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Typical example of Applied Algebraic Topology.
The main groups of Algebraic Topology

The computability problem.

Constructive Algebraic Topology.

Typical examples of Kenzo computation.
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1. Simple example of Applied Algebraic Topology.

D? = {x*> + y*> < 1} C R2
Sl

S!'=0D? ={x>+y* =1} C D?> C R

Problem: 397 f : D? — S' continuous such that f|S' = idg ?

id id
St 7
o > z\‘ Ravardl

H;-functor

D? 0

Sl

—>  Impossible !!!



3/28
2. Main groups of Algebraic Topology.

General notion of homotopy.
Given: an .fl : X > Y.
Definition: fy homotope to f1 < JdH : X XI — Y satisfying:

fo(z) = H(x,0)
fi(z) = H(z,1)




4/28

Notion of Homotopy Type.

Definition: Two spaces X and Y are homotopy equivalent if

34 X i Y with gf ~ idx and fg ~ idy.

{Topological Spaces}

{Homotopy types} := -
Homotopy equivalence

Examples: * ~ D" ~ R"
Sn—1 ch R™ — {0}

with f = canonical inclusion

and g = radial projection.
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(X, x¢) = topological space with base point x, € X.

Loop of X based at xy =
map ~v : [0,1] = X with v(0) = (1) = xo.

Q(X, xg) := {loops of X based at xy}
71 (X, xg) := Q(X, x9) /homotopy of based loops
71(X, xg) carries a natural group structure.

71(X, xp) is a homotopy invariant.

Obvious generalization to 7, (X, o).

Computations of m, (X, xg) ?
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Simple examples:

m(R™) =0

X contractible <& X has the homotopy type of x*.
X contractible & m,(X) =0 Vn.

7 (S™) =7

Easy:

7, (S™) = 0 for k < n.

o (S™) =7

What about m(S™) for k > n?



Table of 7 (S™) for Kk < 16 and n < 9 :
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Other groups of Algebraic Topology:

Homology groups Cohomology groups
Cohomotopy groups K-theory groups
+ Rich extra algebra structures on these groups, examples :
{m,.(X)} = Quasi-Lie algebra

{H"(X)} = Commutative algebra =
Module wrt the Steenrod Algebra

{H,(X)} = Module wrt the E-operad.
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3. The computability problem.

Computing a group = 777

Most groups G of algebraic topology

are Z-modules of finite type.
= G=%Z/dy+---+7Z/d, with d; divides d; ;.

(8" =7Z/12 + 7 <+ m(S*) “=” (12,0)
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Computability of m,(X) 77

Meaningful only if X is a “machine object”,

must be “combinatorial”.
= X simplicial complex, or much better X simplicial set.

71(X) in general non abelian 4+ m,(X) abelian for n > 2

= contexts totally different for n =1 and n > 2.
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Definition: X simply connected <
X connected 4+ m(X) = 0.

Rabin’s theorem: X finite simplicial set.

Then the decision problem

“X simply connected 7” is undecidable.

More precisely the set of simply connected finite simplicial

sets is enumerable but non-recursive.

J program n — X, such that { X, },.cn is the set

of all the finite simplicial sets that are simply connected.
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= First case = X where X simply connected is known.

ANNALB OF MATHEMATICS
Vol. 65, No. 1, January, 1957
Printed in U.8. A.

FINITE COMPUTABILITY OF POSTNIKOV COMPLEXES!

By Epgar H. Brown, Jr.
(Received March 3, 1956)

In [4] Postnikov associates with each arcwise connected space X a sequence

simply connected simplicial complex. From these results we are then able to
prove:

(1) If X is a simply connected simplicial complex, then x.(X) is finitely
computable for each n > 0.

i) If X an 1 I ick WS

@ Ve a TIITTC TTaIToET O TUIT-UEEETIETATE SITMITPIEXES, ]
It must be emphasized that although the procedures developed for solving

these problems are finite, they are much too complicated to be considered
practical.
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= What about practical computability ?

practical computations ?

1. Rolf Schoen =
Effective Algebraic Topology (Memoirs AMS 1990)

= Elegant systematic organization of E. Brown’s paper.

2. Justin Smith =
Iterating the Cobar construction (Memoirs AMS 1994)

— Use of operadic structures.

3. Julio Rubio + FS = Constructive Algebraic Topology.
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4. HoTT = Homotopy Type Theory (Voevodsky).

HoTT = Organization of Constructive Mathematics

/ Martin-Lof type theory.

Ordinary Mathematics / ZF theory of sets

/ Various formalizations.

Constructive mathematics / Theory of groupoids

/ Various formalizations.
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Theorem (?): HoTT 3> Constructive versions of

Serre and Eilenberg-Moore spectral sequences.
= The classical Theory of Classes due to Serre can be made constructive.
=

Every simply connected space with homology groups of finite type
have homotopy groups of finite type (Serre).

becomes:

X = finite simply connected simplicial complex

= Every m,(X) is computable.
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4. Constructive Algebraic Topology.

X = simplicial complex.

3 77 “Algebraic” model of X é Homotopy type of X 7
Homology groups.

(C.(X), 0) = chain complex canonically associated to X.
C,(X) = free Z-module generated by the n-simplices of X.

