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2 Y. COLIN DE VERDIÈRE, M. LOMBARDI AND J. POLLET

1. Introduction

The origin of our work is a quantum mechanical problem: describe the behavior
when h→ 0 of the solutions of

(1)
h

i

dψ

dt
= A(t)ψ,

where t ∈ R, ψ(t) ∈ Cn or some Hilbert space, and A(t) is a linear operator
(Hamiltonian) in that space. When A(t) has no crossing of eigenvalues, i.e. if the
distance of one eigenvalue from the neighboring ones remains greater than some
fixed (independent of h) constant δ for all t, then the main qualitative result
is the adiabatic approximation: when h → 0, if for some t0 ψ(t) belongs to the
eigenspace of such an isolated eigenvalue, it belongs to it for all t. Several levels of
refinement can be found both in the physics and in the mathematics litterature.

More precisely we will study the breakdown of the adiabatic approximation, i.e.
what happens when two eigenvalues cross or nearly cross (the established name
in the physical litterature is avoided crossings) for some t0. Qualitatively if ψ(t)
belongs to the eigenspace of only one of those eigenvalues for t < t0, it belongs
to the direct sum of both for t > t0, so one can define a probability of transition
at the (avoided) crossing. The Landau-Zener formula for such a probability
was established in 1932 in the physics litterature [18, 29]. Better results were
obtained the same year by Stückelberg [26]. In the mathematical literature the
Landau-Zener formula in the adiabatic regime is proved for analytic A(t) in [12]
and [15]. More refined formulae are given in [16]. The Landau-Zener formula
for the semi-classical propagation of coherent states is proved by Hagedorn and
Hagedorn-Joye ([13], [14]).

We will present here generalizations of a Landau-Zener type formula, valid for
more general equations than those of quantum mechanics (i.e. optics, acoustics
etc, for which there are little or no hints in the physics literature), and for less
restrictive assumptions about operators than analyticity.

To grasp the principle of our method, it is first necessary to understand that
this is a two small parameters problem, which must not be kept independent.

– the adiabatic parameter, which we will always denote h. It has nothing to
do with the Plank’s constant, but it is a renormalized non dimentional quantity,
essentially the (small) ratio of the speed of variation as a function of t of the
coefficients of A(t) and of the particular solution ψ(t) we want to study. Depend-
ing on the equation at hand, it can be S

~
, ratio of the classical action and of the

Plank’s constant, ( m
M

)1/4, fourth square root of the ratio of the electron mass m
and of a nuclear mass M (Born-Oppenheimer approximation), the reciprocal of
the main quantum number or of the number of nodes of a wavefunction etc.

– the coupling parameter, which we will always denote ǫ, essentially the mini-
mum distance of the two eigenvalues at the (avoided) crossing position.

If one let h going to 0, with ǫ fixed, one gets the adiabatic approximation, and
corrections are exponentially small with respect to h. This is a particularly tricky
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problem to handle, especially in the smooth, non analytic, framework. If one
let ǫ going to 0, with h fixed one gets the opposite diabatic approximation and
corrections as a perturbation theory with respect to ǫ, less unwieldy because it is
a regular perturbation theory. But we need a theory which interpolates smoothly
between the two approximations, especially because it is frequently possible to go
smoothly between the two limiting cases by varying an experimental parameter.
This is what is given by the Landau-Zener formula: one gets a finite result when
letting both h and ǫ tend to zero, while keeping the ratio ǫ2

h
constant.

Our theoretical framework will be the theory of pseudo-differential operators
(PDO) with a small parameter h as presented in the book [23]. This is mainly
because the limit h → 0 is the classical limit of quantum mechanics, and that
this theory gives a mathematically sound way to tackle in quantum mechanics
classical phase space properties: canonical transformations, local in phase space
properties (called microlocal properties in this theory).

The basic idea will indeed be a classical phase space way of thinking, the
same as that was used in [6, 7, 8]. The classical limit in phase space near an
avoided crossing will be shown to be an Hamiltonian flow near a saddle point
(fig. 1a). The classical way is to map with a canonical transformation χ this flow
to the Haminonian flow of yη − Φ0(ǫ, h) = 0, where y and η are new conjugate
coordinates and Φ0 is some function we will compute (fig. 1b).

Figure 1. a) the original hamiltonian flow in phase space. b) the
model hamiltonian flow after canonical mapping
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The quantization of this new classical hamiltonian is:

(2) H =
h

i
y
d

dy
− Φ0.

The crucial point is then that this first order differential equation has solutions
which can be computed exactly in an elementary way [6].

All our work will be to give correct mathematical definitions and proofs to this
loose way of thinking.

Let us be more precise. We will study a generalized 2-levels system in dimension
1 given by:

(3) Hǫ

(

u
v

)

=

(

P1(ε, h) ǫW (ε, h)
ǫW ⋆(ε, h) P2(ε, h)

) (

u
v

)

= 0 .

Equation (1) is a particular case with Hǫ = h
i

d
dt
−Aǫ, where the dependance of the

additional coupling parameter has been indicated. Here P1, P2 and W are order
0 h-PDO’s which depends in a smooth way on ε and the Pj ’s are self-adjoint.
We are located near a point z0 in the phase space T ⋆R such that the principal
symbols pj of Pj vanish at z0 and their differentials at that point are linearly
independent. We also assume that the principal symbol of W (0) at z0 does not
vanish. Then ǫW (ǫ) builds an avoided crossing of the eigenvalues of the principal
symbol.

This general case covers 2 important particular cases:

Example 1.1. : adiabatic Schrödinger equation.
We consider the equation (1) where we assume

(4) Aǫ(t) =

(

λ1(t) ǫW (t)
ǫW̄ (t) λ2(t)

)

,

and Hǫ = h
i

d
dt
⊗ Id −Aǫ(t). We have then:

(5) Pj =
h

i

d

dt
− λj(t) .

We assume that λ1(t0) = λ2(t0), λ
′
1(t0) 6= λ′2(t0) and that W (t0) 6= 0. Then we

have:

z0 = (t0, λ1(t0)) .

It is also possible to solve the case of N -levels systems:

Example 1.2. : N-levels systems.
The motivation for looking at the very general situation of equation (3) is that

the results apply also to any coupled system of N Schrödinger operators on the
real line, near some avoided crossing of two of its eigenvalues. It is also possible
to look at the adiabatic case (equation 1) for an N-levels system near an avoided
crossing of two eigenvalues.
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Example 1.3. : semi-classical limit of a system a coupled Schrödinger
operators.

