1.

1.5. S matrix. Let us assume in this section thatĤ is formally self-adjoint and that
Z admitsm∞ = 2µ∞ open edges. LetD be a compact domain with boundary∂D in
X which contains the compact edges ofZ in his interior and such that∂D intersects
transversally each open edge at 1 point. Each edge is oriented by the Hamiltonian flow
of H0. There are as many out-going edges as in-going edges, they alternate when we
turn around∂D, because domains whereH0 > 0 andH0 < 0 alternate. We assume that
theei ’s are in-going fori = 1, · · · , µ∞ and out-going fori = µ∞ + 1, · · · , m∞.

Let � be a neighborhood of∂D in X which intersects only open edges andU =
D ∪�. We defineHi = K

Ĥ
(� ∩ ei) (free module of rank 1 overCh), Hin = ⊕µ∞

i=1Hi ,
Hout = ⊕m∞

i=µ∞+1Hi andH∞ = Hin ⊕ Hout .

Definition 2. We call theS-matrix of Ĥ thesubspace ofH∞ defined as the restrictions
from functions ofK

Ĥ
(Z) toH∞, i.e. the sets of microlocal solutions ofĤu = 0 on open

edges which admit an extension as solutions on the whole setZ. This space is in general
the graph of a linear mapping, also denoted byS fromHin into Hout .

We want to define thecurrentsas an Hermitian formJ onH∞.
Let5 be a self-adjoint PDO of order 0 whose microsupport is contained inU and

which is microlocally equal to Id in some neighborhood ofD \ �. Let 6 be another
self-adjoint PDO which vanishes microlocally in some other neighborhood ofD \ �
and which coincides with Id where5 does not.

Definition 3. We definecurrents as the Hermitian form

J (u, v) = i

h
(< 6Ĥ5u | 5v > − < 5u | 6Ĥ5v >).
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Fig. 3.How to defineJ

It is possible to computeJ (u, u) for any microlocal solutionu on the edgee in terms
of his principal symbolσ0(u)which is an half-density one invariant by the Hamiltonian
flow of H0.

Lemma 1.

J (u, u) = ±|σ0|2
|dt | +O(h),

with the+ sign for an out-going edge and the− sign for an in-going edge. Here|σ0|2/dt
denotes the quotient of a density (square of an half-density) bydt and not a derivative.

Proof. In fact, we have:

J (u, v) = i

h
< [6, Ĥ ]5u|5v >= i

h
< [6, Ĥ ]u|v > +O(h∞).
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If u is a microlocal (WKB) solution onei , we denote byσ0 ∈ �
1
2 (ei) his principal

symbol and we have for any PDÔA whose symbol vanishes outside�:

< Âu|u >=
∫
ei

A0|σ0|2 +O(h),

and the lemma follows from the computation of the symbol of the bracket[6, Ĥ ] which
is h

i
dσ
dt

if we denote byσ the principal symbol of6. We have then

J (u, u) =
∫
ei

dσ

dt
|σ0|2 +O(h),

which gives the result because|σ0|2
dt

is time independent for a self-adjoint̂H . ut
The microlocal solutions on different open edges areJ -orthogonals (by the fact that

PDO’s reduce the WF) and, by Lemma 1, the formJ is positive (resp. negative) definite
on the out-going (resp. in-going) edges.

The following result is not useful for what follows. The sketch of the proof is post-
poned to Appendix B.

Theorem 2. TheS-matrix is the graph of an unitary mapping fromHin to Hout with
respect to the metrics induced respectively byJ onHout and−J onHin .

2. Semi-Classical Invariants of Cycles

To each cycleγ of Z, we associate 3 numbers: theprincipal action Aγ (more precisely
exp( i

h
Aγ )), thesub-principal actionIγ and theMaslov indexm(γ ).

2.1. Principal actionsAγ . If γ is a cycle ofZ, we put:

Aγ =
∫
γ

ξdx. (5)

If γ = ∂D is the boundary of a compact domainD of the phase space, the numberAγ
is the symplectic area of theD.

2.2. Sub-principal actionsIγ . If XH0 is the symplectic gradient ofH0, we denote bydt
the associated differential form onZ \ Z0 defined by:

dt (XH0) = 1. (6)

The numbersIγ areprincipal parts of the divergent integrals
∫
γ
H1dt . It is enough

to describe how principal parts should be derived near saddle points.
LetAB be an arc ofγ on which the unique singularity iss. We define

vp
∫ B

A

H1dt = lim
a,b→0

(∫ a

A

H1dt +
∫ B

b

H1dt + a(sj ) ln

∣∣∣∣∣
∫
Ra,b

ω

∣∣∣∣∣
)
, (7)
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b

B

A

s
a

γ

Fig. 4.Computation of the principal part of
∫
γ H1dt

where

a(sj ) = ±H1(sj )

|detH0"(sj )|1/2 , (8)

andRa,b is the parallelogram built on the vectorssja andsjb drawn on the figure. The
sign± is + if AB is oriented in the same direction asdt and− otherwise.

Lemma 2. The previous limit exists and is independent of the choices.

Proof. Performing first a canonical transformation, we may assume thatH0(z) = Wxξ+
O(|z|3). Of course, we haveW = ±|detH "0(sj )|1/2 with the same sign convention

as in formula (8). We can then compute(
∫ a
A

+ ∫ B
b
)H1 dt by replacingH0 by Wxξ

(then dt = dx
Wx

= − dξ
Wξ

), which gives the following divergent part of the integral:
−H1(sj )/W ln(ab). ut

If the cycleγ is smooth atsj , we define

∫̃ A

B

H1dt = lim
ε→0+(

∫ γ (−ε)

B

+
∫ A

γ (ε)

)H1dt, (9)

whereu → γ (u) is aC1 parameterization ofγ and withγ (0) = sj . This choice is
compatible with the previous ones:γ → Iγ is aZ−linear mapping.

Remark 1.It is possible to check that the mapγ → Iγ which is at the moment only
defined for cycles ofZ which have corners (angles< π) extends (uniquely) byZ−
linearity toH1(Z,Z).

Remark 2.Sub-principal actionsIγ do admit a natural interpretation in symplectic ge-
ometry. Let us assume thatγ is a simple cycle ofZ = {H0 = 0} such thatγ = ∂D and
thatH0 is ≤ 0 insideD. Denote bysj , j = 1, · · ·N the saddle points ofZ located on
γ . LetH1 : X → R be such that∀j, 1 ≤ j ≤ N, we haveH1(sj ) < 0. Forτ < 0, let
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γ

Fig. 5.AreaA(τ)

us define

A(τ) =
∫
H0+τH1≤0

|dxdξ |.

Then, ifτ → 0−, A(τ) admits the following expansion:

A(τ) = A(0)+ τ
( N∑
j=1

ε0(sj )(1 − ln |τε0(sj )|)
)−τIγ +O(τ2 ln |τ |). (10)

2.3. Maslov indicesm(γ ). We define the Maslov index of a smooth loopγ following
the usual recipe which is summarized on Fig. 6.

+1 −1

Fig. 6.Recipes for Maslov indices

Assuming that the tangent vectors to edges at singular points of the singular loopγ

are non vertical (i.e. non-parallel to theξ axis), we take the same definition counting
with ±1 the caustics points of the non-singular part of the loop. If a tangent vector toZ

at a singular point is vertical, we make a small move ofZ in order to remove it: there
are essentially 2 ways to do that. We choose one and keep the result in memory for the
labeling of edges (see Fig. 8) coming at these singular points following Fig. 7.
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Fig. 7.Desingularizations

3. Semi-Classical Invariants of the Saddle Points

3.1. Normal form.We may reformulate the semi-classical Morse lemma (see
[7, pp.1546f.] and [6]) in the following way:

Theorem 3. There exists a (germ of) canonical transformationχ defined on(R2,O),
(x, ξ) = χ(y, η) which satisfyH0 ◦ χ = W(yη)yη andχ(O) = s, s ∈ Z0. Then there
exists an elliptic FIOÛ associated withχ , a PDO Ŵ , elliptic at the pointO, and a
unique formal series

ε(h) ∼
∞∑
j=0

εjh
j (11)

such that:

Ĥ Û = ÛŴ (ŷη − hε(h)), (12)

microlocally nearO.

ŷη = h

i

(
y
d

dy
+ 1

2

)
(13)

is the Weyl quantization ofyη. We have:

ε0 = ± H1(s)

|det(H ′′
0 (s))|1/2

. (14)

The sign± is the opposite of that ofW(0).

