;5 Clock -> 2882-81-17, 1%h 25m 36s.
Computing the boundary of the generator 19 {dimension 7) :
£TnPr <TnPr <TnPr S3 <<Abar[2 S1][2 S$1]1>>> <<{Abar>>> <{{Abar>>>
End of computing.

Homology in dimension 6 :

Component 251272

---done---

;: Clock -» 2802-81-17, 19h 27m 1

Lexical Closures

and

Complexity

Francis Sergeraert, Institut Fourier, Grenoble
9th European Lisp Symposium
Krakow — 9-10 May 2016

Semantics of colours:

Blue

Red =

Violet

Green

“Standard” Mathematics

Constructive, effective,

algorithm, machine object, ...

Problem, difficulty,

obstacle, disadvantage, ...

Solution, essential point,

mathematicians, ...

Plan.

e 1. Introduction.
e 2. Effective Homology and Functional Objects.
e 3. Functional Programming is Free!

e 4. Polynomial complexity

with respect to Functional Programming.

e 5. Typical example of Kenzo computation.

1/26
1. Introduction.

Personal programming language history:

e 1972 = Fortran.

e 1973 = PL/IL.

® 1974 = Iris Assembly. (1975 = first keyboard terminal!)
e 1977 = Pascal. (1978 = end of punched cards!)
e 1984 = Maclisp.

e 1986 = Common Lisp.

2/26

e 1984 = Beginning of Effective Homology =
e 1984 = Maclisp.

e 1986 = Common Lisp.

e 1990 = First program of Effective Homology.
e 1998 = Kenzo program.

e 2015 = Effective Homology is Polynomial.

2. Effective Homology and Functional Objects.

Functional trick to code infinite objects.

Typical examples: K(Z,1):

K(Z,1) is a simplicial set (~ simplicial complex).

Set of n-simplices:

K(Z,1), :=7Z" = {(a1,...,an),a; € Z}

3/26

4/26
Examples of face operator in K(Z,1):

95(3,4,5,6,7) := (3,44 5,6,7) = (3,9,6,7)

94(3,9,6,5,2) := (3,4,6,5+2) = (3,9,6,7)

Remark:
02(3,4,5,6,7) = 04(3,9,6,5,2) = (3,9,6,7)

so that (3,4,5,6,7) and (3,9,6,5,2) share a common face.

= Terrible geometry!!
= Terrible topology!!

5/26

“Functional trick” =

the art of coding infinite objects by functional objects|.

Many “regular” infinite objects

can be coded thanks to the functional trick.

Problem: How to obtain “global” properties of such objects?

Typical example:
Pocket computer D functional coding of Z.

Is the ring Z principal?

6,26

Example: How to compute the homology groups

of an infinite simplicial set functionnally coded?

Definitive obstacle: standard logical negative theorems:

Godel, Turing, Church, Post.

Effective Homology = Solution for Algebraic Topology:

Combining infinite objects and finite objects.

Obj = | Inf-Part = Fin-Part

7/26

General scheme of Effective Homology:

¢ = some mathematical constructor.

Obj; = | Inf-Part, RN Fin-Part,

¢ \
| ‘, < |

€2

Ob_]z = Inf—Part2 < Fin—Part2

Example: the Classifying-Space constructor:

K(Z,1) =

Classifyihg-Space

K(Z,2) =

Inf-Part, RN

Fin-Part,

Y

N

- <
Y

€2

Inf-Part, =

Fin-Part,

8,26

K(Z,1) =

Classifyihg-Space

K(Z,2) =

Classifyihg-Space

K(Z,3) =

Inf-

Part1 <€:1> Fin—Partl

-— L

A

N

Inf-

Part, PN Fin-Part,

—x

A

N

Y
Y

Inf-

€3

Part; <— Fin-Part;y

H(K(Z,3)) = Z/3

9,/26

10/26
3. Functional Programming is Free!

Most Functional Programming is done through Closures.

' Two quite different points of view:

e The definition of closure in the source code

= Source Closure.

® The closures generated at run-time = Closure Objects.

Each| source closure will generate

several| closure objects at run-time.

11/26

Closure = Code + Environment

Closure = code to be executed

with respect to| an environment.

In the source code:

® Closure code = ordinary code.

e Environment = Implicit environment

defined by the lexical variables

defined |outside| the closure, but |visible| from the closure.

12/26

Standard Toy Example:

(DEFUN MAKE-MULTIPLIER (FACTOR)
#’ (LAMBDA (ARG)
(x FACTOR ARG)))

Source closure = #’ (LAMBDA (ARG)
(x FACTOR ARG))

Code = (* FACTOR ARG)
Environment = {FACTOR}

Closure Objects at Run-time:

13/26

® A source closure can generate

an arbitrary number of closure objects at run-time.

e A closure object is a collection of machine addresses,

one for the corresponding code,

a fixed number for the environment variables.

® The generation cost of a closure object

is constant for the same source closure,

in particular independent of

the

values

of the environment variables.

