Scattering and correlations

Yves Colin de Verdière *

September 7, 2010

Introduction

Let us consider the propagation of scalar waves with the speed $v>0$ given by the wave equation $u_{t t}-v^{2} \Delta u=0$ outside a compact domain D in the Euclidean space \mathbb{R}^{d}. Let us put $\Omega=\mathbb{R}^{d} \backslash D$. We can assume for example Neumann boundary conditions. We will denote by Δ_{Ω} the (self-adjoint) Laplace operator with the boundary conditions. So our stationary wave equation is the Helmholtz equation

$$
\begin{equation*}
v^{2} \Delta_{\Omega} f+\omega^{2} f=0 \tag{1}
\end{equation*}
$$

with the boundary conditions. We consider a bounded interval $I=\left[\omega_{-}^{2}, \omega_{+}^{2}\right] \subset$ $] 0,+\infty\left[\right.$ and the Hilbert subspace \mathcal{H}_{I} of $L^{2}(\Omega)$ which is the image of the spectral projector P_{I} of our operator $-v^{2} \Delta_{\Omega}$.

Let us compute the integral kernel $\Pi_{I}(x, y)$ of P_{I} defined by:

$$
P_{I} f(x)=\int_{\Omega} \Pi_{I}(x, y) f(y)|d y|
$$

into 2 different ways:

1. From general spectral theory
2. From scattering theory.

Taking the derivatives of $\Pi_{I}(x, y)$ w.r. to ω_{+}, we get a simple general and exact relation between the correlation of scattered waves and the Green's function confirming the calculations from Sanchez-Sesma and al. [March 2006] in the case where D is a disk.

[^0]
$1 \Pi_{I}(x, y)$ from spectral theory

Using the resolvent kernel (Green's function) $G(\omega, x, y)=\left[\left(\omega^{2}+v^{2} \Delta_{\Omega}\right)^{-1}\right](x, y)$ for $\operatorname{Im} \omega>0$ and the Stone formula, we have:

$$
\Pi_{I}(x, y)=-\frac{2}{\pi} \operatorname{Im}\left(\int_{\omega_{-}}^{\omega_{+}} G(\omega+i 0, x, y) \omega d \omega\right)
$$

Taking the derivative w.r. to ω_{+}of $\Pi_{\left[\omega_{-}^{2}, \omega_{+}^{2}\right]}(x, y)$, we get

$$
\begin{equation*}
\frac{d}{d \omega} \Pi_{\left[\omega_{\left.-, \omega^{2}\right]}\right.}(x, y)=-\frac{2 \omega}{\pi} \operatorname{Im}(G(\omega+i 0, x, y)) . \tag{2}
\end{equation*}
$$

2 Short review of scattering theory

They are many references for scattering theory: for example Reed-Simon, Methods of modern Math. Phys. III; Ramm, Scattering by obstacles.

Let us define for $\mathbf{k} \in \mathbb{R}^{d}$ the plane wave

$$
e_{0}(x, \mathbf{k})=e^{i<\mathbf{k} \mid x>}
$$

We are looking for solutions

$$
e(x, \mathbf{k})=e_{0}(x, \mathbf{k})+e^{s}(x, \mathbf{k})
$$

of the Helmholtz equation (1) in Ω where e^{s}, the scattered wave satisfies the so-called Sommerfeld radiation condition ${ }^{1}$:

$$
e^{s}(x, \mathbf{k})=\frac{e^{i k|x|}}{|x|^{(d-1) / 2}}\left(e^{\infty}\left(\frac{x}{|x|}, \mathbf{k}\right)+O\left(\frac{1}{|x|}\right)\right), x \rightarrow \infty .
$$

The complex function $e^{\infty}(\hat{x}, \mathbf{k})$ is usually called the scattering amplitude.
It is known that the previous problem admits an unique solution. In more physical terms, $e(x, \mathbf{k})$ is the wave generated by the full scattering process from the plane wave $e_{0}(x, \mathbf{k})$. Moreover we have a generalised Fourier transform:

$$
f(x)=(2 \pi)^{-d} \int_{\mathbb{R}^{d}} \hat{f}(\mathbf{k}) e(x, \mathbf{k})|d \mathbf{k}|
$$

with

$$
\hat{f}(\mathbf{k})=\int_{\mathbb{R}^{d}} \overline{e(y, \mathbf{k})} f(y)|d y|
$$

From the previous generalised Fourier transform, we can get the kernel of any function $\Phi\left(-v^{2} \Delta_{\Omega}\right)$ as follows:

$$
\begin{equation*}
\left[\Phi\left(-v^{2} \Delta_{\Omega}\right)\right](x, y)=(2 \pi)^{-d} \int_{\mathbb{R}^{d}} \Phi\left(v^{2} k^{2}\right) e(x, \mathbf{k}) \overline{e(y, \mathbf{k})}|d \mathbf{k}| \tag{3}
\end{equation*}
$$