Proof. A very similar theorem is proved in [6] or in [7]. For completeness, we will give
a simpler proof here not using the Morse lemma of [9].

• We first prove the existence ofχ . We may assume thats = O and both branches ofZ
nears are tangent respectively to the axes{η = 0} and{y = 0} by an affine canonical
transformation. It is now enough to use canonical transformationsχ1(y, η) = (y, η−
a(y)) andχ2(y, η) = (y − b(η), η) with appropriate functionsa andb in order that
the branches ofZ nearO are the axes. We get then a functionψ(y, η) vanishing on
the axis which can be divided byyη inside smooth functions.
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Fig. 8.The choices of theei ’s and ofχ

• If Û0 is any FIO associated withχ we get by Egorov’s theorem

Û−1
0 Ĥ Û0 = Ŵ0(ŷη + hP̂1),

whereŴ0 andP̂1 are PDO’s of order 0. The first step is to find5̂ andR̂1, PDO’s of
order 0, such that

5̂−1(ŷη + hP̂1)5̂ = (Id + hR̂1)(ŷη + ε0h+ h2P̂2),

whereP̂2 is of order 0. Denoting by the same small letters the principal symbols we
get

1

iπ
{yη, π} = ε0 + r1yη − p1.

This equation can be solved inπ if and only if the Taylor expansion of the right-
hand side does not contain powers ofyη (see [9, p.286] or [15, p.175]) which can
be achieved by appropriate choices ofε0 andr1. This is the first step of a proof by
induction. Next steps are similar.

• Uniqueness of the formal seriesε(h) is proved in a geometrical way in [6]: we associate
to the microlocal situation a natural invariant using across-ratio.

• We will prove formula (14). BecauseH0 vanishes and is critical at the points, the
sub-principal symbolH1(s) of Ĥ at s is the same as that of̂W(ŷη − hε0) atO. The
last one is−W(O)ε0. In order to evaluateW(O), we compute the determinant of the
Hessian ofH0 at the critical point which is preserved byχ . We find:

|W(O)| = |det(H "0(s))| 1
2 . (15)

For applications, it may be better not to assumeW(O) > 0. We prefer to assume that
the image byχ of the first quadrant is pointing to the top (see Fig. 8), thenW(O)

is > 0 or< 0 according to the sign ofH0 in that domain. The sign ofε0 has to be
exchanged according to the same rule.

Definition 4. The formal seriesε(h) = ε0 + O(h) is thesemi-classical invariantof
the saddle points.
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3.2. Microlocal solutions.Using the previous normal form it is easy to describe the
microlocal solutions ofĤu = 0 near the vertexs of Z0. We have the following:

Theorem 4. Assuming the same hypothesis as in Theorem 3, the module of microlocal
solutions nears is a free module of rank 2. More precisely, taking the choices of Fig. 8,
let us denote byMj , j = 1,2,3,4 the free module of dimension1of microcal solutions
on the edgeej there exists basisφj ofMj such that the collection(xjφj )j=1,··· ,4 extends
to a microlocal solution nears if and only if

(
x3
x4

)
= T (ε)

(
x1
x2

)
, (16)

whereT (ε) is given by

T (ε) = E
(

1 ie−επ
ie−επ 1

)
, (17)

with:

E = 1√
2π
0(

1

2
+ iε)eε(

π
2 +i ln h) (18)

= 1√
1 + e−2πε

ei arg0(1/2+iε)+iε ln(h). (19)

Proof. Using Eq. (12), it is enough to prove the result forĤ0 = ŷη− hε(h) and to find
microlocal solutionsϕj of Ĥ0 which satisfies the statements of the theorem. Theϕj ’s
are small variations of the formulae given in [7], formulae are as follows:

ϕ1(y) = Y (y)|y|−1/2eiε ln |y|, (20)

ϕ2(y) = Y (−y)|y|−1/2eiε ln |y|, (21)

ϕ3(y) =
∫ ?

Y (η)|η|−1/2ei
yη
h e−iε ln |η|dη, (22)

ϕ4(y) =
∫ ?

Y (−η)|η|−1/2ei
yη
h e−iε ln |η|dη, (23)

where

∫ ?

= (2πh)−1/2e−iπ/4
∫

andY is the Heaviside’s function. Theϕj ’s are generators of the microlocal solutions of
Eq. (6) on the edgese′j (see Fig. 8).

We define thenφj = Ûϕj . ut
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4. Sheaves onZ

4.1. Linear algebra.Let Z be a connected tetravalent graph, embedded in the plane
X, which may have some open edges. Let us denote bye the generic edge. We also
assume that we have chosen for each vertex some labeling of the four attached edges:
e1, e2, e3, e4 (for example, by following the convention of Fig. 8).We will always assume
that the direct cyclic order is(1,3,2,4).

Definition 5. We define a sheafF = (Z,Ee, Fs) onZ in the following way: to each
edgee, we associate a 1-dimensional vector spaceEe over a fieldK (or a free modulus
over some ring) and, to each vertexs, we associate a generic 2-dimensional subspace
Fs of the direct sum⊕4

j=1Eej . Generic means thatFs is not included into a sum of 3 of
theEej and does not contain any linesEej ⊕ 0.

We can interpretFs as the graph of a linear mappingTs : Ee1 ⊕ Ee2 → Ee3 ⊕ Ee4.
There exists some basis, which we callstandard basisof theEej such that the matrix of
T satisfiesTi,j = 1 for (i, j) = (1,4), (2,3), (2,4) andT1,3 = ρs :

T =
(
ρs 1
1 1

)
. (24)

ρs is a non-zero scalar which is independent of the chosen basis:ρs = T1,3T2,4
T1,4T2,3

.We may
interpret it using some cross-ratio as in [6]. Let us define the linesDj ⊂ Fs as the
vectors whose projection onEej vanishes. Thenρs is the cross-ratio of the four lines
Dj . Standard basis are unique up to some global similarity.

Such a choice of standard basis can be interpreted as a sub-sheafF1 of F onZ. The
germs ofF1-sections at each vertex is now of dimension 1. Letγ be a cycle ofZ. We
associate with it a non-zero scalar hol(γ )which is the holonomy alongγ of the sheafF1
defined using the following prescription: ifφ+ is a section on the edgee (φ+ ∈ Ee \ 0)
which we follow as section ofF1 alongγ , we get a new vectorφ− in Ee and we put:

Definition 6. The holonomyhol(γ ) of γ is then defined by:

φ− = hol(γ )φ+.

We then have:

Theorem 5. Then+N non-zero scalarsρs andhol(γ )define the sheafF = (Z,Ee, Fs)

up to isomorphism. If we call thesectionofF the data of one vector of⊕Ee which belongs
to Fs for each vertex, the dimension of the space of sectionsb0(F) is only dependent
of these invariants. The same statement is true for theS-matrix (up to conjugacy by
diagonal matrices) in case whereZ admits some open edges.

Proof. By cutting some edges ofZ, we get a maximal treeT of Z. Eachorientedcut
edge is associated to some unique cycleγ ∈ H1(Z,Z) and that way we get a bijection
between the set of cut edges and a basis of cycles ofZ. The data permit to trivialize the
sheafF1 on T and to rebuildF on T . Holonomies hol(γ ) can then be read on the cut
edges using Definition 6.ut
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γ

x−φ−

s

xiφi

x+φ+

x+ = hol(γ )x−

Fig. 9.Recipe for the holonomies

4.2. The semi-classical case.Moduli Fs are given by microlocal solutions near the
saddle points. The numberρ is computed in terms of the seriesε(h) associated to the
saddle point by Theorem 3. More precisely, we get

ρs = −e2πε. (25)

Of course, we may have used another normal form in order to define the sub-sheafF1.
We then take the normal form given in Eq. (17) for the definition of a standard basis.
As ε → ±∞, Stirling’s formula allows to show the following asymptotics;

T (ε) = eiε ln |hε|
(

1 0
0 1

)
(1 +O(

1

ε
)), ε → +∞, (26)

and

T (ε) = eiε ln |hε|
(

0 i
i 0

)
(1 +O(

1

ε
)), ε → −∞. (27)

These asymptotics describe the transition between the singular and the smooth case.
They allow in particular to check the validity of the quantization rules!

Problem. How should we write the conditionb0(F) 6= 0 in terms of these invariants?
How should we compute the scattering matrix?