It is a simple example of the Born-Oppenheimer approximation which is used
as an approximation for quantum molecular dynamics.

The Pj’s are Schrödinger operators in one variable

(6) Pj = −h
2

2

d2

dx2
+ Vj(x) −E

and W is a nonzero complex number. We assume here that V1(x0) = V2(x0) < E,

V ′
1(x0) 6= V ′

2(x0) and we have z0 = (x0,±
√

2(E − V1(x0))).

Let us start again with equation (3). We look at a point z0 which is a transversal
intersection of the characteristic sets Zj = {pj = 0}, j = 1, 2. The Zj’s are
oriented by the Hamiltonian vector fields of the pj’s. We assume moreover that
W (0) is elliptic at the point z0. We denote by w0 the (non-zero) value of the
principal symbol of W (0) at z0.

Z1

Z2

z0

1

32

4

Figure 2. The Zj’s and z0

We associate to that situation a transfer matrix

(7) T =

(

t1,2 t1,4

t3,2 t3,4

)

which relates microlocal incoming solutions (that is roughly speaking WKB solu-
tions on the 2 incoming edges) to outgoing solutions by the condition that they
admit a prolongation as a microlocal solution near z0. Such a matrix is unitary
for currents J±

ϕ . We compute explicitly the asymptotic expansions of the entries
of T in an orthonormal basis of microlocal solutions on each edge. We get then
a Landau-Zener type formula which we write
(8)

|t1,2| = |t3,4| +O(h∞) = exp

(

−π
h

( |w0|2
|{p1, p2}(z0)|

ǫ2 +O(ǫ3) +O(hǫ2)
)

)

+O(h∞).
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In fact, we show more precisely that the argument in the exponential can be
written π

h
Φ(ǫ, h) where Φ is a classical symbol with respect to h of the following

type

Φ ∼
∞

∑

k=0

Φk(ǫ)h
k

where the Φk’s are smooth and satisfy Φk(ε) = O(ε2).
For comparison with [19] (see in particular theorem 5.1) and with the existing

literature, we mention the following facts:
–The results are valid without any analyticity property.
–The results are local and even microlocal.
–We get a full asymptotic expansion with respect to both small parameters ǫ

and h.
–The results describe in an uniform way the transition between the coupled

regime and the non coupled regime.
The transition arises when ǫ is of the same order as

√
h. If ǫ >>

√
h (domain II)

the adiabatic approximation works (|t1,2| = O(h∞)) and we are then reduced to

2 scalar equations. If ǫ <<
√
h (domain I) the opposite, diabatic, approximation

works: the 2 equations are uncoupled at the principal order.

h

(I)

(II)

ǫ

L− Z

A
√
h

B
√
h

Figure 3. The parameters domain

Our way is to reformulate the semi-classical Morse lemma given in [6] in order
that it holds for any deformation Qǫ of a scalar PDO Q0 near a saddle point.
The usual Morse lemma gives us some local coordinates which reduce a real
valued function near a non degenerate critical point to its Taylor expansion at
order 2. Some version with a given volume element (isochoric Morse lemma) has
been derived in [9]. In the 2 dimensional case, it gives a symplectic version of the
Morse lemma which asserts that there exists, near a saddle point, some Darboux’s
coordinates with respect to which the function can be written as f(yη). It is then
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rather easy to derive a semi-classical form of the Morse lemma by using Fourier
integral operators in order to quantize this canonical transformation (see [6]).

Starting with the 2 × 2 system given by equation (3), ellipticity of W at the
point z0 allows to reduce to that kind of deformation for u, the following new
equation (9) is called the (non-commutative) determinant of the system:

(9) Qǫ = WP2W
−1P1 − ǫ2WW ⋆ .

We are then able to show that the equation Qǫu = 0 is microlocally equivalent to
(

h

i
y
d

dy
− Φ(ǫ, h)

)

ũ = 0

near (0, 0). This equation admits a 2 dimensional vector space of solutions which
were carefully described in [6].

We get then an invariant associated to the system which is a formal series
Φ(ǫ, h) with respect to both parameters h and ǫ. To go back to the original
space we need to consider a problem: the canonical transformation χǫ which
maps the two spaces is not unique. It maps level sets of qǫ in the original space
to level sets of yη − Φ0 in the model space. But since the hamiltonian flow
is a canonical mapping, composition of χǫ by hamiltonian flow for any time t
is an equally valid mapping. Even more, one can show that any smooth line
of time origins t0 in the original space can be mapped to any smooth line in
the model space. We thus need a proof that the final result in the original
space is independent of this arbitrariness in the mapping. The proof comes from
the fact that the resulting general Landau-Zener formula can be geometrically
expressed as a cross-ratio: the space of microlocal solutions of the equation (3)
has dimension 2 and the four subspaces of solutions microlocally vanishing on
the four edges are four 1 dimensional subspaces of it. Their cross-ratio is our
geometric invariant. In the unitary case, this cross-ratio determines the reflexion
and transmission coefficients.

The scheme of the paper is the following: after some review of useful facts
on cross-ratio’s, we study a scalar equation which is a deformation of a case
where the principal symbol has a saddle point (section 3); we give then a general
statement for a coupled system of 2 PDO (section 4). In order to apply it to an
N -levels adiabatic system, we need to use a reduction procedure which works into
2 steps: reduction from N to 2 levels (subsection 6.1) and reduction from 2 levels
to 2 levels with t-independent non diagonal entry (subsection 6.2). We show how
these results give Landau-Zener type formulae (section 6.3) for the adiabatic case
and for the case of 2 coupled Schrödinger operators (section 5). At the end, we
give some perspectives for the global case and for the case of arbitrary dimension.

2. Cross-ratio

Let K be a field, let E be a 2-dimensional vector space on K and P = P (E)
the projective space of E, that means the set of 1 dimensional subspaces of E.
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Let Dj , j = 1, · · · , 4, be four elements of P , 3 of which are not equal. Let d be
an affine line in E with 0 /∈ d and t ∈ K an affine parameter on d. We have the:

Definition 1. The cross-ratio [D1, D2, D3, D4] ∈ K∪∞ is defined in the following
way. If tj ∈ K ∪∞ are the parameters of Dj ∩ d, we put:

[D1, D2, D3, D4] =
t3 − t1
t3 − t2

:
t4 − t1
t4 − t2

.

