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1 The Dirichlet problem at infinity

We will use in this section the distance dp defined using the weights px,y = c
− 1

2
x,y .

Let us consider the quadratic form

Q(f) = 〈(∆ω,c + 1)f | f〉ω =
∑

{x,y}∈E

cxy(f(x)− f(y))2 +
∑
x∈V

ω2
xf(x)2 .

We have

Lemma 1.1 For any f : V → R so that Q(f) < ∞ and for any a, b ∈ V , we
have |f(a)− f(b)| ≤

√
Q(f)dp(a, b).

Proof.–

For any {x, y} ∈ E, |f(x) − f(y)| ≤
√

Q(f)/
√

cxy. For any path
γ from a to b, defined by the vertices x1 = a, x2, · · · , xN = b, we
have |f(a) − f(b)| ≤

√
Q(f)length(γ). Taking the infimum of the

righthandside w.r. to γ we get the result.

�
Lemma 1.1 implies that any function f with Q(f) < ∞ extends to V̂ as a

Lipschitz function f̂ . We will denote by f∞ the restriction of f̂ to V∞.

Theorem 1.1 Let f : V → R with Q(f) < ∞, then there exists an unique
continuous function F : V̂ → R which satisfies

• (F − f)∞ = 0

• (∆ω,c + 1)(F|V ) = 0

Proof.–

We will denote by Af the affine space of continuous functions G :

V̂ → R which satisfy Q(G) < ∞ and (G− f)∞ = 0.
Q is lower semi-continuous for the pointwise convergence on V as

defined by Q = sup Qα with Qα(f) = sum of a finite number of terms
in Q.

Let Q0 := infG∈Af
Q(G) and Gn be a corresponding minimizing

sequence. The Gn’s are equicontinuous and pointwise bounded. From
Ascoli’s Theorem, this implies the existence of a locally uniformly
convergent subsequence Gnk

→ F . Using semi-continuity, we have
Q(F ) = Q0.

If x ∈ V and δx is the Dirac function at the vertex x, we have

d

dt |t=0
Q(F + tδx) = 2(∆ω,c + 1)F (x)

2



and this is equal to 0, because F is the minimum of Q restricted to
Af .

Uniqueness is proved using a maximum principle.

�

2 Non essentially self-adjoint Laplacians

Theorem 2.1 Let ∆ω,c be a Laplacian and assume that

• (V, dp) with pxy = c
− 1

2
xy is NOT complete

• There exists a function f : V → R with Q(f) < ∞ and f∞ 6= 0

then ∆ω,c is not ESA.

Proof.–

Because ∆ω,c is ≥ 0 on C0(V ), it is enough (see Theorem X.26 in
[R-S]) to build a non zero function F : V → R which is in l2ω(V ) and
satisfies

(∆ω,c + 1)F = 0 . (1)

The function F will be the solution of Equation (1) whose limit at
infinity is f∞.

�

Remark 2.1 The assumptions of the Theorem are satisfied if (G, dp) is non com-
plete and

∑
ω2

y < ∞: it is enough to take f ≡ 1.
They are already satisfied if G has a non complete “end” of finite volume.

Remark 2.2 Theorem 2.1 is not valid for the Riemannian Laplacian: if X is
a closed Riemannian manifold of dimension ≥ 4, x0 ∈ X and Y = X \ x0, the
Laplace operator on Y is ESA (see [CdV1]) and Y has finite volume (what is
wrong in (the extension of ) the proof?).

Remark 2.3 In Theorem 2.1, what is the deficiency index of ∆ω,c in terms of
the geometry of the weighted graph?
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