Here is a possible way to derive the quantization rules. We first cutb1 edges ofZ in
order to get a maximal treeT . We recall that once chosenT there is a canonical bijection
between cut edges and a basis ofH1(Z,Z): to any cut edge is associated the unique non-
trivial cycle ofZ which is contained inT except for this edge. We choose a non-zero
sectionφ of F1 on T . We then try to get a solution such thatψ|e = xeφe, e ∈ E(T ).
The(xe)’s should satisfy

• at each vertex, we have (
xe3
xe4

)
= T (ε)

(
xe1
xe2

)
. (28)



474 Y. Colin de Verdière, B. Parisse

• xe+ = (hol(γ ))xe− for any pair of edges(e+, e−) of T which comes by cutting the
edge ofZ associated with the cycleγ .

Putting these last equations in the first system produces a system ofν = 2n homoge-
neous linear equations withν unknown. The quantization rule can then be written as the
vanishing of aν × ν determinant whereν = 2n.

The self-adjoint case.If each spaceEe is equipped with an Hermitian metric and if the
Ts are unitary maps, it is possible to choose as a normal form forTs a unitary matrix and
the moduli of the holonomies hol(γ ) are 1: they are just phase shifts. It is easy to check
that the conditionb0 6= 0 can be rewritten as follows: “1 is an eigenvalue of a unitary
matrix”. We can take for example theS matrix associated to a maximal tree ofZ.

Let us assume that we are looking at eigenvalues of a Schrödinger operatorK (cf.
Sect. 1.3). The equationb0 6= 0 is equivalent to 1 is an eigenvalue of a unitary ma-
trix which depends of the spectral parameterλ. This equation with complex entries
depends on a real parameter. In fact this equation is equivalent to a real one, the singular
Bohr–Sommerfeld rule: if we putK = {A ∈ U(n)|1 ∈ σ(A)}, K is a codimension 1
submanifold ofU(n).

5. Computation of the Holonomies up toO(h)

We should first computeρs and the holonomies hol(γ ) as in § 4. We have already seen
thatρs = −e2πε. We are left with the computation of holonomies, which is the main
statement of this paper:

Theorem 6. Assuming the choice of the normal form given by Eq. (17) and the conven-
tions of Fig. 8, the holonomieshol(γ ) are given by:

hol(γ ) = e
i
h
Aγ−iIγ+i π2m(γ )(1 +O(h)), (29)

whereAγ , Iγ andm(γ ) are defined in Sect. 2.

6. Justification

Letϕj (y), j = 1,2,3,4 be the functions defined by Eq. (20). Then letf be a microlocal
solution in some neighborhood ofO of the equation

(ŷη − hε)f = O(h∞),

f is microlocally outside of 0 equal toyjϕj on e′j . We have then:(
y3
y4

)
= T (ε)

(
y1
y2

)
.

Let us put (assuming we are in the generic case and restricting to the edgese1 and
e4):

χ ′(O) =
(
a b

c d

)
with a > 0, b < 0,

whereχ is the canonical map of Theorem 3 (see Fig. 8).
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We may assume that the singular points is the originO. Let S(x, y) = S0(x, y) +
O((|x| + |y|)3) be the generating function ofχ defined by:

χ

(
y,−∂S

∂y

)
=
(
x,
∂S

∂x

)

andS(O) = 0. We get:

S0(x, y) = 1

2b
(dx2 − 2xy + ay2).

The FIOÛ is then given by:

Ûf (x) =
∫ ?

e
i
h
S(x,y)Ch(x, y)f (y)dy,

whereCh(x, y) ∼ ∑∞
j=0Cj (x, y)h

j andC0(O) = |b|− 1
2 .

Let us defineφj = Ûϕj . By Eq. (12), theφj ’s are microlocal solutions of̂H on the
ej ’s.

We compute the WKB form ofφ1 (resp.φ4) for x1 > 0 (resp.x4 > 0), but close to
0, in order to compute their phase shift. We apply the stationary phase method to the
integral (wherex1 > 0):

φ1(x1) =
∫ ?

e
i
h
S(x1,y)Ch(x1, y)ϕ1(y)g(y)dy,

whereg(y) ∈ C∞
0 (R \ 0) is 1 neary0 and such thatχ(y0,0) = (x1, ξ1) = z1. We get:

φ1(x1) = −ie ih S1(x1)eiε ln | x1
a

|| 1

x1
| 1

2 (A0(x1)+O(h)),

whereA0(x) = 1 + O(x) andS1(x1) = ∫ z1
0 ξdx is the generating function of the arc

χ(R × 0) which vanishes atx = 0. In the same way, forx4 > 0,

φ4(x4) = −ie ih S4(x4)e−iε ln | x4
b

|| 1

x4
| 1

2 (B0(x4)+O(h)),

whereB0(x) = 1 + O(x) andS4(x4) = ∫ z4
0 ξdx is the generating function of the arc

χ(0×R)which vanishes atx = 0. We now already from 1.4.1 thatA0(x)/|x| 1
2 |dx| 1

2 =
a0(x)|dx| 1

2 lifted toZ is invariant by the flow. Knowing that limx1→0A0(x1) = 1 implies

that this half-density is the canonical one. The same is true forφ4 with b0(x)|dx| 1
2 .

Let us evaluateφ1(xA) (resp.φ4(xB)) starting from their values atx1 (resp.x4) in
order to calculate their phase shift, using the usual WKB formulae.

Puttingzj = (xj , S
′
j (xj )), j = 1,4, we get:

φ1(xA) = −ia0(xA)e
i
h

∫ A
s ξdx+iε ln x1

a
−i ∫ Az1 H1dt (1 +O(h)),

where the integrals are computed onZ, in the same way:

φ4(xB) = −ib0(xB)e
i
h

∫ B
s ξdx−iε ln x4|b| −i

∫ B
z4
H1dt (1 +O(h)).
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s

z1

φ1

φ4z4

A

B

ξ

xxBxA

Fig. 10.Computation of the holonomy

Using the preceding computations, we can find the phase shift

φ4(xB)

b0(xB)
= ei�

φ1(xA)

a0(xA)
, (30)

� = 1

h

∫ B

A

ξdx +
∫ A

z1

H1dt −
∫ B

z4

H1dt + ε ln |x4x1

ab
|. (31)

Going to the limit wherez1, z4 → s and using|ω(sz1, sz4)| ∼ x1x4
a|b| and the defini-

tion 2.2, we get:

� = 1

h

∫ B

A

ξdx − vp
∫ B

A

H1dt +O(h). (32)

7. Summary of Quantization Rules

Summarizing, we start with a semi-classical Hamiltonian whose principal symbolH0 is
real and whose sub-principal symbol is denoted byH1. We first look at the characteristic
manifoldZ = H−1

0 (0), and calculate the invariantsε of the saddle points. They are
formal series inhwhose first termε0 is given by the formula (14). We then choose some
maximal treeT ofZ and some orientation of the cut edges. It is then possible to calculate
the holonomies of the corresponding cycles using formula (29). We then describe any
microlocal solution in terms of the trivialisation ofF1 in the following way:

u = ⊕exeue,

where the sum is on the edges ofT . The conditions on thexe’s are then given by the
matricesTε associated to each saddle point and the holonomiesxe+ = hol(γ )xe− if the
cycleγ corresponds to the cut edgee = e+ ∪ e− following e− and thene+. The relative
error on these conditions is of orderO(h∞); it is of orderO(h) when we approximate
the holonomies using Eq. (29); in that case, it is also possible to replaceε by ε0 without
changing the relative error.
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8. The Double Well Potential

8.1. Generic study of the double well potential.In this section, we will apply the previous
theory to the situation of [7] and [8] whereX = T ?R andV : R → R is a function
with a double well. Without loss of generality, we may suppose that:

V (0) = 0, V ′(0) = 0, V = V ′′(0) < 0,

e.g.V (x) = x2((x − b)2 − a2) with a > b > 0.

x

V (x)

Fig. 11.A double-well potential

Let

Ĥ = −h
2

2

d2

dx2 + V (x)− λh (33)

be the corresponding Schrödinger operator. A normalized solution ofĤu = O(h∞)
exists if and only ifλh is an eigenvalue of−h2

2
d2

dx2 +V (x) up to a relative error of order
O(h∞) (relative to the closest eigenvalue).