[^1]
$3 \Pi_{I}(x, y)$ from scattering theory

Using Equation (3) with $\Phi=1_{I}$ the characteristic functions of some bounded interval $I=\left[\omega_{-}^{2}, \omega^{2}\right]$, we get:

$$
\Pi_{I}(x, y)=(2 \pi)^{-d} \int_{\omega_{-} \leq v k \leq \omega} e(x, \mathbf{k}) \overline{e(y, \mathbf{k})}|d \mathbf{k}|
$$

Using polar coordinates and defining $|d \sigma|$ as the usual measure on the unit ($d-$ 1)-dimensional sphere, we get:

$$
\Pi_{I}(x, y)=(2 \pi)^{-d} \int_{\omega_{-} \leq v k \leq \omega} \int_{\mathbf{k}^{2}=k^{2}} e(x, \mathbf{k}) \overline{e(y, \mathbf{k})} k^{d-1} d k|d \sigma| .
$$

We will denote by σ_{d-1} the total volume of the unit sphere in $\mathbb{R}^{d}: \sigma_{0}=2, \sigma_{1}=$ $2 \pi, \sigma_{2}=4 \pi, \cdots$.

Taking the same derivative as before, we get:

$$
\frac{d}{d \omega} \Pi_{\left[\omega_{-}^{2}, \omega^{2}\right]}(x, y)=(2 \pi)^{-d} \frac{\omega^{d-1}}{v^{d}} \int_{v k=\omega} e(x, \mathbf{k}) \overline{e(y, \mathbf{k})}|d \sigma| .
$$

Let us look at $e(x, \mathbf{k})$ as a random wave with $k=\omega / v$ fixed. The point-point correlation of such a random wave $C_{\omega}^{\text {scatt }}(x, y)$ is given by:

$$
C_{\omega}^{\text {scatt }}(x, y)=\frac{1}{\sigma_{d-1}} \int_{v k=\omega} e(x, \mathbf{k}) \overline{e(y, \mathbf{k})}|d \sigma| .
$$

Then we have:

$$
\begin{equation*}
\frac{d}{d \omega} \Pi_{\left[\omega_{-}^{2}, \omega^{2}\right]}(x, y)=(2 \pi)^{-d} \frac{\omega^{d-1} \sigma_{d-1}}{v^{d}} C_{\omega}^{\text {scatt }}(x, y) \tag{4}
\end{equation*}
$$

4 Correlation of scattered plane waves and Green's function: the scalar case

From Equations (2) and (4), we get:

$$
(2 \pi)^{-d} \frac{\omega^{d-1} \sigma_{d-1}}{v^{d}} C_{\omega}^{\text {scatt }}(x, y)=-\frac{2 \omega}{\pi} \operatorname{Im}(G(\omega+i 0, x, y)) .
$$

Hence

$$
C_{\omega}^{\mathrm{scatt}}(x, y)=-\frac{2^{d+1} \pi^{d-1} v^{d}}{\sigma_{d-1} \omega^{d-2}} \operatorname{Im}(G(\omega+i 0, x, y))
$$

For later use, we put

$$
\begin{equation*}
\gamma_{d}=\frac{2^{d+1} \pi^{d-1}}{\sigma_{d-1}} \tag{5}
\end{equation*}
$$

5 The case of elastic waves

We will consider the elastic wave equation in the domain Ω :

$$
\hat{H} \mathbf{u}-\omega^{2} \mathbf{u}=0
$$

with self-adjoint boundary conditions. We will assume that, at large distances, we have

$$
\hat{H} \mathbf{u}=-a \Delta \mathbf{u}-b \operatorname{grad} \operatorname{div} \mathbf{u}
$$

where a and b are constants:

$$
a=\frac{\mu}{\rho}, b=\frac{\lambda+\mu}{\rho}
$$

with λ, μ the Lamé's coefficients and ρ the density of the medium. We will denote $v_{P}:=\sqrt{a+b}$ (resp. $v_{S}:=\sqrt{a}$) the speeds of the $P-($ resp. $S-$)waves near infinity.

