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Bohr-Sommerfeld Rules to All Orders

Yves Colin de Verdière

1 Introduction

The goal of this paper is to give a rather simple algorithm which computes the
Bohr-Sommerfeld quantization rules to all orders in the semi-classical parameter
h for a semi-classical Hamiltonian Ĥ on the real line. The formula gives the high-
order terms in the expansion in powers of h of the semi-classical action using only
integrals on the energy curves of quantities which are locally computable from the
Weyl symbol. The recipe uses only the knowledge of the Moyal formula expressing
the star product of Weyl symbols. It is important to note that our method assumes
already the existence of Bohr-Sommerfeld rules to any order (which is usually
shown using some precise Ansatz for the eigenfunctions, like the WKB-Maslov
Ansatz) and the problem we address here is only about ways to compute these
corrections. Existence of corrections to any order to Bohr-Sommerfeld rules is well
known and can be found for example in [8] and [15] Section 4.5.

Our way to get these high-order corrections is inspired by A. Voros’s thesis
(1977) [13], [14]. The reference [1], where a very similar method is sketched, was
given to us by A. Voros. We use also in an essential way the nice formula of
Helffer-Sjöstrand expressing f(Ĥ) in terms of the resolvent.

2 The setting and the main result

Let us give a smooth classical Hamiltonian H : T �
R → R, where the symbol H

admits the formal expansion H ∼ H0 + hH1 + · · · + hkHk + · · · ; following [5] p.
101, we will assume that

• H belongs to the space of symbols So(m) for some order function m (for
example m = (1 + |ξ|2)p)

• H + i is elliptic

and define Ĥ = OpWeyl(H) with1

OpWeyl(H)u(x) =
∫

R2
ei(x−y)ξ/hH(

x + y

2
, ξ)u(y)

∣
∣
∣
∣

dydξ

2πh

∣
∣
∣
∣ .

1Contrary to the usual notation, we denote by |dx1 · · · dxn| the Lebesgue measure on Rn in
order to avoid confusions related to orientations problems.
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The operator Ĥ is then essentially self-adjoint on L2(R) with domain the Schwartz
space S(R).

In general, we will denote by σWeyl(A) the Weyl symbol of the operator A.

The hypothesis:

• We fix some compact interval I = [E−, E+] ⊂ R, E− < E+, and we assume
that there exists a topological ring A such that ∂A = A− ∪ A+ with A± a
connected component of H−1

0 (E±).

• We assume that H0 has no critical point in A

• We assume that A− is included in the disk bounded by A+. If it is not the
case, we can always change H to −H .

We define the well W as the disk bounded by A+.

Definition 1 Let HW : T �
R → R be equal to H in W , > E+ outside W and

bounded. Then ĤW = OpWeyl(HW ) is a self-adjoint bounded operator. The semi-
classical spectrum associated to the well W , denoted by σW , is defined as follows:

σW = Spectrum(ĤW )∩] −∞, E+] .

The previous definition is useful because σW is independent of HW mod O(h∞).
Moreover, if H−1

0 (] −∞, E+]) = W1 ∪ · · · ∪ WN (connected components), then

Spectrum(Ĥ)∩] −∞, E+] = ∪σWl
+ O(h∞) .

The spectrum σW ∩ [E−, E+] is then given mod O(h∞) by the following
Bohr-Sommerfeld rules

Sh(En) = 2πnh

where n ∈ Z is the quantum number and the formal series

Sh(E) =
∞∑

j=0

Sj(E)hj

is called the semi-classical action.
Our goal is to give an algorithm for computing the functions Sj(E), E ∈ I.
In fact exp(iSh(E)/h) is the holonomy of the WKB-Maslov microlocal solu-

tions of (Ĥ − E)u = 0 around the trajectory γE = H−1(E) ∩ A.
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Figure 1. The phase space.

It is well known that:

• S0(E) =
∫

γE
ξdx =

∫

{H0≤E}∩W
|dxdξ| is the action integral

• S1(E) = π − ∫

γE
H1|dt| includes the Maslov correction and the subprincipal

term.

Our main result is:

Theorem 1 If H satisfies the previous hypothesis, we have: for j ≥ 2,

Sj(E) =
∑

2≤l≤L(j)

(−1)l−1

(l − 1)!

(
d

dE

)l−2 ∫

γE

Pj,l(x, ξ)|dt|

where

• t is the parametrization of γE by the time evolution

dx = (H0)ξdt, dξ = −(H0)xdt
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• The Pj,l’s are locally (in the phase space) computable quantities: more pre-
cisely each Pj,l(x, ξ) is a universal polynomial evaluated on the partial deriva-
tives ∂αH(x, ξ).