γ1

γ2+ 2 4

1 +

−

−
3

Fig. 12.The double well potential in the phase space

We have:

det(H ′′
0) = V, ε0 = λ√−V . (34)
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Let us denote byhj = eiθj the holonomies of the loopsγj . The holonomy equations
read:

x1 = h1x4, x2 = h2x3, (35)

and the critical point relations are:(
x3
x4

)
= T (ε)

(
x1
x2

)
. (36)

We get the following quantization relation:

det

((
0 h−1

2
h−1

1 0

)
− T (ε)

)
= 0, (37)

or equivalently “1 is an eigenvalue of the matrix”:

T (ε)

(
0 h1
h2 0

)
, T (ε) = E

(
1 ie−επ
ie−επ 1

)
.

This matrix is unitary, hence we may apply [8, Appendix] and rewrite the quantization
rule as a real equation, like [8, Proposition 3]:

Proposition 1. The equationĤu = O(h∞) has a normalized eigenfunction if and only
if λ satisfies the following condition:

1√
1 + e2πε

cos

(
θ1 − θ2

2

)
= cos

(
θ1 + θ2

2
+ π

2
+ ε ln h+ arg0(

1

2
+ iε)

)
, (38)

whereε = ε0 +O(h) (cf. (11) and (34)) and:

eiθ1 = h1, eiθ2 = h2

with

θj = 1

h

∫
γj

ξdx − λvp
∫
γj

dt + π

2
+O(h).

We want to calculate more explicitly (38) up to a relative error of orderO(h). Hence
we replaceε by ε0, and calculateθ1 andθ2 using (29). We observe that the Maslov
indices are +1 and that theAγi values are opposite to the area inside the cyclesγi (since
d(ξdx) = −dx ∧ dξ ). It remains to do the calculation of the regularized integralsIγi .

Note that along a trajectory of the HamiltonianH = ξ2/2 + V (x) one has:

dx

dt
= ξ± = ±√−2V (x).

Let γ denote one of the two cycles, letA be the intersection ofγ with thex axis. Let
xA be thex-coordinate ofA (e.g. forV (x) = x2((x − b)2 − a2), xA = b ± a). From
Definition (8), we get:

Iγ = lim
ãb̃→sj

(

∫ ã

A

H1dt +
∫ A

b̃

H1dt + a(0) ln
∫
R
ã,b̃

ω)

= λ lim
x→0

(2
∫ x

xA

−dX√−2V (X)
+ 1√−V ln |2x√−2V (x)|).
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8.2. Non-singular limit.In this section, we show that the limit of the singular Bohr–
Sommerfeld quantization rules asε → ±∞ are the usual quantization rules.

We apply the Stirling formula:

arg0(
1

2
+ iε) = ε ln |ε| − ε + o(1),

and evaluate the area inside the curveξ2

2 + V (x) = τ asτ tends to 0. From Eq. (10)
(Sect. 2.2), we get:

A(τ) = A(0)+ 2
τ√|V| (1 − ln

|τ |√|V| )− (Iγ1 + Iγ2)τ +O(τ2 ln |τ |),

whereH1 = 1 in the definition of theIγ integrals.
Hereτ = λh and we must change the sign ofA(τ) since the cycles are oriented using

the trigonometric convention:

∫
H=λh

ξ dx =
∫
H=0

ξ dx + 2
λh√|V| (ln

|λh|√|V| − 1)+ (Iγ1 + Iγ2)λh+O(λ2h2 ln h)

=
∫
H=0

ξ dx + 2ε0h(ln |hε0| − 1)− h(Iγ1 + Iγ2)H1 +O(λ2h2 ln h),

whereH1 = −λ.
If λ tends to+∞, Eq. (38) is satisfied if the argument of the cosine of the right-hand

side isπ/2 moduloπ , hence:

θ1 + θ2

2
+ ε ln h− ε + ε ln ε + oε(1) = kπ. (39)

On the other hand:

θ1 + θ2

2
= π

2
+ 1

2h

∫
H=0

ξ dx − 1

2
(Iγ1 + Iγ2)(H1)

= π

2
+ 1

2h

∫
H=λh

ξ dx − ε0(ln |hε0| − 1)+O(h ln h ε2
0),

therefore (39) becomes:

1

2h
A(hε)+ π

2
+O(h ln h ε2)+ oε→+∞(1) = kπ

which is the usual Bohr–Sommerfeld quantization rule. We leave the same verification
asλ tends to−∞ as an exercise for the reader.

8.3. Analytic calculations for polynomial potentials of degree4. In this section we
examine further the exampleV (x) = x2((x − b)2 − a2).
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8.3.1. Results.Using our preferred CAS (computer algebra system), we determine an-
alytically theAγi ’s:

Aγd = √
2

(
−2

√
a2 − b23

3
−
√
a2 − b2b2 − ba2 arcsin(

b

a
)− a2bπ

2

)
,

Aγg = √
2

(
−2

√
a2 − b23

3
−
√
a2 − b2b2 − ba2 arcsin(

b

a
)+ a2bπ

2

)

andIγ ’s:

Iγd = ε0

(
7

2
ln 2(a2 − b2)− 2 lna

)
= ε0

(
7

2
ln(2(a2 − b2))− 2 lna

)
. (40)

We observe thatIγg = Iγd , this will be explained in Sect. 8.3.2.
Hence (29) reads, up to a relative error of orderO(h):

θ1 − θ2 = √
2
a2bπ

h
,

θ1 + θ2 = π − 2ε0(
7

2
ln(2(a2 − b2))− 2 lna)+

+√
2

2

h

(
−2

√
a2 − b23

3
−
√
a2 − b2b2 − ba2 arcsin(

b

a
)

)
,

then we apply (38) and we get:

Proposition 2. The solutionsε0 of:

1√
1+e2πε0

cos(
a2bπ

2h
) = cos

(
π−2ε0

(
7

2
ln(2(a2−b2))−2 lna

)
+ (41)

+
√

2

h

[
−2

√
a2−b23

3
−
√
a2−b2b2−ba2 arcsin(

b

a
)

]
+

+ε0 ln h+arg0(
1

2
+iε0)

)

correspond to the eigenvaluesλh = √
2(a2 − b2)ε0h of the Schrödinger operator

H = −h
2

2

d2

dx2 + V (x) = x2((x − b)2 − a2)

up to a relative error of orderO(h) (relative means relative to the closest eigenvalue).

If we want to get the numerical values of the eigenvalues, we are left to solve (41). In
Appendix A, we will compare the corresponding eigenvaluesλh to the eigenvalue that
we calculate using purely numerical techniques (Runge–Kutta’s method here) to show
the accuracy of the singular Bohr–Sommerfeld quantization rules. The semi-classical
method is very useful for small values ofh because the computation time is essentially
independent ofh, as it grow linearly for the Runge–Kutta method since we have to
choose a step of sizeεh (therefore we must make 1/(εh) steps).
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8.3.2. EqualityIγd = Iγg . The equalityIγg = Iγd for polynomial potentials of degree
4 can be shown directly. From (10), we have to show thatA+(E)−A−(E) = constant,
whereA±(E), E < 0, stand for the areas of the two components of{(x, ξ)/ξ2+V (x) ≤
E}. Let γ± denote the border of these two domains, one has:

dA±
dE

=
∫
γ±

dx

ξ
. (42)

The 1-formdx
ξ

is holomorphic on the smooth holomorphic projective compactification

of the curveξ2 + V (x) = E. This curve is a torus ifV is a polynomial of degree 4,
hence the curvesγ+ andγ− are homotopic (for they are non degenerate and they don’t
intersect), which completes the proof of (42).

9. The Triple Well Potential

Same context as in Sect. 8, butV is a potential with three wells so that the corresponding
saddle points are at the same height.

x

V (x)

Fig. 13.A triple well potential

ηε

a−

a+

b+ b−

x c−

c+

γA
γB γC

Fig. 14.The triple well potential in the phase space

We construct a maximal tree (see Fig. 14) with 7 edges denoted bya±, b±, c± and
x. The holonomy equations corresponding to the three cyclesγA, γB andγC are:

a+ = αa−, b+ = βb−, c+ = γ c−.
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Letε andη denote the semi-classical invariants of the two vertices, the following relations
hold: (

a−
x

)
= T (ε)

(
b+
a+
)
,

(
b−
c−
)

= T (η)

(
c+
x

)
.

Hence:

(
T (ε) 0

0 T (η)

)
b+
a+
c+
x


−



a−
x

b−
c−


 = 0.