The cross-ratio is independent of the choices of d and t.
In this paper, K will be the field of Laurent formal series with complex co-

efficients, E will be the space of microlocal solutions of our operator near the
critical point z0, and, if we number the 4 branches of the characteristic set Zj

for j = 1, 2, 3, 4, the Dj’s are the spaces of solutions which vanish microlocally
on the Zj’s. The fact that the Dj ’s are 1 dimensional spaces and that no 3 of
the Dj ’s coincide depends on the result on normal forms (semi-classical Morse
lemma, see theorem 1).

Let us assume that E ⊂ ⊕4
j=1Ej, where the Ej ’s are 1 dimensional vector

spaces on K, is the graph of a linear mapping T : E1 ⊕ E2 → E3 ⊕ E4. We
choose basis for the Ej ’s and we assume that the matrix of T is (T ) = (ti,j). If
Dj = E ∩Hj where Hj ⊂ E is the hyperplane whose projection on Ej is 0, then:

[T ] = [D1, D2, D3, D4] =
t2,3t1,4

t1,3t2,4

.

Proposition 1. If K = C or C(h), if the Ej’s are Hilbert spaces and if T is
unitary, we have [T ] = 1 − 1

|t|2
, where t is one of the diagonal elements of (T )

where the matrix is computed in an orthonormal basis.

3. Deformations of saddle points

3.1. The context. Let pj, j = 1, 2 be two smooth functions from T ⋆
R into R.

We assume that we are looking near a point z0 ∈ T ⋆R (saddle point) such that
(10)
p1(z0) = p2(z0) = 0 and the differentials dp1(z0) , dp2(z0) are independent.

Let Qǫ, where ǫ is a real parameter which stays close to 0, an h−PDO of order 0
which depends in a smooth way on ǫ. Let us denote by qǫ the principal symbol
of Qǫ and assume that q0 = p1p2. We assume that qǫ(z0) ∼ ω0ǫ

l with ω0 6= 0 and
l ≥ 1 : ω0ǫ

l is then an equivalent at ǫ = 0 of the critical value of qǫ.

3.2. Normal forms. The following theorem is a variant of the isochoric Morse
lemma (see [9]) and its semi-classical version [6]. The benefit of this variant is
that it does not use the functional calculus, neither the self-adjointness of the
Hamiltonians (we will only use the fact that the principal symbol is real valued).
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Theorem 1. (a) There exists a smooth family of germs of canonical transfor-
mations χǫ : (R2, O) → (R2, zǫ) and of functions eǫ(yη) such that qǫ ◦ χǫ =
eǫ(yη)(yη − Φ0(ǫ)).

The smooth function Φ0 is not unique, but its Taylor expansion

Φ0(ǫ) ∼
∞

∑

j=l

c0,jǫ
j

is. We have:

c0,l = ± ω0

|{p1, p2}(z0)|
,

where the ± sign is discussed in the section 3.3.
(b) There exists a FIO (Fourier integral operator) Uǫ associated to χǫ and a

PDO Eǫ elliptic at the point O such that we have microlocally near O:

(11) U−1
ǫ ◦Qǫ ◦ Uǫ = Eǫ ◦ (

h

i
y
d

dy
− Φ(ǫ, h))

where Φ is a symbol in h of the form

(12) Φ ∼
∞

∑

k=0

Φk(ǫ)h
k

The Φk’s are smooth and admit uniquely determined Taylor expansions

Φk(ǫ) ∼
∞

∑

j=0

ck,jǫ
j .

(c) If Qǫ = P2(ǫ)P1(ǫ) + Ωǫ, with Ωǫ = O(ǫl), Φk(ǫ) = O(ǫl) and then

Φ = c0,lǫ
l +O(ǫl+1) +O(hǫl) .

3.3. Sign of c0,l. Let us put e0 = e0(0). We will use the following relations:

|det(Hess(p1p2))|
1
2 (z0) = |{p1, p2}(z0)| = |e0| ,

and
ω0 = −e0c0,l .

We are left with the problem of finding the sign of e0 which is ± according to the
sign of H0 on the image by χ0 of the quadrant {y > 0, η > 0}; see the figure 4.

3.4. Proof of theorem 1 : part (a). The isochoric Morse lemma [9] gives the
existence of canonical mappings χǫ such that

qǫ ◦ χǫ = fǫ(yη)

where fǫ is smooth and smoothly dependent of ǫ, f0(0) = 0, f ′
ǫ(0) 6= 0. Implicit

function theorem asserts that fǫ admit a zero Φ0(ǫ) such that Φ0(0) = 0. We
write then

fǫ(t) = eǫ(t)(t− Φ0(ǫ)) .
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1

2

p1 = 0

p2 = 0

+−

+ −

z0 χ

y

4

2

η

0 1

3
3

4

Figure 4. Numbering of branches and positivity domains of the Hamiltonians

The principle of the computation of Φ0(ǫ) is to compare the areas limited
by the original curve qǫ=0, and the mapped curve yη = Φ0(ǫ), which must be
equal since χǫ is canonical. This would cause no problem for a node mapped to
y2 + η2 = Φ0(ǫ), since these areas are finite, but needs a trick for our saddle case
since they are both infinite.

We assume now that e0(O) > 0. The way out is to use the existence of a
singular asymptotic expansion (i.e. which contains some log terms) of

Iϕ(ǫ) =

∫

{qǫ≤0}

ϕ|dxdy| =

∫

{yη≤Φ0(ǫ)}

ϕ ◦ χ|dydη|

where ϕ is smooth and equal to 1 near z0, we have:

Iϕ(ǫ) = −2Φ0(ǫ) log |Φ0(ǫ)| + Ψ(ǫ)

where Ψ is smooth. We have then

Iϕ(ǫ) ∼
∞

∑

k=1

(akǫ
k log |ǫ| + bk(ϕ)ǫk)

which gives the ak’s (which are independent of ϕ) from it we deduce the Taylor
coefficients of Φ0 by the identification

−2lΦ0(ǫ) ∼
∑

k

akǫ
k .

Notice that only the Taylor coefficients are determined that way, so that Φ0(ǫ)
is determined only up to a flat function of ǫ, but it was shown in [9] that χ is
unique only up to a flat function.