The Pj,l’s are given from the Weyl symbol of the resolvent (see Proposition
(1)):

σWeyl

(

(z − Ĥ)−1
)

=
1

z − H0
+

∞∑

j=1

hj

L(j)
∑

l=2

Pj,l

(z − H0)l
.

If H = H0, S2j+1(E) = 0 for j > 0. In that case, the polynomial Pj,l(∂αH)
is homogeneous of degree l − 1 w.r. to H and the total weight of the derivatives is
2j, so that all monomials in Pj,l are of the form

Πl−1
k=1∂

αkH

with
∑l−1

k=1 |αk| = 2j and ∀k, |αk| ≥ 1.

Remark 1 We have also the following nice formula 2 (see also [14]): for any l ≥ 2,

∑

j

hjPj,l(x0, ξ0) = (H − H0(x0, ξ0))�(l−1)(x0, ξ0) ,

where the power (l − 1) is taken w.r. to the star product.
Proof. Let us denote h0 = H0(x0, ξ0). We have

z − Ĥ = (z − h0) − (Ĥ − h0)

and

(z − Ĥ)−1 =
∞∑

l=1

(z − h0)−l(Ĥ − h0)l−1

The formula follows then by identification of both expressions of the Weyl symbol
of the resolvent at (x0, ξ0).

A less formal derivation is given by applying formula (3) to f(E) = (E −
h0)l−1 and computing Weyl symbols at the point (x0, ξ0). �

3 Moyal formula

Let us define the Moyal product a � b of the semi-classical symbols a and b by the
rule:

OpWeyl(a) ◦ OpWeyl(b) = OpWeyl(a � b)

2I learned this formula from Laurent Charles
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We have the well-known “Moyal formula” (see [5]):

a � b =
∞∑

j=0

1
j!

(
h

2i

)j

{a, b}j

where
{a, b}j(z) = [(∂ξ∂x1 − ∂x∂ξ1)

j(a(z) ⊗ b(z1))]|z1=z

with z = (x, ξ), z1 = (x1, ξ1).
In particular {a, b}0 = ab and {a, b}1 is the usual Poisson bracket.
From the Moyal formula, we deduce the following (see also [14]):

Proposition 1 The Weyl symbol
∑

j hjRj(z) of the resolvent (z − Ĥ)−1 of Ĥ is
given by

∞∑

j=0

hjRj(z) =
1

z − H0
+

∞∑

j=1

hj

L(j)
∑

l=2

Pj,l

(z − H0)l
(1)

where the Pj,l(x, ξ) are universal polynomials evaluated on the Taylor expansion
of H at the point (x, ξ).

If H = H0, only even powers of j occur: R2j = 0.

Proof. The proposition follows directly from the evaluation by Moyal formula of
the left-hand side of

(z − H) �





∞∑

j=0

hjRj



 = 1 .

The important point is that the poles at z = H are at least of multiplicity 2 for
j ≥ 1.

Using

(z − H) �





∞∑

j=0

hjRj



 =





∞∑

j=0

hjRj



 � (z − H) = 1 ,

and the fact that {., .}j are symmetric for even j’s and antisymmetric for odd j’s,
we can prove the second statement by induction on j. �

4 The method

Let f ∈ C∞
o (I) and let us compute the trace D(f) := Trace(f(ĤW )) mod O(h∞)

in 2 different ways:

1. Using the eigenvalues given by the Bohr-Sommerfeld rules we get:

Trace(f(ĤW )) =
∑

n∈Z

f(S−1
h (2πhn)) + O(h∞)



930 Y. Colin de Verdière Ann. Henri Poincaré

and, because f ◦ S−1
h is a smooth function converging in the C∞

o topology
to f ◦ S−1

0 we can apply the Poisson summation formula and we get

D(f) =
1

2πh

∫

R

f(S−1
h (u))|du| + O(h∞)

and
D(f) =

1
2πh

∫

R

f(E)S′
h(E)|dE| + O(h∞)

or using Schwartz distributions:

(a) D =
1

2πh
S′
h(E) + O(h∞)

2. On the other hand, we compute the Weyl symbol of f(Ĥ) using Helffer-
Sjöstrand’s trick (see [5] p. 93):

f(Ĥ) = − 1
π

∫

Cz=x+iy

∂F

∂z̄
(z)(z − Ĥ)−1|dxdy| (2)

where F ∈ C∞
0 (C) is a quasi-analytic extension of f , i.e., F admits the Taylor

expansion

F (x + ζ) =
∞∑

k=0

1
k!

f (k)(x)ζk

at any real x.
We start with the Weyl symbol of the resolvent (1).
We get then the symbol of f(Ĥ) by putting Equation (1) into (2):

f(Ĥ) = OpWeyl



f(H0) +
∑

j≥1,l≥2

hj

(l − 1)!
f (l−1)(H0)Pj,l



 . (3)

The justification of this formal step is done in [5].
We then compute the trace by using

Tr (OpWeyl(a)) =
1

2πh

∫

T �R

a(x, ξ)|dxdξ| .