Since: 

a−
x

b−
c−


 =




0 α−1 0 0
0 0 0 1
β−1 0 0 0

0 0 γ−1 0





b+
a+
c+
x




the system has a non-trivial solution if and only if:

det



(
T (ε) 0

0 T (η)

)
−




0 α−1 0 0
0 0 0 1
β−1 0 0 0

0 0 γ−1 0




 = 0.

Let E andN denote the common factors of the coefficients of the matricesT (ε) and
T (η) defined by (18) forE and a similar formula forN . Dividing the first two lines of
the determinant byE and the last two lines byN , we get:∣∣∣∣∣∣∣∣∣

1 ie−επ − 1
αE 0 0

ie−επ 1 0 −1
E−1

βN 0 1 ie−ηπ

0 0 ie−ηπ − 1
γN 1

∣∣∣∣∣∣∣∣∣
= 0.

Now we expand the determinant with respect to the first column:

(1 − ie−ηπ (ie−ηπ − 1

γN ))(1 − ie−επ (ie−επ − 1

αE )) +
1

βN (ie−επ − 1

αE )
−1

E (ie−ηπ − 1

γN ) = 0.

Defining:

A = e−επ + i
1

αE , C = e−ηπ + i
1

γN (43)

we rewrite the previous equation as:

(1 + e−ηπC)(1 + e−επA) = − AC

βNE . (44)
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We want to show that this complex equation reduces to a real equation for real values of
E. For this we will prove that the modulus of both sides are equal. Let us introduce the
following notations:

α̃ = − argα − argE, γ̃ = − argγ − argN . (45)

Using this notation we may rewrite:

A = e−επ +
√

1 + e−2επeiα̃, C = e−ηπ +
√

1 + e−2ηπeiγ̃ ,

since|E | = 1/
√

1 + e−2επ . Hence:

1 + e−επA = 1 + e−2επ + e−πε
√

1 + e−2πεeiα̃

=
√

1 + e−2επeiα̃ A

and Eq. (44) becomes:

eiα̃+iγ̃√1 + e−2επ
√

1 + e−2ηπ AC = − AC

βEN .

It is now clear that both sides have the same modulus, therefore this equation reduces
to:

γ̃ + α̃ = π − argβ − argE − argN + 2 argA+ 2 argC (2π).

Eventually we get:

Proposition 3. The eigenvalues of the triple well potential Schrödinger operator cor-
respond to the solutionsλ of:

arg(β)− arg(α)− arg(γ ) = π + 2 argA+ 2 argC (2π) (46)

up to a relative error of orderO(h∞). Hereα, β andγ denote the holonomies of the 3
cycles andA, C as defined in (43), (18).

Exercise.Let a > 0, b > 0 and define:

V (x) = a(x2 − 1)3 − b(x2 − 1)2 = (x2 − 1)2(ax2 − a − b).

Calculate the singular Bohr–Sommerfeld quantization rules and compare with purely
numerical techniques, as for the quadratic potential of Sect. 8.3.

Hints:
We have:

V ′(x) = 2x(3a(x2 − 1)2 − 2b(x2 − 1)) = 2x(x2 − 1)(3ax2 − 3a − 2b),

hence this potential has five critical points: 0,±1, ±√
1 + 2b/(3a). The corresponding

critical values are:−a − b < 0, 0,−4b3/(27a2) < 0 and the corresponding Hessians
are: 6a + 4b > 0, −8b < 0 and 24b+ 16b2/(3a) > 0. HenceV has two local maxima
at±1 with V (±1) = 0. It is possible to calculate analytically the action integrals since
for x ∈ [−1,1]:

W(x) = √−V (x) = (1 − x2)
√
b + a − ax2

and 1/W both admit an explicit anti-derivative.
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10. Hill’s Equation

In this section we are concerned with the Schrödinger operator

Ĥ = −h
2

2

d2

dx2 + V (x),

whereV : R → R is aC∞ periodic potential of periodT > 0 such that supx∈R V (x) =
0.

10.1. Hill’s Equation: Spectrum and discriminant.Let us recall some well known facts
about the spectrum of the Hill equation and its discriminant.

The operatorĤ is essentially self-adjoint and has a continuous spectrum made of the
union of intervals calledbandsseparated bygaps.

In order to get quantitative information on these bands, let us introduce thediscrimi-
nantfunction1(E). LetPE : C

2 → C
2 be the linear map defined byPE(u(0), u′(0)) =

(u(T ), u′(T )) whereu is a solution of(Ĥ − E)u = 0. It is easy to prove thatPE has
determinant 1.

Definition 7. Thediscriminant of the Hill equation is defined by:

1(E) = trace(PE).

The graph of1(E) looks like Fig. 15.

1(E)

E

+2

−2

Fig. 15.The discriminant1(E)

We define the periodic spectrumE+
1 < · · · ≤ E+

k ≤ · · · as the spectrum of the

operatorĤ restricted to the periodic functions. TheE+
k ’s are precisely the solutions of

1(E+) = 2. We have a similar definition for the anti-periodic spectrumE−
1 ≤ · · · ≤

E−
k ≤ · · · , this is the spectrum of̂H restricted to anti-periodic functions. TheE−

k ’s are
the solutions of1(E−) = −2. The following inequalities hold:

E+
1 < E−

1 ≤ E−
2 < E+

2 ≤ E+
3 < E−

3 ≤ · · ·
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and the bands are given by:

B2j−1 = [E+
2j−1, E

−
2j−1], j = 1,2, · · · ,

B2j = [E−
2j , E

+
2j ], j = 1,2, · · · .

More generally, the spectrum of̂H overkT -periodic functions is the union of the solu-
tions of:1(E) = 2 cos2πj

k
.

The sizes of the bands are exponentially small forE < 0 ash → 0+ and the
sizes of the gaps are exponentially small forE > 0. We want to describe the transition
between this two regions, for this we will compute the asymptotic expansion series of
11(λ) = 1(hλ). Moreover, we will use this asymptotic to describe the spectrum ofH

restricted tokT -periodic functions.

10.2. Semi-classical asymptotic of the discriminant if the potential has a unique max-
imum per period.In this section, we assume thatV −1(0) = 2πZ andV "(0) < 0,
e.g.V (x) = cosx − 1. Let γ± denote the 2 cycles ofT ?( R

2πZ
) defined byγ+(s) =

(s,
√−2V (s)), 0 ≤ s ≤ 2π andγ−(s) = (2π − s,−√−2V (2π − s)), 0 ≤ s ≤ 2π .

2π0

V (x)

x

Fig. 16.An example of periodic potential

Theorem 7. The holonomies ofγ+ andγ− are equal. Letα be their common value:

α = e
i�
h

+iλJ +O(h), (47)

where� = ∫
γ+ ξdx and J = vp

∫
γ+ dt . Let ε be the semi-classical invariant of the

critical point (0,0):

ε =
∞∑
j=0

εj (λ)h
j , ε0 = λ

|V ′′(0)| 1
2

.

The following relation holds for|λ| ≤ M:

11(λ) = 2
√

1 + e−2πε cos

(
− argα + ε ln h+ arg0(

1

2
+ iε)

)
+O(h∞), (48)

hence

11(λ) = 2
√

1 + e−2πε0 cos

(
−�
h

− λJ + ε0 ln h+ arg0(
1

2
+ iε0)

)
+O(h ln h).

(49)
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This result extends to theC∞ case the result of März ([19]) which was valid under
analyticity assumptions.

Corollary 1. It follows immediately that in the region whereλ → 0, we have:

11(λ) = 2
√

2 cos

(
�

h
+ λ ln h

|V ′′(0)| 1
2

)
+O(λ)+O(h ln h). (50)

Hence the gaps and bands have asymptotically the same lengthl:

l = πh|V ′′(0)| 1
2

2| ln h| .

Proof. Nearx = 0+, a solution of the Schrödinger equation is characterized by its
coordinates(x1, x2, x3, x4)) in the basis(φj ) of microlocal solutions. Let(y1, · · · , y4)

denote the coordinates of the same solution nearx = 2π with respect to the basis
(ψj ) ThePE matrix is conjuguated to the matrix defined by(y3, y2) = P̃E(x3, x2). Its
expression is easily deduced from theT matrix and the holonomies:

y3 = αx1, x4 = αy2,

(
x3
x4

)
= T (ε)

(
x1
x2

)
. (51)

0 2π

γ+

γ−

x1
x3

x4
x2

y3

y2

Fig. 17.The phase portrait for the Hill’s equation

FactoringE in theT (ε) matrix (cf. (18)), we get:

P̃E =
( α

E −iαe−πε
ie−πε
α

E(1+e−2πε)
α

)
.

