Essential self-adjointness for combinatorial Schrödinger operators

Yves Colin de Verdière* Nabila Torki-Hamza[†] Françoise Truc [‡]

September 18, 2010

^{*}Grenoble University, Institut Fourier, Unité mixte de recherche CNRS-UJF 5582, BP 74, 38402-Saint Martin d'Hères Cedex (France); yves.colin-de-verdiere@ujf-grenoble.fr; http://www-fourier.ujf-grenoble.fr/~ycolver/

[†]Faculté des Sciences de Bizerte, Université 7 Novembre à Carthage (Tunisie); nabila.torki-hamza@fsb.rnu.tn or torki@fourier.ujf-grenoble.fr

[‡]Grenoble University, Institut Fourier, Unité mixte de recherche CNRS-UJF 5582, BP 74, 38402-Saint Martin d'Hères Cedex (France); francoise.truc@ujf-grenoble.fr; http://www-fourier.ujf-grenoble.fr/~trucfr/

1 The Dirichlet problem at infinity

We will use in this section the distance d_p defined using the weights $p_{x,y} = c_{x,y}^{-\frac{1}{2}}$. Let us consider the quadratic form

$$Q(f) = \langle (\Delta_{\omega,c} + 1)f \mid f \rangle_{\omega} = \sum_{\{x,y\} \in E} c_{xy} (f(x) - f(y))^2 + \sum_{x \in V} \omega_x^2 f(x)^2.$$

We have

Lemma 1.1 For any $f: V \to \mathbb{R}$ so that $Q(f) < \infty$ and for any $a, b \in V$, we have $|f(a) - f(b)| \le \sqrt{Q(f)} d_p(a, b)$.

Proof.-

For any $\{x,y\} \in E$, $|f(x) - f(y)| \leq \sqrt{Q(f)}/\sqrt{c_{xy}}$. For any path γ from a to b, defined by the vertices $x_1 = a, x_2, \cdots, x_N = b$, we have $|f(a) - f(b)| \leq \sqrt{Q(f)} \operatorname{length}(\gamma)$. Taking the infimum of the righthandside w.r. to γ we get the result.

Lemma 1.1 implies that any function f with $Q(f) < \infty$ extends to \hat{V} as a Lipschitz function \hat{f} . We will denote by f_{∞} the restriction of \hat{f} to V_{∞} .

Theorem 1.1 Let $f: V \to \mathbb{R}$ with $Q(f) < \infty$, then there exists an unique continuous function $F: \hat{V} \to \mathbb{R}$ which satisfies

- $\bullet \ (F-f)_{\infty}=0$
- $\bullet \ (\Delta_{\omega,c} + 1)(F_{|V}) = 0$

Proof.-

We will denote by A_f the affine space of continuous functions $G: \hat{V} \to \mathbb{R}$ which satisfy $Q(G) < \infty$ and $(G - f)_{\infty} = 0$.

Q is lower semi-continuous for the pointwise convergence on V as defined by $Q = \sup Q_{\alpha}$ with $Q_{\alpha}(f) = \sup$ of a finite number of terms in Q.

Let $Q_0 := \inf_{G \in A_f} Q(G)$ and G_n be a corresponding minimizing sequence. The G_n 's are equicontinuous and pointwise bounded. From Ascoli's Theorem, this implies the existence of a locally uniformly convergent subsequence $G_{n_k} \to F$. Using semi-continuity, we have $Q(F) = Q_0$.

If $x \in V$ and δ_x is the Dirac function at the vertex x, we have

$$\frac{d}{dt}_{|t=0}Q(F+t\delta_x) = 2(\Delta_{\omega,c}+1)F(x)$$

and this is equal to 0, because F is the minimum of Q restricted to A_f .

Uniqueness is proved using a maximum principle.

2 Non essentially self-adjoint Laplacians

Theorem 2.1 Let $\Delta_{\omega,c}$ be a Laplacian and assume that

- (V, d_p) with $p_{xy} = c_{xy}^{-\frac{1}{2}}$ is NOT complete
- There exists a function $f: V \to \mathbb{R}$ with $Q(f) < \infty$ and $f_{\infty} \neq 0$

then $\Delta_{\omega,c}$ is not ESA.

Proof.-

Because $\Delta_{\omega,c}$ is ≥ 0 on $C_0(V)$, it is enough (see Theorem X.26 in [R-S]) to build a non zero function $F: V \to \mathbb{R}$ which is in $l_{\omega}^2(V)$ and satisfies

$$(\Delta_{\omega,c} + 1)F = 0. (1)$$

The function F will be the solution of Equation (1) whose limit at infinity is f_{∞} .

Remark 2.1 The assumptions of the Theorem are satisfied if (G, d_p) is non complete and $\sum \omega_y^2 < \infty$: it is enough to take $f \equiv 1$.

They are already satisfied if G has a non complete "end" of finite volume.

Remark 2.2 Theorem 2.1 is not valid for the Riemannian Laplacian: if X is a closed Riemannian manifold of dimension ≥ 4 , $x_0 \in X$ and $Y = X \setminus x_0$, the Laplace operator on Y is ESA (see [CdV1]) and Y has finite volume (what is wrong in (the extension of) the proof?).

Remark 2.3 In Theorem 2.1, what is the deficiency index of $\Delta_{\omega,c}$ in terms of the geometry of the weighted graph?

References

- [B-M-S] M. Braverman, O. Milatovic & M. Shubin. Essential self-adjointness of Schrödinger-type operators on manifolds. *Russian Math. Surveys* **57**:641–692 (2002).
- [CdV] Y. Colin de Verdière. Spectre de graphes. Cours spécialisés 4, Société mathématique de France (1998).
- [CdV1] Y. Colin de Verdière. Pseudos-Laplaciens I. Ann. Inst. Fourier (Grenoble) 32: 275–286 (1982).
- [CdV-Tr] Y. Colin de Verdière & F. Truc. Confining quantum particles with a purely magnetic field. ArXiv:0903.0803, Ann. Inst. Fourier (Grenoble) (to appear).
- [Dod] J. Dodziuk. Elliptic operators on infinite graphs. Analysis geometry and topology of elliptic operators, 353-368, World Sc. Publ., Hackensack NJ. (2006).
- [Du-Sc] N. Dunford & J. T. Schwartz. Linear operator II, Spectral Theory. *John Wiley & Sons, New York* (1971).
- [Nen-Nen] G. Nenciu & I. Nenciu. On confining potentials and essential self-adjointness for Schrödinger operators on bounded domains in \mathbb{R}^n . Ann. Henri Poincaré 10:377–394 (2009).
- [OI] I.M. Oleinik. On the essential self-adjointness of the operator on complete Riemannian manifolds. *Mathematical Notes* **54**:934–939 (1993).
- [R-S] M.Reed & B.Simon. Methods of Modern mathematical Physics I, Functional analysis, (1980). II, Fourier analysis, Self-adjointness, (1975). New York Academic Press.
- [Shu] M. Shubin. The essential self-adjointness for semi-bounded magnetic Schrödinger operators on non-compact manifolds. *J. Func. Anal.* **186**: 92–116 (2001).
- [Sh] M. Shubin. Classical and quantum completness for the Schrödinger operators on non-compact manifolds, Geometric Aspects of Partial Differential Equations (Proc. Sympos., Roskilde, Denmark (1998)) Amer. Math. Soc. Providence, RI, 257-269, (1999).
- [To] N. Torki. Laplaciens de graphes infinis I. Graphes complets (to appear).
- [Wo] R.K. Wojiechowski. Stochastic completeness of graphs. Ph.D. Thesis. The graduate Center of the University of New-York (2008).