Boundary operator 9 : C,(X) — C,,_1(X).
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Z,(X) = {n-cycles} = kerd : C,(X) — C,—1(X).
B, (X) = {n-boundaries} = im 9 : C,,1(X) — C,(X).

B,(X) C Z,(X) =
H,(X) = Z,X/B,(X) = n-th Homology group.

Problem: X often not of finite type

= (C4(X), d) cannot be a machine object.

Serre’s theorem: X “reasonable” = H,(X) of finite type.

But {H,,(X)} does not determine the homotopy type.
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Notion of Strong Homology Equivalence

between chain complexes:

C,<+——C'
with h a (rich) collection of objects describing why and how

the homological natures of C, and C’ are isomorphic.
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Notion of locally effective object.

An object not of finite type is locally effective

when one or several algorithms

describe the nature of [every| component.

Typical example: the chain complex:

C, = C.(K(Z,1)) of K(Z,1).

C,, = the free Z-module

generated by the sequences (ai,...,a,) € Z".

A C,. not of finite type A
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Face operator 9y : K(Z,1),, > K(Z,1),—1 for 0 < k < n: /
8o(5,7, —8,21) = (7, —8,21)
0.(5,7, —8,21) = (12, —8, 21)
8(5,7,—8,21) = (5, —1,21)
85(5,7,—8,21) = (5,7,13)
84(5,7,—8,21) = (5,7, —8)

d: Cp(K(Z,1)) — Cp_1(K(Z,1)) :

d(5,7,—8,21) = (7,—8,21) — (12, —8,21) + (5, —1,21)
—(5,7,13) + (5,7, —8)
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Simplicial set X with effective homology:

(X, C.(X) == ECX)
with:

X = Locally effective simplicial set

C.(X) = Locally effective chain complex

ECf( = | Effective| chain complex

h = Strong homology equivalence

EC¥ = Chain complex of finite type

= |Computable| homology.
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Fundamental Theorem of Effective Homology.

Let ¢ : X — Y and ¢ : (X1, X2) — Y be
“classical” constructors of Algebraic Topology.
Then there exist versions with effective homology of these

constructors:

b:(X,C.(X)<EC,)— (V,C.(Y)<ECY)

P (X1, Cu( X)) < ECX1), (X, C.(X,) <> ECX2))
— (X, C.(X) <> EC,)
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Typical computability problem

pending in “classical” Algebraic Topology:

Definition : Q"(X, xg) := Q(Q" (X, x), *)
~ C((S™, *), (X, x0))

Given X, compute H.(Q"(X,xzp)) = 7 (Adam’s problem).
n = 1 solved by Adams (1956, Cobar construction).
n = 2 solved by Baues (1980, Double Cobar construction).

Vn solved by Julio Rubio
(1990, Constructive Algebraic Topology).
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Proof:

X,Ci(X)e—>C,(X)

T

(QX, C.(QUX) e——> ECX)

R
R
(X, C.(Q'X) l»E034X)

T

(22X, C.(02X) ECYX)

(23X, C,(23X) ECYX)

QED
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Example: Let Py = P*R/P3R.

P, is a simplicial set of finite type

= Trivially with effective homology:

(P47 C*(P4) <i>C'*(I)él))

Adams
(QPy, C.(QPy) i»EC,?Rl)
Baues
(Q% Py, C.(Q*Py) i»ECiﬂPzi)
Rubio

(PP, C. (0 P,) <L EC'P)
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Example: Let Py = P*R/P3R.

P, is a simplicial set of finite type

= Trivially with effective homology:

(P4, C*(P4) éc*(Pgl))
Y Adams
(AP, C.(QLP,) «=——> EC'F2)

»: Baues
(Q?Py, C.(0*P,) <= EC'Fx)

(PP, C. (0 P,) <L EC'P)

Rubio

H>(Q*PY = (Z/2)° +7Z/3+7Z = (Z/2)* +7/6 + Z
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The most difficult Kenzo computation:

H;(Q(QQP>®(R)/P*R)) Uy D*) Uy D?)) = 777

Machine Puccini (2001) : 2 Months.
Machine IFNode2 (2018) : 1 Month.

Machine IFNode2 (2021) : 40 minutes

H;, = (Z/2)'"* +7Z/4+ (Z/8)* +7Z/16 + Z/32 + Z

Hg = (Z/2)** + (Z./4)° + 7./8 + Z°
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Based on many other subjects:

e Combinatorial topology:
Loop spaces, Classifying spaces. ..
e Homological algebra,
Exact sequences, Spectral sequences.
e Homological perturbation theory.
¢ Whitehead and Postnikov towers.
e Discrete vector fields.
e High level functional programming:
computer closures, garbage collector design.

e Meta-object protocol.



;5 Clock -> 2882-81-17, 1%h 25m 36s.
Computing the boundary of the generator 19 {dimension 7) :

£TnPr <TnPr <TnPr S3 <<Abar[2 S1][2 S$1]1>>> <<{Abar>>> <{{Abar>>>
End of computing.

Homology in dimension 6 :

Component 251272

---done---

;: Clock -» 2802-81-17, 19h 27m 1

The END
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