3.5. Proof of theorem 1 : part (b), existence. Explicit dependencies on ǫ
will be omitted in this subsection. Let U be a FIO associated to χ, Egorov’s
theorem gives:

(13) U−1QU = E(Π +R1)



THE MICROLOCAL LANDAU-ZENER FORMULA(TO APPEAR IN ANNALES INSTITUT HENRI POINCARÉ (PHYSIQUE

where E (resp. R1) is a PDO of order 0 (resp. 1), with principal symbol e (resp.
r1). Also Π = h

i
y d

dy
− Φ0. We then look for P , a PDO of order 0 with principal

symbol eis, such that:

(14) P−1(Π +R1)P = (Id + E1)(Π − hΦ1 +R2)

where E1 (resp. R2) are PDO of order 1 (resp. 2) and principal symbol e1 (resp.
r2). Writing principal symbols of order 1 gives:

(15) {yη, s} = −r1 − Φ1 + e1(yη − Φ0) .

where unknowns are s, Φ1 and e1. It is known (see [12] or [6]) that such an
equation can be solved iff there are no resonant terms, i.e. no powers of yη in
its right hand side Taylor series. This gives an infinite set of equations for the e1
Taylor coefficients, and for Φ1; if e1 ∼

∑∞
j=0 xj(yη)

j, we must solve the system:

(16) xj−1 − Φ0(ǫ)xj = rj(ǫ) (j = 0, 1, · · · )
where x−1 = −Φ1. The rj ’s are the coefficients of (yη)j in the r1 Taylor series.
We solve this system using lemma 1 below. For that purpose set Φ0(ǫ) = β, and
look for xj as C∞ functions of β. The process is then iterated, conjugating with
PDO’s Id + Sl, where l = 1, · · · ,.

3.6. A lemma.

Lemma 1. Let us consider the following (infinite) system of equations (⋆j), j ≥
0 :

(⋆j) xj−1 − βxj = aj(β)

where the aj’s (j ≥ 0) are known as well as β, and the xj’s (j ≥ −1) are
unknowns. This system of equations has a solution xj = fj(β) where the fj’s are
smooth functions.

Proof.–

Let f−1 be a smooth function whose Taylor series is f−1 ∼
∑

aj(β)βj,
where the aj(β)’s are considered as formal series. We put x−1 =

f−1(β), x0 = f−1(β)−a0

β
∼

∑

aj+1(β)βj , and so on: xk ∼
∑

aj+k(β)βj

is smooth.

�

3.7. Proof of theorem 1 : part (c). If Q0 = P1P2, solutions of P2u = 0 give
microlocal solutions of Q0u = 0 localized on the curve p2 = 0 and whose principal
symbol does not vanish. It is compatible with the model

h

i
y
d

dy
− Φ(0, h) ,

(where p2 = 0 corresponds to η = 0) only if Φ(0, h) vanishes identically.
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Let Uǫ be a FIO associated to χǫ such that

U−1
ǫ P2(ǫ)P1(ǫ)Uǫ = Eǫ ◦ (

h

i
y
d

dy
+O(h∞)) .

We have then:

U−1
ǫ QǫUǫ = Eǫ ◦ (

h

i
y
d

dy
+O(ǫl)) ,

and we apply the proof given in section 3.5 (conjugation by PDO) which preserves
the property of being O(ǫl).

3.8. Cross-ratio and uniqueness. The index ǫ will often be implicit in what
follows. Using [6], the dimension of the space E of microlocal solutions of Pu = 0
near z0 is 2 (as a module over the ring C(h) of formal h-series). Let us label
1, 2, 3, 4 the 4 edges as in the figure (4) and let Dj ⊂ E the line of solutions which
vanish on the edge labelled j. We define m1,2,3,4 ∈ C(h)∪∞ as the cross-ratio of
the four lines Dj.

Theorem 2. We have:

(17) m1,2,3,4 = e−2πΦ(ǫ,h)/h +O(h∞) .

There is a difficulty with the interpretation of this formula because Φ = Φ0 +
Φ1h+ · · · , so that we do not get a formal series. We split

e−2πΦ(ǫ,h)/h

as a product of two terms

e−2π
Φ0(ǫ)

h e−2π(
P

∞

j=1 Φj(ǫ)h
j−1) +O(h∞) ,

the second one being now a formal series in the variable h. In particular, the
(ǫ, h)-formal series associated to

∑

Φk(ǫ)h
k is uniquely determined.

Proof.–

The formula comes from formula (38) in [6]. The transfer matrix
T (α) for the equation

h

i
(y
d

dy
+

1

2
) − hα

was given by

(18) T (α) = C(α)

(

1 −ie−απ

−ie−απ 1

)

,

with there α = E
h

and here α = Φ
h

+ 1
2i

.
Uniqueness comes then from the geometric interpretation ofm1,2,3,4

as a cross-ratio.

�
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4. A coupled system of two Hamiltonians

Let us consider a semi-classical Hamiltonian

(19) Hǫ =

(

P1(ǫ) ǫW (ǫ)
ǫW ⋆(ǫ) P2(ǫ)

)

where the Pj(ǫ)’s (resp. W (ǫ)) are order 0 h−PDO’s on R smoothly dependent
on ǫ, and whose principal symbols are pj(ǫ)’s (resp. w(ǫ)). The simplest case is
that where P1 and P2 are two Schrödinger operators and W (ǫ) = w with w a
non-zero complex number. We define pj = pj(0).

Let us assume that the pj(ǫ)’s are real valued and that there exists a point z0
such that pj(z0) = 0 and the dpj(z0)’s are linearly independent. Let us assume
that the principal symbols w(ǫ, z0) do not vanish at ǫ = 0. We define w0 =
w(z0, 0) 6= 0. We do not assume now that Hǫ is symmetric.

We are interested to microlocal solutions of

(20) HǫU = 0 :

{

P1(ǫ)u+ ǫW (ǫ)v = 0

P2(ǫ)v + ǫW (ǫ)⋆u = 0

near z0.

4.1. Determinant operator. Since W (ǫ) is elliptic at the point z0, it can be
inverted, so that microlocal solutions of the system (20) near z0 are the solutions
for ǫ 6= 0 of

(21)

{

Qǫu = 0

v = −ǫ−1W (ǫ)−1P1u

with

(22) Qǫ = W (ǫ)⋆P2W (ǫ)−1P1 − ǫ2W (ǫ)⋆W (ǫ) = P̃2(ǫ)P1(ǫ) − ǫ2W (ǫ)⋆W (ǫ) .

The principal symbol qǫ of Qǫ is qǫ = p1(ǫ)p2(ǫ) − ǫ2|w(ǫ)|2 which has a saddle
point z(ǫ) with z(0) = z0.

We can then use the results of the section 3 with l = 2 and ω0 = −|w0|2.
4.2. Currents and unitarity. For a similar approach, see [19], §2. The differ-
ence is that we have not a global problem, and that unitarity must be microlocally
defined.