5.1 The case $\Omega=\mathbb{R}^{d}$

We want to derive the spectral decomposition of \hat{H} from the Fourier inversion formula. Let us choose, for $\mathbf{k} \neq 0$, by $\hat{\mathbf{k}}, \hat{\mathbf{k}}_{1}, \cdots, \hat{\mathbf{k}}_{d-1}$ an orthonormal basis of \mathbb{R}^{d} with $\hat{\mathbf{k}}=\frac{\mathbf{k}}{k}$ such that these vectors depends in a measurable way of \mathbf{k}. Let us introduce $P_{P}^{\mathbf{k}}=\hat{\mathbf{k}} \hat{\mathbf{k}}^{\star}$ the orthogonal projector onto $\hat{\mathbf{k}}$ and $P_{S}^{\mathbf{k}}=\sum_{j=1}^{d-1} \hat{\mathbf{k}}_{j} \hat{\mathbf{k}}_{j}^{\star}$ so that $P_{P}+P_{S}=$ Id. Those projectors correspond respectively to the polarisations of P - and S-waves.

We have

$$
\begin{aligned}
& \Pi_{I}(x, y)=(2 \pi)^{-d} \int_{\omega^{2} \in I} \omega^{d-1} d \omega\left(v_{P}^{-d} \int_{v_{P} k=\omega} e^{i \mathbf{k}(x-y)} P_{P}^{\mathbf{k}} d \sigma+\right. \\
& \left.v_{S}^{-d} \int_{v_{S} k=\omega} e^{i \mathbf{k}(x-y)} P_{S}^{\mathbf{k}} d \sigma\right)
\end{aligned}
$$

using the plane waves

$$
e_{P}^{O}(x, \mathbf{k})=e^{i \mathbf{k} x} \hat{\mathbf{k}}
$$

and

$$
e_{S, j}^{O}(x, \mathbf{k})=e^{i \mathbf{k} x} \hat{\mathbf{k}}_{j}
$$

we get the formula ${ }^{2}$:

$$
\begin{aligned}
& \Pi_{I}(x, y)=(2 \pi)^{-d} \int_{\omega^{2} \in I} \omega^{d-1} d \omega\left(v_{P}^{-d} \int_{v_{P} k=\omega}\left|e_{P}^{O}(x, \mathbf{k})\right\rangle\left\langle e_{P}^{O}(y, \mathbf{k})\right| d \sigma+\right. \\
& \left.v_{S}^{-d} \sum_{j=1}^{d-1} \int_{v_{S} k=\omega}\left|e_{S, j}^{O}(x, \mathbf{k})\right\rangle\left\langle e_{S, j}^{O}(y, \mathbf{k})\right| d \sigma\right)
\end{aligned}
$$

[^2]
5.2 Scattered plane waves

There exists scattered plane waves

$$
\begin{aligned}
e_{P}(x, \mathbf{k}) & =e_{P}^{O}(x, \mathbf{k})+e_{P}^{s}(x, \mathbf{k}) \\
e_{S, j}(x, \mathbf{k}) & =e_{S, j}^{O}(x, \mathbf{k})+e_{S, j}^{s}(x, \mathbf{k})
\end{aligned}
$$

satisfying the Sommerfeld condition and from which we can deduce the spectral decomposition of \hat{H}.

5.3 Correlations of scattered plane waves and Green's function

Following the same path as for scalar waves, we get an identity which holds now for the full Green's tensor $\operatorname{Im} \mathbf{G}(\omega+i O, x, y)$:

$$
\begin{aligned}
& \operatorname{Im} \mathbf{G}(\omega+i O, x, y)=-\gamma_{d}^{-1} \omega^{d-2}\left(\frac{1}{\sigma_{d-1} v_{P}^{d}} \int_{v_{P} k=\omega}\left|e_{P}(x, \mathbf{k})\right\rangle\left\langle e_{P}(y, \mathbf{k})\right| d \sigma+\right. \\
& \left.\frac{1}{\sigma_{d-1} v_{S}^{d}} \sum_{j=1}^{d-1} \int_{v_{S} k=\omega}\left|e_{S, j}(x, \mathbf{k})\right\rangle\left\langle e_{S, j}(y, \mathbf{k})\right| d \sigma\right),
\end{aligned}
$$

with γ_{d} defined by Equation (5).
This formula expresses the fact that the correlation of scattered plane waves randomised with the appropriate weights $\left(v_{P}^{-d}\right.$ versus $\left.v_{S}^{-d}\right)$ is proportional to the Green's tensor. Let us insist on the fact that this true everywhere in Ω even in the domain where a and b are not constants.

[^0]: *Institut Fourier, Unité mixte de recherche CNRS-UJF 5582, BP 74, 38402-Saint Martin d'Hères Cedex (France); yves.colin-de-verdiere@ujf-grenoble.fr

[^1]: ${ }^{1}$ As often, we denote $k:=|\mathbf{k}|$ and $\hat{\mathbf{k}}:=\mathbf{k} / k$

[^2]: ${ }^{2}$ We use the "bra-ket" notation of quantum mechanics: $|e\rangle\langle f|$ is the operator $x \rightarrow\langle f \mid x\rangle e$ where the brackets are linear w.r. to the second entry and anti-linear w.r. to the first one