Hence det(PE) = 1 as it should be and:

tr (PE) = 2
√

1 + e−2πε cos

(
− arg(α)+ ε ln(h)+ arg0(

1

2
+ iε)

)
. ut (52)
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10.3. The periodic spectrum.The periodic spectrum is easily deduced from the equation
11(λ) = 2. We will now determine it by a direct method. We will also describe these
two methods in Sect. 11 in the more complicated case of the spectrum of the Hill’s
equation on 2T and 3T periodic functions. The situation is similar to the double well
potential, but here the pairs of exponentially close eigenvalues occur for energy value
that aregreater (instead of smaller) than the critical energy, these pairs come from the
microlocal effect between the two classical symmetric trajectories.

In the transition energy interval, one has (cf. Fig. 18):

x3 = αx1, x4 = αx2

(
x3
x4

)
= T (ε)

(
x1
x2

)
. (53)

Hence 1 is eigenvalue of the unitary matrix:(
a b

c d

)
:= T (ε)

(
α 0
0 α

)
.

As for the double-well potential, we apply the following equation from [8, Appendix]:

|a| cos

(
argad

2
− arga

)
= cos

(
argad

2

)

and we get the singular Bohr–Sommerfeld quantization rules:

1√
1 + e−2πε

= cos

(
− argα + ε ln h+ arg0(

1

2
+ iε)

)
. (54)

x = 0

ξ

γ+

γ−

1

4

3

2

Fig. 18.The 0 energy trajectory in the phase space for the pendulum
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This equation may be deduced from (48) and11(λ) = 2 as well. Let us remark the
minus sign in front ofε in the exponential of the left-hand side of (54); it confirms
the existence of pairs of eigenvalues forE > 0 instead ofE < 0 (as obtained for the
symmetric double-well potential). A more precise study of the solutions of (54) could
be done, and would show the same universal transition of the eigenvalue ladders.

Example.For the Mathieu EquationV (x) = cosx−1, we find� = 8 andJ = −5 ln 2.
We have done a numerical comparison of the eigenvalues obtained by applying the
singular Bohr–Sommerfeld rules and by using direct numerical methods, see Sect. A.2.

10.4. The semi-classical asymptotic of the discriminant for two maxima per period.In
this section, we study the Hill’s equation assuming that the potential has two maxima
per period. With the notations of Fig. 19, it suffices to calculate(B+, Y ) as a function
of (b+, y). The holonomy equations read:

b+
a+

b−

x−x+

a−

Y

B+

γA

γB

y

Fig. 19.The double well for the pendulum

a+ = a− α
β
, b+ = b−β2, x+ = x−

αβ

with α = hol(γA) andβ = hol(γB), and the critical invariant equations are:(
b−
x+
)

= T (η)

(
a+
y

)
,

(
a−
Y

)
= T (ε)

(
B+
x−

)
.
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Using again our preferred CAS, we determine the function(b+, y) → (B+, Y ). We
check that the corresponding matrix has determinant 1, and its trace is given by:

1 = 2
√

1 + e−2πε
√

1 + e−2πη cos(argα + argβ + argE + argN )+
+2e−π(ε+η) cos(argβ − argα).

It is now easy to get information about the lengths of the bands and gaps asλ tends
to 0. Modulo a relative error of order 1/| ln(h)|, we get:

1 = 4 cos(argα + argβ + (ε + η) ln(h))+ 2 cos(argβ − argα),

and we rewrite this equation as:

1 = 2 + 4

[
cos(argα + argβ + (ε + η) ln(h))− sin2

(
argβ − argα

2

)]
.

Therefore the inequality1 > 2 is equivalent to:

cos(argα + argβ + (ε + η) ln(h)) > sin2
(

argβ − argα

2

)

up to a 1/| ln(h)| relative error. Hence, the bands and gaps do not have generically the
same length near the 0 energy, except ifβ = α. These lengths depend on the value of
argβ − argα. For example it is possible to have gaps of asymptotically small length or,
conversely, bands of asymptotically small length.

11. The Periodic Spectrum Over 2T and 3T Periodic Functions

We proved in the previous section that the pendulum showed the same universal transition
as the double well potential. It is natural to explore the situation of the double and triple
translation-symmetric well overM = R/(2πZ). The reference models areV (x) =
1 − cos(2x) and 1− cos(3x).

11.1. The translation-symmetric double well.

11.1.1. Direct method.In this situation, we will have pairs of exponentially close eigen-
values in both energy domains (E > 0 andE < 0), but the tunneling trajectories that
explain these couplings are different.

We can keep the notations of Fig. 19 but we have nowα = β: there is a little cycle
of holonomyα2, and two big cycles of holonomiesα−2 and 1. The two critical points
have the same semi-classical invariantε.

We get:



a−
y

b−
x+


 =

(
T (ε) 02
02 T (ε)

)
b+
x−
a+
y


 =




0 0 1 0
0 0 0 1
α−2 0 0 0

0 α−2 0 0





b+
x−
a+
y


 .
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This homogeneous system has a non-trivial solution(b+, x−, a+, y) if and only if its
determinant is 0. FactoringE in each line (cf. (18)) gives:∣∣∣∣∣∣∣∣

1 ie−επ −1/E 0
ie−επ 1 0 −1/E
−1/Eα2 0 1 ie−επ
0 −1/Eα2 ie−επ 1

∣∣∣∣∣∣∣∣
= 0,

and eventually:

E(1 − ie−επ ) = ± 1

α
where E(1 + ie−επ ) = ± 1

α
. (55)

As a consequence, we obtain the equidistribution of the eigenvalues near energy 0 in the
semi-classical limit (here “near” means after a zoom-out of factor 1/h).

11.1.2. The trace method.The eigenvalues may be distinguished by parity properties:
the periodic [respectively anti-periodic] eigenvalues correspond to eigenfunctions that
satisfyf (x + π) = f (x) [resp.f (x + π) = −f (x)]. Hence we have to check if 1 and
−1 are eigenvalues of the translation matrix over a half period, or, since the determinant
of this matrix is 1, to check that the trace is 2 (periodic eigenvalue) or−2 (anti-periodic).
Therefore we are lead to the equation:

cos

(
− arg(α)+ ε ln(h)+ arg0(

1

2
+ iε)

)
= ± 1√

1 + e−2πε
. (56)

For ε = 0, we find again the equidistribution of the eigenvalues with the following
parity: periodic, anti-periodic, anti-periodic, periodic.

We can compare (56) and (55): since all members of (55) have modulus 1, these 4
equations are equivalent to the equations obtained by taking the arguments. Getting (56)
is now easy.

Let us apply Eq. (10.4) withα = β andε = η. Observing that cos(2x) = 2 cos2 x−1
and that the orientation convention of the cycles are reversed to those of (47) (hence
holonomies are inverses), we eventually get (56).

11.2. The translation-symmetric triple well.

11.2.1. Direct method.The critical energy area makes here a transition between triplets
(E < 0) and pairs (E > 0) of exponentially close eigenvalues.

The semi-classical invariants of this situation are:

• two “small” cycles having the same holonomy denoted byα2,
• two “big” cycles, their holonomies areα−1 andα−3 = a3,
• three vertices having the same invariantε.

With the notations of Fig. 20, we get:


a−
z

b−
x+
c−
y


 =


T (ε) 0 0

0 T (ε) 0
0 0 T (ε)






c+
x−
a+
y

b+
z


 =




0 0 α 0 0 0
0 0 0 0 0 1
0 0 0 0 α−2 0
0 α−3 0 0 0 0
α−2 0 0 0 0 0

0 0 0 1 0 0







c+
x−
a+
y

b+
z


 .
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+ + +

+

a

c b

x

Fig. 20.The translation-symmetric triple well potential

FactoringE in theT (ε) matrix (see (18)), we get the quantization rule as the nullity of
the determinant of a 6× 6 matrix:

∣∣∣∣∣∣∣∣∣∣∣

1 ie−πε −α/E 0 0 0
ie−πε 1 0 0 0 −1/E
0 0 1 ie−πε −1/α2E 0
0 −1/α3E ie−πε 1 0 0
−1/α2E 0 0 0 1 ie−πε
0 0 0 −1/E ie−πε 1

∣∣∣∣∣∣∣∣∣∣∣
= 0.