The idea is to generalize the probability currents known in the physics literature
on quantum mechanics [21]. Probability current at position x and time t for a
quantum state described by the wave function ψ(x, t) is defined there as

(23) J(ψ) = ℜ(ψ̄ p ψ) = ℜ(ψ̄
h

i

d

dx
ψ)

Using H = −h2

2
∆ + V (x) its divergence is computed as

(24) div J(ψ) =
i

h
[< Hψ|ψ > − < ψ|Hψ >],
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so that time dependent Schrödinger equation leads to the fluid mechanics conti-
nuity equation:

(25)
∂ρ

∂t
+ div(J) = 0

where ρ = |ψ(x, t)|2 is the probability density, which justifies the interpretation
of J as a probability current.

Particularizing to the space-1d case, if ψ is a solution of Hψ = Eψ, thus |ψ|2
is time independent, integrating between two abscissae gives:

(26) 0 =
i

h

∫ b

a

(< Hψ|ψ > − < ψ|Hψ >)dx = [J(ψ)]ba

the first equation being due to self-adjointness of H (E is real), the second to
integration by parts. Self-adjointness of H , which implies unitarity of the time
evolution operator, and thus the time conservation of total probability, implies
also that probability current that flows at a in a steady state situation is conserved
at b.

The definition (23) is however heavily dependant on the particular form of the
Schrödinger equation, whereas these considerations must be more general. Even
in quantum mechanics, the consistency of the statistical interpretation implies
the existence of a probability current in momentum space, which is not given by
the analogous of the transparent eq. (23), except in the harmonic oscillator case.
In fact the Stokes formula implicit in eq. (26) means that the proper definition of
current is the (d-1)-differential form whose exterior derivative is the d-dimentional
form integrated in the middle term. This form exists locally because a maximum
dimentional form is closed.

Our definition (28) will short-circuit this evaluation, however, and will be valid
for anyH . The principle is contained is the transport equation solved for comput-
ing the amplitude A(x) to first order in h, which is basically an equation of conser-

vation of probability. For a scalar Hamiltonian the half density a(x)
√
dx, pulled

up to the Lagrangian H(x, ξ) = 0, which in the 1d case is a curve parametrized
by t, by

(27) a(x)
√
dx = a(t)

√
dt

is solution of
1

i

d

dt
a(t) + subH(t) a(t) = 0

so that

a(t) = a(0) exp

(

−i
∫ t

0

subH(s)ds

)

so that for real subH , this introduces only a phase shift, but |a(t)|2 is conserved.
This is thus the right definition of the current, which can be projected in x, p
or any other phase space coordinate by equation (27). Notice that the scalar
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determinant operator Qǫ defined in (22) has an imaginary sub-principal symbol,
and thus do not conserve |a(t)|2, because this operator acts on u only, and that
some probability is transferred to v. The conservation of current is contained in
the original matrix equation for self-adjoint H .

Let H be a (formally) self-adjoint matrix of PDO’s on R, with principal symbol
H0(x, ξ), a Hermitian n×n matrix, and with vanishing sub-principal symbol. We
study the neighborhood of a point z0 = (x0, ξ0) ∈ T ⋆R, such that ker(H0(z0)) has
dimension k, and suppose that near z0, H0(z) admits k eigenvalues p1, · · · , pk C

∞

which vanish at z0. Let us assume that p′j(z0) 6= 0 (but do not assume that the
differentials are linearly independents) and (for simplicity) that z0 does not belong
to the caustics of any of these pj . Let [a, b] be a neighborhood of z0 which does
not met any of the caustics of the Bj , where the Bj are the curves pj = 0. Let
Xj be the Hamiltonian flows of pj , and dtj be the differential on Bj associated
to the flow Xj (dt(Xj) = 1). The image of dtj by the projection onto the line

p3 = 0

p2 = 0

p1 = 0

a b1x0

b

z0

Ω

a1

B−

1

Figure 5. Currents (k = 3)

ξ = 0 is given by π⋆(dtj) =
∂pj

∂ξ
dx. Let a < a1 < x0 < b1 < b and ϕ ∈ C∞

o (]a, b[),

equal to 1 on [a1, b1]. Let moreover Ω = [a, b] × [c, d] be a rectangle containing
the branches Bj , which meets the characteristic manifold of H0 only on these
branches.

Definition 2. Let U , V be two microlocal solutions within [a, a1]× [c, d] of HU =
HV = O(h∞). Define the left hand side currents

(28) J−
ϕ (U, V ) =

i

h

∫ a1

a

< H(ϕU)|ϕV > − < ϕU |H(ϕV ) > dx
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and similarly, if U , V are two microlocal solutions within [b1, b]× [c, d], the right

hand side currents J+
ϕ (U, V ) = i

h

∫ b

b1
· · · . Here < .|. > is the pointwise Hermitian

scalar product.

We have then the

Theorem 3. a) If U and V are microlocal solution in the whole Ω:

J+
ϕ (U, V ) + J−

ϕ (U, V ) = O(h∞).

b) If U and V have microsupports in [a, a1] × [c, d] contained in two distinct Bj

branches:
J−

ϕ (U, V ) = O(h∞).

c) If the WKB form of U , assumed microlocalized on the branch Bj, in [a, a1]
reads:

U(x) = Aj(x)e
i
h

Sj(x) +O(h),

then:

(29) J−
ϕ (U,U) = (||Aj||2

dx

dtj
)(x′) +O(h),

where x′ is any point ∈ [a, a1].
The same holds for J+

ϕ , with a change of sign. Suppose moreover that the
dimension of the space of microlocal solutions in Ω is k (this is true for k = 2,
when supposing that the branches are transverses at z0). Let H− (resp. H+) be the
direct sum of the WKB solutions on the branches Bj before z0 (for the Hamiltonian
flows of the pj’s) (resp. after). Then J±

ϕ induces an Hilbert structure on H−, and
the same holds for −J±

ϕ on H+. Then every element Φ− of H− extends as an
unique microlocal solution in Ω, and the corresponding element in H+ is denoted
Φ+. The mapping Φ− → Φ+ is unitary modulo O(h∞) for the previous Hilbert
structures.

Proof.–

a) On [a1, b1]:

H(ϕU) = H(U) +O(h∞) = O(h∞)

and V has polynomial growth with respect to h−1. Then:

J+
ϕ (U, V ) + J−

ϕ (U, V ) =

∫ b

a

< H(ϕU)|V > − < U |H(ϕV ) > dx = O(h∞).

b) This is an elementary consequence of the stationary phase
formula:

∫

ei(S′

j (x)−S′

k
(x))/ha(x)dx

is O(h∞) if a ∈ C∞
o and S ′

j − S ′
k does not vanish on Supp(a).
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c) Let U(x) = Aj(x)e
iSj(x)/h+O(h) be a WKB solution in [a, a1].