We get:

D(f) =
1

2πh

∫

T �R



f(H0) +
∑

j≥1,l≥2

hj 1
(l − 1)!

f (l−1)(H0)Pj,l



 |dxdξ|

We can rewrite using |dtdE| = |dxdξ| and integrating by parts:

(b) D =
1

2πh



T(E) +
∑

j≥1,l≥2

hj (−1)l−1

(l − 1)!

(
d

dE

)l−1 ∫

γE

Pj,l|dt|



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So we get, because l ≥ 2, by identification of (a) and (b), for j ≥ 1:

Sj(E) −
∑

l≥2

(−1)l−1

(l − 1)!

(
d

dE

)l−2 ∫

γE

Pj,l|dt| = Cj (4)

where the Cj ’s are independent of E.

Proposition 2 In the previous formula (4), the Cj ’s are also independent of the
operator.

Proof. We can assume that (0, 0) is in the disk whose boundary is A−. Let us
choose an Hamiltonian K which coincides with HW outside the disk bounded by
A− and with the harmonic oscillator

Ω̂ = OpWeyl(
1
2
(x2 + ξ2))

near the origin. We can assume that K has no other critical values than 0.
We claim: for all j ≥ 1,

1. Cj(K̂) = Cj(Ω̂)

2. Cj(Ĥ) = Cj(K̂)

Both claims come from the following facts: let us give 2 Hamiltonians whose
Weyl symbols coincide in some ring B, then

(i) The Pj,l are the same for 2 operators in the ring B where both have the
same Weyl symbol, because they are locally computed from the symbols which are
the same.

(ii) The Sj(E)’s are the same for both operators because they have the same
eigenvalues in the corresponding well modulo O(h∞): both operators have the
same WKB-Maslov quasi-modes in B. �

5 The case of the harmonic oscillator

Proposition 3 For the harmonic oscillator, C1 = π and, for j ≥ 2, Cj = 0.

Proof. If Ω̂ = OpWeyl(1
2 (x2 + ξ2)) is the harmonic oscillator we have:

Sh(E) = 2πE + πh

because En = (n − 1
2 )h for n = 1, . . . .

It remains to compute the Pj,l’s. Let us put ρ = 1
2 (x2 + ξ2), and

σWeyl

(

(z − Ω̂)−1
)

=
∞∑

j=0

hjRj
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It is clear that the Rj ’s are functions fj(ρ, z) and from Moyal formula we get:

fj+2 = − 1
4(z − ρ)

(f ′
j + ρf ′′

j )

and by induction on j:
f2j+1 = 0 and

f2j(ρ, z) =
l=3j+1∑

l=2j+1

al,jρ
l−2j−1

(z − ρ)l
,

with aj,l ∈ R. The result comes from

(
d

dE

)l−2 ∫

γE

ρl−2j−1|dt| = 0 ,

if l ≥ 2j + 1. �

6 The term S2

Let us assume first that H = H0. From the Moyal formula, we have

R2 = − 1
z − H0

{H0,
1

z − H0
}2 = − ∆

4(z − H0)3
− Γ

4(z − H0)4

with
∆ = (H0)xx(H0)ξξ − ((H0)xξ)2

and
Γ = (H0)xx((H0)ξ)2 + (H0)ξξ((H0)x)2 − 2(H0)xξ(H0)x(H0)ξ .

A very similar computation can be found in [9] p. 93, formula (0.13).
Using formulae (1) and (4), we get:

S2(E) = −1
8

d

dE

∫

γE

∆|dt| + 1
24

(
d

dE

)2 ∫

γE

Γ|dt|. (5)

Theorem 2 • If H = H0, we have

S2 = − 1
24

d

dE

∫

γE

∆|dt|. (6)

• In the general case, we have:

S2 = − 1
24

d

dE

∫

γE

∆|dt| −
∫

γE

H2|dt| + 1
2

d

dE

∫

γE

H2
1 |dt| .
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Formula (5) were obtained in [1], formula (3.12), and formula (6) by Robert Lit-
tlejohn [10, 2] using completely different methods.