This determinant can be factored as:

(1 − αE(1 − ie−πε))(1 − αE(1 + ie−πε))
(
1 + αE + α2E2(1 + e−2πε)

)2 = 0.

Hence we find two simple eigenvalues, solutions of:

E(1 − ie−πε) = ± 1

α

and two eigenvalues of multiplicity 2, solutions of:

E = −1 ± i
√

4(1 + e−2πε)− 1

2α(1 + e−2πε)
.

If we make a zoom-out of the eigenvalues near 0, their repartition will be asymptotically
the same as the repartition of the following complexes on the unit circle:

−1 ± i√
2
(simple),

−1 ± i
√

7

2
√

2
(double).

Therefore the transition area looks like Fig. 21 where we have used a bold level for
double eigenvalues on the ladder.
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E = 0E < 0

π/2

π/2

2π

E > 0

3π/4 − atan(
√

7)

2atan(
√

7)

3π/4 − atan(
√

7)

Fig. 21.Universal transition for the triple well

11.2.2. The trace method.We study the trace of the translation matrix on one third of a
period. The periodicity/anti-periodicity of eigenfunctions is replaced by the relation:

f (x + 2π

3
) = e2ikπ/3f (x)

Remark thatk = 1 andk = 2 correspond to eigenfunctions that are conjugated, this
explains the fact that eigenvalues of multiplicity 2 correspond to a trace of 2 cos(2π/3).
The non degenerate eigenvalues correspond to eigenfunctions that are 2π/3 periodic, the
transition of these eigenvalues will therefore be similar to the transition of the eigenvalues
of the single pendulum. For multiplicity 2 eigenvalues, we get:

cos

(
− arg(α)+ ε ln(h)+ arg0(

1

2
+ iε)

)
= ± 1

2
√

1 + e−2πε
.

As an easy consequence, we obtain forε = 0 the same description as in Fig. 21.

12. System of Schrödinger Operators with a Small Coupling Parameter

This section is related to [21] and [6], see also [5]. LetP̂j , j = 1,2 be two Schrödinger

operators with potentialsVj (x) defined byP̂j = −h2

2
d2

dx2 + Vj (x) with smoothVj ’s.

Assume that the characteristic manifoldsZj = {1
2ξ

2 + Vj (x) = 0} are smooth cir-
cles intersecting transversally at the pointsz± = (x0,±ξ0). We are interested to study
existence of microlocal solutions for the system:

P̂1u+ εv = 0,

εu+ P̂2v = 0.
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If ε = 0, we get two independent equations. Ifε 6= 0, u is solution of the fourth order
equation

Ĥu = (P̂2P̂1 − ε2)u = 0.

If ε 6= 0 is small and independent ofh we get a smooth characteristic manifold. If we
assumeε = O(

√
h), we get a singular case which can be studied using the previous

tools. It is then natural to putε = ω
√
h with ω 6= 0. Let us denote byT±, the matrices

y1

y4

x1
x3

x4x2

z−

−

+

−

+

−

+

γC

γA

y2

y3

z+

γB

Fig. 22.Phase space for̂H

associated with the singular pointsz±. If γA, γB andγC are the cycles defined by Fig. 22
andα = hol(γA), β = · · · , we have the following equations:(

x3
x4

)
= T+

(
x1
x2

)
,

(
y3
y4

)
= T−

(
y1
y2

)
,

x2 = y3, y4 = γ x1, y1 = βx4, y2 = αx3. (57)

Hence, the singular Bohr–Sommerfeld rule reads:

det

(
Id − T+

(
0 γ−1

1 0

)
T−
(

0 β

α 0

))
= 0.

Let us sketch the way to compute the holonomies andε0’s of singular points.
We haveH0 = (1

2ξ
2 + V2(x))(

1
2ξ

2 + V1(x)) andH1 = 1
2i ξ(V

′
2 − V ′

1)(x)− ω2. We
get

ε0(z±) = ∓ 1

2i
+ ω2

|ξ0(V ′
2 − V ′

1)(x0)| .

The matricesT± are not unitary becauseH1 is no longer real, but it is possible to
check that

T+
(

0 γ−1

1 0

)
T−
(

0 β

α 0

)

belongs toU(1,1).
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13. Scattering Matrices

13.1. One channel scattering.We are interested in an example studied by Rouleux
([23]). LetV (x) be aC∞ potential such that (see Fig. 23):

• V (x) = 0 for x ≥ b > 0.
• V (0) = V0 > 0,V ′(0) = 0 andV ′′(0) < 0.
• V −1(V0) = {a,0} for ana < 0 such thatV ′(a) < 0.

HenceV −1((−∞, V0]) = [a,+∞(.

x

V (x)

V0

a b

Fig. 23.1 channel scattering potential

b
x

ξ

A

W0

γAγ0
y3

y2
y4

y1

Fig. 24.1 channel scattering in the phase space

Let k > 0. The Schrödinger equation

−h
2

2
ϕ′′ + V (x)ϕ = k2ϕ

has a unique solutionϕ ∈ L2(R−), such that:

ϕ = r(k)ei
√

2kx/h + e−i
√

2kx/h, x ≥ b.

It is well known thatr(k) has modulus 1,r(k) is called thereflection coefficient. Using
the previous methods, we will calculater(k) up to an error of orderO(h) for k =√
V0 +O(h).
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Let Wo = √
V0. We may writek = W0 + hω with ω = O(1). Hence,H0 =

1
2ξ

2 + V (x)− V0 andH1 = −2W0ω.
Fix A > b and letγA be the simple path of the phase space joining(A,W0) to

(A,−W0) inside the characteristic manifold12ξ
2 + V (x) = V0. The phase shift of a

standard solution alongγA is given (see (32)) by:

ϕA = 1

h

∫
γA

ξdx − v.p.
∫
γA

H1dt +O(h).

If eiθ0 is the holonomy of the loopγ0 and, if we put� = 2
√

2kA + ϕA (which is
independent of the choice ofA > b), we get:

y2 = eiθ0y3, y1 = r(k)ei�y4

and (
y3
y4

)
= T (ε)

(
y1
y2

)
.

Hencer(k) = ei8 with:

8 = −(�+ θ0 + 2 arg(E))+ 2 arg(1 − ie−πεEeiθ0)+O(h). (58)

13.2. Two channel scattering.Let us consider the volcano-top example.This is a Schrödinger
equation onR like (33) with the following assumptions:

• V (x) → V−, V− < 0 asx → +∞,
• V (x) → V+, V+ < 0 asx → −∞,
• supV = 0,
• V −1(0) = {x1, x2} with x1 < x2 andV ′′(xi) < 0.

This example has been studied by Fujiie and Ramond ([14]) in the analytic case.
The energy shell in phase space looks like Fig. 25. Letβ = eiθ be the holonomy of

aout

ain

b+ b−

x

cout

ε η

cin

Fig. 25.The volcano-top

the cycle, andEj , j = 1,2 be the scalar coefficients factored in the matricesT (εj ) (cf.
(18)). Then the following equations hold:

b+ = βb−,
(
ain

x

)
= T (ε1)

(
b+
aout

)
,

(
b−
cin

)
= T (ε2)

(
cout

x

)
.
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By Gaussian elimination ofb andx, we get:

ain = E1

D

[
i
(
βE1E2e

−ε2π (1 + e−2ε1π )+ e−ε1π
)
aout + βE2c

out
]
,

cin = E2

D

[
E1a

out + i
(
βE1E2e

−ε1π (1 + e−2ε2π )+ e−ε2π
)
cout

]
,

D = 1 + e−ε1πe−ε2πβE1E2.

Note that the denominatorD is never 0 for real energies since|Ej | = (1+ e−2εj π )−1/2.
The complex zeroes of the analytic continuation ofD are named quasi-resonances. We
remark that theS matrix such thatS(aout, cout) = (ain, cin) is unitary as it should.

We will now calculate the modulus of the transmission and reflection coefficients (it
is of course possible to calculate the phase shifts in the spirit of the previous section).
Let us consider a solution which is micro-locally supported on one of the two incoming
branches, e.g.ain. Henceain = 1, cin = 0 and|cout| = |t |, |aout| = |r| = √

1 − |t |2.
SinceS is unitary, we have:

|t | =
∣∣∣∣E2E1

D

∣∣∣∣ .
For example, if we are interested in energiesE such thatE/h tends to 0, thenε1 = ε2 = 0
and we find the same result as Fujiie and Ramond ([14]):

|t | = 1√
5 + 4 cosθ

.