The result follows easily from the computation of H(ϕU) up to first
order in h. The simplest way to do it is by using a reduction lemma
as follows :

Lemma 2. Let D be a domain in the phase space such that the
principal symbol admits for any (x, ξ) ∈ D a non degenerate eigen-
value λ0(x, ξ) smoothly dependent of (x, ξ). Then there exists an
unitary PDO P in D which satisfies

(30) P−1HP =

(

L 0
0 K

)

where L is a self-adjoint operator whose principal symbol is λ0(x, ξ).

The proof of this lemma follows the same lines as the proof of
theorem 5.

Then U = PV where V = a(x)e
i
h

Sj(x)ǫ1 + O(h) where ǫ1 =

(1, 0, · · · , 0) and ψ(x) = a(x)e
i
h

Sj(x) satisfies Lψ = O(h2). We use
then the usual transport equation which shows that |a(x)|2 dx

dt
is

constant : L is self-adjoint and then his subprincipal symbol is
real. Now Aj(x) = P0(a(x)ǫ1) where P0, the principal symbol of P ,
is a unitary matrix. The current is then computed by:

J−
ϕ (U) =

∫ a1

a

2ϕ
dϕ

dx
(||Aj||2

dx

dtj
)(x)dx .

�

4.3. The generalized Landau-Zener formula. Let Ej , j = 1, · · · , 4 be the
spaces of microlocal solutions of HǫU = 0 (equation 19) on the edges j (see figure
4). E− = E2 ⊕ E4 and E+ = E1 ⊕ E3 are Hermitian spaces for products defined
using currents and if E is the space of microlocal solutions near z0, E is the graph
of an unitary T map from E− into E+.

Theorem 4. (generalized Landau-Zener formula) In an orthonormal basis for
currents, we have

T = (ti,j)

with :
|t1,2| = |t3,4| +O(h∞) = eπΦ(ǫ2,h)/h +O(h∞) .

where Φ ∼ ∑∞
k=0 Φk(ǫ)h

k (Φk C
∞ and Φk(ε) = O(ε2)) satisfies:

Φ(ǫ, h) = − |w0|2
|{p1, p2}(z0)|

ǫ2 +O(ǫ3) +O(hǫ2) .

The proof is a simple application of proposition 1.
If the Pj’s and W are ε-independent, Φ(ǫ, h) is an even function of ǫ. It allows

to get a better remainder estimate: O(ε3) can be replaced by O(ε4).
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5. Coupled system of two Schrödinger operators

We will now consider the system (3) where

Pj = −h
2

2

d2

dx2
+ Vj(x) − E

are two Schrödinger operators and W = W (x) with W (x0) = w0 6= 0. We assume
that there exists x0 such that V1(x0) = V2(x0) et V ′

1 = V ′
1(x0) 6= V ′

2 = V ′
2(x0) and

that E > Vj(x0). We have then

z0 = (x0,±
√

2(E − Vj(x0)) = ±ξ0) .

We apply theorem 4 and we get:

c0,1 = − |w0|2
|ξ0||V ′

1 − V ′
2 |(x0)

and because Φ is even with respect to ǫ, Φ = c0,1ǫ
2 +O(ǫ4) +O(hǫ2). This is the

original (restricted) Landau-Zener formula.

6. Adiabatic limit with avoided eigenvalues crossings

The adiabatic theorem in quantum mechanics is valid with the hypothesis that
there are no eigenvalues crossings (see [2]). If two eigenvalues cross transversally,
the adiabatic theorem remains true concerning the main term (see [1]) and there
is a correction which is known as the Friedrichs-Hagedorn formula (see [11]). The

Landau-Zener formula applies to avoided crossing of the order of
√
h. It was

already remarked in [19] that there is an interpolating formula between both
under some analyticity hypothesis. Our method provides a new way to attack
this problem in the smooth case. We will start with an arbitrary N -levels system
which fulfills some geometric hypothesis which is satisfied in the generic case.

Let us start with the equation:

(31)
h

i

dX

dt
= Aǫ(t)X, a ≤ t ≤ b

where, for all t ∈ [a, b], A0(t) is an N × N Hermitian matrix, h > 0 is the small
adiabatic parameter and ǫ is the small coupling parameter.

We assume that the following property holds: there exists t0 ∈]a, b[ such that
A0(t0) admits an eigenvalue λ0 of multiplicity 2. We will denote by E0 the
corresponding eigenspace. We will denote by n the Morse index of A0(t0)− λ0Id
and by Dn the codimension 3 manifold of Hermitian matrices which admits the
following type of spectrum:

ν1 ≤ · · · ≤ νn−1 < νn = νn+1 < · · · .
We will assume the following transversality hypothesis:
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x

V1(x)

V2(x)

x0

x

ξ

E

2

1

3

4

Figure 6. System of 2 Schrödinger operators

(H1): the smooth parametrized surface (t, ǫ) → Aǫ(t) is embedded into the
space of N × N Hermitian matrices and it is not tangent at the point A0(t0) to
the codimension 3 manifold Dn (see figure 7).

The hypothesis (H1) can be reformulated in terms of the partial derivatives of
Aǫ(t) at t = t0. Let us define

Ω0 =<
d

dt
A0(t)|t=t0 .|. >|E0

and

G0 =<
d

dǫ
Aǫ(t0)|ǫ=0.|. >|E0

.

The hypothesis (H1) is equivalent to the fact that Ω0, G0 and Id are linearly
independent.

We will assume that [a, b] is so small that the two eigenvalues λ1(t) and λ2(t)
which prolong λ0 are distinct and separated from the rest of the spectrum.
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A0(t)

Aǫ(t)

Dn

Figure 7. Avoided crossings

Under the hypothesis (H1), we can reduce (31) to:

(32)
h

i

dX

dt
=

(

µ1(t, ǫ) +O(h) w0ǫ+ ω0h+O(h2 + ǫ2)
w̄0ǫ+ ω̄0h+O(h2 + ǫ2) µ2(t, ǫ) +O(h)

)

X

where the non diagonal entries are independent of t. This independance elim-
inates in the reduced form the troublesome case, where the non-diagonal entries
tend to zero at t0, which is possible in the original equation (31). It allows a
clear cut distinction between effective, dynamical, crossing and avoided crossing
cases, distinct from the mere crossing or avoided crossing of eigenvalues λ1(t, ǫ)
and λ2(t, ǫ) of Aǫ(t), which is precluded for ǫ 6= 0 by hypothesis (H1). We are
then able to apply theorem 4 in order to get a Landau-Zener-Friedrichs-Hagedorn
formula. In this reduced equation w0 is related to the size of the minimal gap
gap(ǫ) = inf |λ1(t, ǫ) − λ2(t, ǫ)| by gap(ǫ) ∼ 2|w0ǫ| and ω0 to the infinitesimal ro-
tation of a smooth basis (v1(t), v2(t)) of eigenvectors of A0(t) associated to λ1(t)
and λ2(t) where λj(t0) = λ0, j = 1, 2. More precisely:

w0 =< G0v2(t0)|v1(t0) >, ω0 = i < v′2(t0)|v1(t0) > .