Proof. Γdt is the restriction to γE of the 1-form α in R
2 with

α = ((H0)xx(H0)ξ − (H0)xξ(H0)x)dx + ((H0)xξ(H0)ξ − (H0)ξξ(H0)x)dξ .

Orienting γE along the Hamiltonian flow, we get using Stokes formula:
∫

γE

Γ|dt| =
∫

γE

α = −
∫

DE

dα

where ∂DE = γE and DE is oriented by dx ∧ dξ. We have

dα = −2∆dx ∧ dξ

and hence: ∫

γE

Γ|dt| = 2
∫

DE

∆|dxdξ| .

From |dtdE| = |dxdξ|, we get:

d

dE

∫

DE

∆|dxdξ| =
∫

γE

∆|dt| .

So that:
d

dE

∫

γE

Γ|dt| = 2
∫

γE

∆|dt|

from which Theorem 2 follows easily. �

7 Quantum numbers

Theorem 3 The quantum number “n” in the Bohr-Sommerfeld rules corresponds
exactly to the nth eigenvalue in the corresponding well, i.e., the nth eigenvalue
of ĤW .

Proof. It is clear that the labelling of the eigenvalues of ĤW is invariant by homo-
topies leaving the symbol constant in A. We can then change ĤW to K̂ for which
the result is clear because the quantization rules give then exactly all eigenvalues.

�

8 Extensions

8.1 2d phase spaces

The method applies to any 2d phase space using only 3 things:

• The star product
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• The fact that the trace of operators is given by (1/2πh)× (the integral of
their symbols)

• An example where you know enough to compute the C′
js

The power of our method is that it avoids the use of any Ansatz. Maslov
contributions come only from the computation of an explicit example.

8.2 The cylinder T�(R/Z)

In that case, we replace the hypothesis by the following:

• We fix some compact interval I = [E−, E+] ⊂ R, E− < E+, and we assume
there exists a topological ring A, homotopic to the zero section of T �(R/Z),
such that ∂A = A− ∪ A+ with A± a connected component of H−1(E±).

• We assume that H has no critical point in A
• We assume that A− is “below” A+ (see Figure 2).

A

A+

A−

Figure 2. The cylinder.

We will use the Weyl quantization for symbols which are of period 1 in x. Then
Theorem 1 holds. The only change is S1 which is now 0. The proof is the same
except that the reference operator is now h

i ∂x instead of the harmonic oscillator.

8.3 Other extensions

It would be nice to extend the previous method to the case of Toeplitz operators
on two-dimensional symplectic phase spaces, in the spirit of [3] and [4], and to the
case of systems starting from the analysis in [6].
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As remarked by Littlejohn, our method does not obviously extend to semi-
classical completely integrable systems Ĥ1, . . . , Ĥd with d ≥ 2 degrees of freedom.
The reason for that is that, using the same lines, we will get only the jacobian
determinant of the d BS actions which is not enough to recover the actions even
up to constants.

9 Relations with KdV

Let us consider the periodic Schrödinger equation Ĥ = −∂2
x +q(x) with q(x+1) =

q(x). Let us denote by λ1 < λ2 ≤ λ3 < λ4 ≤ · · · the eigenvalues of the periodic
problem for Ĥ . Then the partition function

Z(t) =
∞∑

n=1

e−tλn

admits, as t → 0+, the following asymptotic expansion

Z(t) =
1√
4πt

(
a0 + a1t + · · · + ajt

j + · · · ) + O(t∞)

where the aj ’s are of the following form

aj =
∫ 1

0

Aj

(

q(x), q′(x), . . . , q(l)(x), . . .
)

|dx|

where the Aj ’s are polynomials. The aj ’s are called the Korteweg-de Vries invari-
ants because they are independent of u if qu(x) = Q(x, u) is a solution of the
Korteweg-de Vries equation. See [11], [12] and [16].

Let us translate the previous objects in the semi-classical context: we have
Z(h2) = Tr

(

exp(−h2Ĥ)
)

and h2Ĥ is the semi-classical operator of order 0 whose

Weyl symbol is ξ2+h2q(x). If we put f(E) = e−E , the partition function is exactly
a trace of the form used in our method except that E → e−E is not compactly
supported. Nevertheless, the similarity between both situations is rather clear.
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classique, Ann. IHP (physique théorique) 41, 291–331 (1984).
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