A. Numerical Results

A.1. The symmetric double well potential.Let V (x) = x4 − x2. In this section, we
calculate the eigenvalues of the corresponding Schrödinger operator for different values
of h by solving (41) or by applying the Runge–Kutta method to the first order differential
system:

d

dx

(
ϕ

ϕ′
)

=
(

0 1
2(V (x)−E)

h2 0

)
.

(
ϕ

ϕ′
)
. (59)

More precisely, we calculate two solutions of (59), starting from two points in the
classically forbidden region, the first one is chosen in the connected component of−∞
and the second in the component of+∞. We takeϕ = 1 andϕ′ = 0 as initial conditions
at these points.And we compute theWronskianW(E)of these 2 solutions atx = 0. Since
we start from the classically forbidden region, the numerical solution that we obtain in the
classically allowed region will behave like a solution which decreases exponentially fast
in the component of the starting point region.Therefore, theWronskianW(E)will vanish
if and only ifE is an eigenvalue. To find these values, we detect sign changes ofW(E)

first by dichotomy, then by interpolation of the curveE → W(E) for better accuracy
(this is the best method when Newton’s method can not be applied. The convergence
law of the sequence ofE is given by|En−E| ≤ |E0 −E|Fn whereFn are the Fibonacci
numbers).
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On the other hand, rewriting Eq. (41) for the potentialV (x) = x4 − x2 (a = 1 and
b = 0) gives:

1√
1 + e2πε

+ cos

(
ε ln(h)+ arg0(

1

2
+ iε)− 7

2
ε ln(2)− 2

√
2

3h

)
,

whereε = E√
2h

.
All these functions are standard, except the argument of the0 function. We have

used thePARI library from the number theory laboratory of Bordeaux to calculate it.
Implementation has been done inC/C++ , programs are available at:
http://www-fourier.ujf-grenoble.fr/ ˜parisse/bs.tgz

Forh = 10−6, we get the following eigenvalues in the interval[−2.10−6,3.10−6]:
Index Runge–Kutta Bohr–Sommerfeld

1 −1.68092e-06 −1.68100e-06

2 −1.67670e-06 −1.67678e-06

3 −1.14072e-06 −1.14080e-06

4 −1.12697e-06 −1.12706e-06

5 −0.62743e-06 −0.62751e-06

6 −0.58579e-06 −0.58587e-06

7 −0.15515e-06 −0.15522e-06

8 −0.05032e-06 −0.05041e-06

9 0.29793e-06 0.29786e-06

10 0.48460e-06 0.48451e-06

11 0.78346e-06 0.78339e-06

12 1.02441e-06 1.02432e-06

13 1.30685e-06 1.30677e-06

14 1.57243e-06 1.57234e-06

15 1.85275e-06 1.85266e-06

16 2.12953e-06 2.12944e-06

17 2.41218e-06 2.41208e-06

18 2.69515e-06 2.69506e-06

19 2.98110e-06 2.98101e-06

20 3.26833e-06 3.26824e-06

Note the accuracy of the singular Bohr–Sommerfeld rules. This method is far cheaper
than the Runge–Kutta method (about 100× faster).
Comparison 2: Forh = 0.1, we get the following eigenvalues in the interval[−0.3,0.3]:

Index Runge–Kutta Bohr–Sommerfeld

0 −0.156568 −0.16038

1 −0.155061 −0.15861

2 −0.014654 −0.01358

3 0.021032 0.02162

4 0.116728 0.11546

5 0.212051 0.20839

Even for this relatively largeh value, the singular quantization rules give an accurate
approximation of the eigenvalues. Note however that for this value ofh, the Runge–Kutta
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method is faster! We remark that the mean gap between two consecutives eigenvalues
is about 1× h in this example and about 4× h for h = 10−6. Theoretically, we should
find a ratio of 6 instead of 4. This would require to calculate eigenvalues for energies
that are much closer toE = 0.

Let us now compare the two methods (singular quantization rules and numerical
integration) in terms of the position of the ladders of even and odd eigenvalues near the
critical energy. We introduce the form factor:

R = E2n+1 − E2n

E2n+2 − E2n
,

where the eigenvalues are indexed starting fromn = 0 (hence even eigenvalues corre-
spond to even eigenfunctions). ForE2n+1 >> h, eigenvalues are equidistributed, hence
R tends to 1/2 ; for −E2n+1 >> h, eigenvalues are coupled, henceR tends to 0. If
E2n+1/(h

√|V ′′(0)|) tends to a limitε0 ash tends to 0, it is possible to calculate the
limit of R:

lim
h→0

R = arccos
(
(1 + e2πε0)−1/2

)
π

.

HenceR → 1/4 for ε0 = 0. Coming back to the second example above (h = 0.1), we
get(E3 − E2)/(E4 − E2) = 0.27, a value which is close to the theoretical value ofR

(sinceE3/(
√

2h) = 0.15 is close to 0).

A.2. The pendulum.We make the same kind of comparison for the pendulum (the peri-
odic Schrödinger equation), where we takeV (x) = cos(x)−1 as potential. The singular
Bohr–Sommerfeld quantization rules read (see (54)):

1√
1 + e−2πε

= cos

(
−8

h
− 5 ln(2)ε + ε ln h+ arg0(

1

2
+ iε)

)

with ε = E/h.
We use a numerical method which is slightly different than that of the previous section:

here we will study the monodromy matrixM. Let (ϕ, ϕ′) = (1,0) and(ϕ, ϕ′) = (0,1)
be a couple of (linearly independent) initial conditions atx = 0. Using the Runge–Kutta
method, we integrate the Schrödinger equation fromx = 0 to x = 2π and determine
the matrixM. EnergyE is an eigenvalue if and only if 1 is eigenvalue ofM. We have
now to find the zeroes of det(M − I ).

Let p be the length of a step of the Runge–Kutta method. Then the relative error is
of orderp3/h4 in theE ≥ 0 energy area. The error is much bigger in theE < 0 area
because starting and ending in the classically forbidden region multiplies the relative
error by an exponential coefficient which is proportional toe−CE/h. Hence we can not
apply this numerical method ifE < −Dh (and if we choose a big value forD, we have
to choose a correspondingly small value forp).
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The comparison shows that the two methods give close results. In the following
example, we takeh = 10−3, and we obtain:

Index Runge–Kutta Bohr–Sommerfeld

0 −0.00339886 −0.00339946

1 −0.00305773 −0.00305821

2 −0.00272065 −0.0027210

3 −0.00238812 −0.00238841

4 −0.00206018 −0.002060396

5 −0.00173847 −0.001738624

6 −0.00142077 −0.0014208684

7 −0.00111594 −0.001116004

8 −0.000805647 −0.000805677

9 −0.000541145 −0.000541155

10 −0.000212948 −0.000212945

11 −5.18091e-05 −5.18018e-05

12 0.000371877 0.0003718748

13 0.000420734 0.000420730

14 0.000978865 0.000978818

15 0.000978865 0.000978818

We note a better accuracy forE > 0, as we could expect from the above remark about
the instability of the numerical method forE < 0.

B. Proof of Theorem 2

Isotropy is clear, because ifu is a solution inU (u ∈ M
Ĥ
(U)),6Ĥ5u = Ĥ5u.

We only need to get a lower bound by induction on the number of compact edges. If
there are no compact edges, we know already that the dimension of the space of solutions
is half the number of open edges because in that case,Z is an union of simple crosses.
Gluing boundaries of a cut edge can be identified with a reduction on theS-matrix. More
precisely, we use the:

Lemma 3. LetH = H+ ⊕ H−, whereH+ andH− are 2 Hilbert spaces of the same
finite dimension andU : H− → H+ be a linear isometry whose graph is0. e± ∈ H±
are 2 vectors of length 1 andK± are the orthogonals ofCe±. Let eiα be a complex
number of modulus1 and

01 = {(z−, z+) ∈ K− ⊕K+| ∃y ∈ C, (z− + ye−, z+ + eiαye+) ∈ 0}.

Then01 is the graph of an unitary mapping fromK− intoK+.

The proof is elementary.
We then apply the lemma. GivenZ, Z1 is obtained by cutting some compact edge

of Z and replacing it by one in-going and one out-going edge ofZ1. H± are related to
Z1 andK± are related toZ. The functionse± areJ -normalized microlocal solutions at
both ends of the cut edge andy+ = eiαy− expresses the gluing of both solutions.
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