6.1. Reduction I: reduction to a 2-levels system. We want to show that
under hypothesis (H1), we can reduce the N -levels system to a 2-levels system
and then we will make a further reduction with t-independent non-diagonal term
which allows to apply the theorem 4.

We have the following general result:
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t

λ1(t)

λ2(t)

t0

ba

Figure 8. Phases portrait

Theorem 5. Let us consider the following adiabatic system:

(33)
h

i

dX

dt
= A(t)X, a ≤ t ≤ b

and assume that on the interval [a, b] the space CN do admit a smooth splitting

C
N = E(t) ⊕ F (t)

which is stable by A(t) and such that spectra of A(t) restricted to E(t) and F (t)
are disjoint. Let us give a smooth unitary P0(t) such that

(34) P−1
0 A(t)P0 =

(

K0(t) 0
0 L0(t)

)

.

Then there exist formal series

P (t) = P0(t) + hP1(t) + · · ·
with P (t) unitary in CN and formal series with values into the Hermitian opera-
tors on E(t) (resp. F (t))

K(t) = K0(t) + hK1(t) + · · · , L(t) = L0(t) + hL1(t) + · · ·
such that, if we define

X(t) = P (t)Y (t) ,

the equation (33) rewrites

(35)
h

i

dY

dt
=

(

K(t) 0
0 L(t)

)

Y (t) +O(h∞)Y (t), t ∈ [a; b] .
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We will, of course, apply theorem 5 to the case where A(t) depends on a
parameter ǫ such that hypothesis are fulfilled uniformly in ǫ.
Proof.–

The proof is by induction: at the first step, we just take P0(t)
which reduces A(t) to two blocks. The resulting equation for Y (t)
is

(36)
h

i

dY

dt
=

(

K0(t) 0
0 L0(t)

)

Y (t) − h

i
P−1

0 (t)P ′
0(t)Y (t),

with a h remainder to eliminate. At step n, P (t) is corrected by a
factor ehnS. Diagonal order hn terms correct K(t) and L(t). Can-
celling the non diagonal order hn terms leads to solve the following
homological equation

K0SEF − SEFL0 = R

where R is given (the EF non diagonal part of the order hn remain-
der of step n−1). The hypothesis that the two spectra are disjoint
allows to solve it. That result is well known, but it is difficult to
find a precise reference in the literature, see however [17] p. 315
and ff.

�

It is possible to add the following refinement:

Theorem 6. Let t0 ∈]a, b[ be such that, if we put E0 = E(t0), F0 = F (t0), the
restriction of A(t0) to E0 is λ0Id. Let Ω(t) = P−1

0 (t)P ′
0(t) and Π the projection

on E0 whose kernel is F0. We have then

K(t0) = λ0Id + ihΠΩ(t0)Π +O(h2) .

If P0 is unitary and vj(t) = P0(t)(ej), the matrix of ΠΩ(t0)Π is given by ωi,j =<
v′i(t0)|vj(t0) >. In particular, the vj’s are defined up to some phase shift, their
modules ωi,j are independent of the choice of P0 for i 6= j.

It comes from an explicit computation: if we put X = (P0 + hP1 + O(h2))Z
and ∆(t) = P0(t)

−1A(t)P0(t), we get for Z the equation:

h

i

dZ

dt
= (∆(t) + ihΩ(t) + h[∆(t), P1(t)] +O(h2))Z .

We deduce the result, using our hypothesis, because for all B, we have:

Π[∆(t0), B]Π = 0 .

Using the theorem 5, we are reduced to study near an avoided eigenvalue
crossing the following 2-levels system:

(37)
h

i

dX

dt
=

(

λ1(t) + k1,1(t, h, ǫ) k1,2(t, h, ǫ)
k̄1,2(t, h, ǫ) λ2(t) + k2,2(t, h, ǫ)

)

X
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where ki,j(t, h, ǫ)’s are formal series in (h, ǫ):

ki,j(t) =
∑

l+m≥1

ki,j;l,m(t)hlǫm .

We have moreover:

Proposition 2. The hypothesis (H1) implies that k1,2;0,1(t) does not vanish near
t0. Moreover |k1,2;1,0(t0)| = | < v′1(t0)|v2(t0) > | is the infinitesimal rotation of
the frame (v1(t), v2(t)) at t = t0.

6.2. Reduction II: reduction of the 2-levels system. We want now to reduce
the 2-levels system to a new 2-levels system with t-independent non diagonal
entries.

Assuming hypothesis (H1), we can assume that ∆(t) is a diagonal matrix
∆(t) = diag(λ1(t), λ2(t)). It is enough to look at the matrix

1

t− t0
(∆(t) − λ0Id)

which is smoothly dependent on t and whose eigenvalues remain distinct. It
shows that eigenvalues λj(t), j = 1, 2, and eigenvectors of A0(t) are smooth.

Let

(38) Aǫ(t) =

(

a(t, ǫ) b(t, ǫ)
b̄(t, ǫ) d(t, ǫ)

)

be a 2 × 2 Hermitian matrix which depends smoothly on (t, ǫ) in some neigh-
bourhood of (0, 0) ∈ R2. We assume the following hypothesis which follows from
(H1):

•
(39) A0(t) = Diag(λ1(t), λ2(t))

with λ1(0) = λ2(0) and λ′1(0) > λ′2(0).
•

(40)
d

dǫ
(Aǫ(t))|t=ǫ=0 =

(

A B
B̄ C

)

and B 6= 0.