13/26

static world dynamic world

closure | closure
| closures . data
codes | environments
[code~1]«— | ——[cl-en-1{ =
—t e e]
[code-2]+—— —{cl-en-2j -
\ . . J
[—{cl-en-30’ |«
b J \ i J
code—-4 «~—— clos-4 cl-en-4_ > _—
dl — «—ldata-4

t =0 t=2 t=1

Theorem: P = a program using the closure technology.

Every code segment of P,

14/26

in part. every closure code of P is polynomial.

A |fixed

number of closures are generated.

the

values

The generation cost of a closure object
is constant for the same source closure,

in particular independent of

of the environment variables

—> P is polynomial.

15/26

Corollary:

The main programs of Effective Homology

have a polynomial complexity.

16/26
4. Polynomial complexity

with respect to Functional Programming.

Type reminder:

Atomic types: Numbers, booleans, characters, symbols, ...
a atomic object =

Obvious notion of size o(a).

Decidable types: Atomic objects, lists, arrays, records, ...
made of decidable objects.
a decidable object =

Obvious notion of size o(a).

17/26

Functional types: 77 and 73 = types already defined.

T1 — T3 := types of functional objects « satisfying

a € Ti = a(a) terminates and «(a) € Ts.

The functional types can in turn be used

to compose other arbitrary complex types.

Example: A,..., H decidable types. Then the type:

[(A—B)—(C —>D)] > [(E—F)— (G— H)]

What about a

size function

is defined.

for the objects of this type?

18/26

In ordinary programming:
a: A — B with A and B decidable.

Then:
o(a(a)) < 7(a, a)

Proof: Turing machine model.

In functional programming;:
a:N— (N—N)

can be a very small program « producing very quickly
a very small functional object a(a) : N — N

being a terrible Ackermann function.

Solution 777

19/26

Standard type equivalences via currying and uncurrying:

currying

A— (B—CO) (AX B) —»C
uncurrying
C —- D G > H
Te=| t |[—|
A— B EF — F

Uncurrying = 7T is equivalent to:
{[[[A —- B)xC|] - D|x[(E— F)xG|}) — H

with all targets decidable if A,..., H are.

Key point = Notion of

20,26

Polynomial Size|.

Definition: A and B = Decidable types.

a € A — B, d = natural integer.

Then: o4(c) = sup

T(a, a)

aca 1+ o(a)?

with 7(a,a) = computing time

= Polynomial size

for o« working on the input a.

with respect to

a given degree d:

(e, a) < gq(a)(1 + o(a)?)

In general: o,4(a) = +oo if d small.

21/26

Caseof @ € [A — B] — [C — D] with A, B, C, D, decidable.
Uncurrying = a € [[A — B] x C|] — D.

Notion of o4/4, ,:

Capi, (@)= sup e 9.0)
d/da_p : pcA-B,ceC |1+ (O'dA_)B((/b) + O'(C))d

(o, (¢, ¢) < 044, . () [1 + (0a, (D) + U(C))d}

22/26

Definition: a € [[A — B| x C] — D

o 1S

polynomial

)

=145 Bl > [c Y D]

if,

for every da_,p, there exists d (= wo(da—B))

such that 04,4, () < +oo.

Corollary: For every d, there exists d’ such that:

ca(a() < 2% 04/q(a)(1 + oa(9)?)

= « polynomial

with respect to| o4(¢) and oy (a(9)).

23/26

Systematic Uncurrying =-

Can easily be generalized to arbitrarily complex situations.

C - D G > H
Ti=| t |—|
A— B EF — F

Uncurrying = 7T is equivalent to:

{[[(AﬂB)xC]%D]x[(EﬁF)xG]} H

a € T is |polynomial| if

for every (di, d2,ds3), there exists d such that ...

24/26

Theorem: Arbitrary complex compositions of

polynomial functions is a polynomial function.

a, 3,7,0 polynomial = ¢ polynomial.

Remark: a and v must generate closures,

the cost of which is

independent

of the size of the initial input a € A.

25,26

Corollary:

The main programs of Effective Homology

have a polynomial complexity.

25,26

5. Typical example of Kenzo computation.

Example: 75(Q(S?)U,D?) = (Z/2)*

Q(S%) = C(SY, S?)
Natural subspace S? C (S?).

U, D3 = Glue a 3-Disk by a map:
a: 8% — 5% C Q(S?) of degree 2.

C(S?, (2(S%)UyD?)) has 16 connected components.

S2 C Q(S?)

26,26

;5 Clock -> 2882-81-17, 1%h 25m 36s.
Computing the boundary of the generator 19 {dimension 7) :

£TnPr <TnPr <TnPr S3 <<Abar[2 S1][2 S$1]1>>> <<{Abar>>> <{{Abar>>>
End of computing.

Homology in dimension 6 :

Component 251272

---done---

;: Clock -» 2802-81-17, 19h 27m 1

The END

Francis Sergeraert, Institut Fourier, Grenoble
9th European Lisp Symposium
Krakow — 9-10 May 2016