Then we have the following:

Lemma 3. There exists a smooth function γ(ǫ) with γ(0) = 0, γ′(0) > 0 (in fact
γ′(0) = |B|) such that

(41) |2γ(ǫ)| = inf
t
|λ2(t, ǫ) − λ1(t, ǫ)| ,

where the λj(t, ǫ) denotes the eigenvalues of Aǫ(t).
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There exists a unique smooth map (t, ǫ) → Uǫ(t) from a neighbourhood of (0, 0)
into the unitary matrices

(42) Uǫ(t) =

(

c −s̄
s c

)

which satisfy c > 0, U0(0) = Id and

(43) U⋆
ǫ (t)Aǫ(t)Uǫ(t) =

(

µ1(t, ǫ) γ(ǫ)
γ(ǫ) µ2(t, ǫ)

)

=: Ãǫ(t)

and µj(t, 0) = λj(t). The important fact is that γ(ǫ) is independent of t.

Proof.–

The strategy of the proof is to build first γ(ǫ) and µj(t, ǫ), then to
prove that both are smooth, that Uǫ(t) is uniquely defined outside
(0, 0), and finally to show that c and s are smooth.

If we define ϕǫ(t) = (λ1(t, ǫ)−λ2(t, ǫ))
2, the functions ϕǫ depend

smoothly on ǫ, and ϕ0 has a non degenerate minimum at t = 0.
The same is true for ǫ small and we denote t(ǫ) the point where
this minimum is obtained. We set 4γ(ǫ)2 = ϕǫ(t(ǫ)) := ψ(ǫ). Now
it is clear that ψ(0) = 0, ψ′(0) = 0 and ψ”(0) > 0; so we can
choose a smooth square root 2γ(ǫ). The same kind of argument
shows that µj(t, ǫ) are smooth: we ask that Aǫ and Ãǫ have the
same eigenvalues. It gives µ1 + µ2 = a + c and (µ1 − µ2)

2 =
(λ1 − λ2)

2 − 4|γ|2. This last function of t is positive and admits 0
as a non degenerate minimal value. It implies that it is the square
of a smooth function and so that µj can be chosen smooth and
µj(t, 0) = λj(t).

The existence and uniqueness of Uǫ(t) come from the fact that

both matrices Aǫ(t) and Ãǫ(t) are conjugated by a unique U with
c > 0 (they have the same eigenvalues).

Now (c, s) satisfy

(d− µ1)s = (γ − b̄)c .

This equation admits a solution because we know already that both
matrices are conjugated, hence γ − b̄ vanishes where d − µ1 does.
It is now enough to check that the differential of d− µ1 is not zero
at the point t0. We have

∂

∂t
(d− µ1) =

∂

∂t
(λ2 − λ1) ,

which is non zero by hypothesis.

�

From that lemma, we deduce that:
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Theorem 7. The reduced adiabatic system can be written in a smooth ONB as:

(44)
h

i

dX

dt
= (

(

M1(t, ǫ, h) Γ(ǫ, h)
Γ̄(ǫ, h) M2(t, ǫ, h)

)

+O(h∞))X

where Mj are symbols in h of the form

Mj(t, ǫ, h) = µj(t, ǫ) +

∞
∑

k=1

µj,k(t, ǫ)h
k

and Γ(ǫ, h) is a symbol of the form

Γ(ǫ, h) = γ(ǫ) +

∞
∑

k=1

γk(ǫ)h
k .

The important fact is that Γ(ǫ, h) is independent of t.

Proof.–

The proof is by induction on the powers of h. We start with an
equation

(45)
h

i

dX

dt
=

(

M1(t, ǫ, h) γ(ǫ) + hα1(ǫ, t) +O(h2)
γ̄(ǫ) + hᾱ1(ǫ, t) +O(h2) M2(t, ǫ, h)

)

X

and we put at the first step

X = (Id + ihP )Y

where

(46) P =

(

0 π(ǫ, t)
π̄(ǫ, t) 0

)

By asking to make α1(t, ǫ) independent of t, we get then an homo-
logical equation

i(µ1(t, ǫ) − µ2(t, ǫ))π(t, ǫ) + α1(t, ǫ) = γ1(ǫ) .

We choose γ1(ǫ) as the value of α1(t, ǫ) at the point where µ1 = µ2

and we get a smooth π.

�

6.3. The Landau-Zener-Friedrichs-Hagedorn formula. Using theorem 7,
we have the following extension of Landau-Zener and Friedrichs-Hagedorn for-
mulae:

Theorem 8. Assuming hypothesis (H1), we have the following asymptotic ex-
pansion for the reduced T = (ti,j) matrix:

|t1,2| = |t3,4| +O(h∞) = eπΦ(ǫ,h)/h +O(h∞) .
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where Φ satisfies:

Φ(ǫ, h) = − |ǫw0 + hω0|2
|λ′1(t0) − λ′2(t0)|

+O((|h| + |ǫ|)3) .

Proof.–

The proof is just an application of theorem 1 to the equation

(P2P1 − |Γ|2)u = 0

where Pj = h
i

d
dt
−Mj(t, ǫ, h) and u is the first component of our

unknown function. In this reduction from matrix to scalar equation
for u, we use fully the fact that Γ is t-independent.

�

7. Extensions and remarks

7.1. Phases. The Landau-Zener formula does not provide enough information in
order to compute the semi-classical limit when there are several avoided crossings.
In that case, one should look at phases. In the case of a scalar equation, a similar
problem is solved in [8]. The case of systems will be described in [5]. That
way, we can compute the semi-classical spectrum of a system of weakly coupled
Schrödinger operators (Born-Oppenheimer approximation in dimension 1). In
the adiabatic case, we are also able to compute the scattering matrix and to
describe the Stückelberg’s oscillations as in ([19] p. 241).

7.2. Time dependent case. Let us just give the intuition behind. The classical
limit of the Schrödinger system

(47)
h

i

d

dt

(

u
v

)

= A

(

u
v

)

can be described as follows: on the energy shell E, we have two independent
Hamiltonian systems associated respectively to p1 and to p2. The energy shell E
is the disjoint union of the curves X1 = {p1 = E} and X2 = {p2 = E}. If the
trajectory on X1 or X2 passes through a crossing point z0, we get a probabilistic
dynamics with transition probabilities from X1 to X1 or X2 given by the Landau-
Zener formula. The classical limit is in fact a stochastic process!

In order to make some more precise statement, we need to use the small param-
eter version of the Guillemin-Melrose-Uhlmann theory of singular FIO associated
to pairs of Lagrangian manifolds which have a clean intersection (see [20], [10],
[27]).
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[4] M. Carré, A. Zgainsky, M. Gaillard, M. Nouh, M. Lombardi, Détermination des popula-
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