
Lexical Closures

and

Complexity

9th European Lisp Symposium
Francis Sergeraert, Institut Fourier, Grenoble

Krakow – 9-10 May 2016



Semantics of colours:

Blue = “Standard” Mathematics

Red = Constructive, effective,

algorithm, machine object, . . .

Violet = Problem, difficulty,

obstacle, disadvantage, . . .

Green = Solution, essential point,

mathematicians, . . .



Plan.

• 1. Introduction.

• 2. Effective Homology and Functional Objects.

• 3. Functional Programming is Free!

• 4. Polynomial complexity

with respect to Functional Programming.

• 5. Typical example of Kenzo computation.



1/26

1. Introduction.

Personal programming language history:

• 1972 = Fortran.

• 1973 = PL/I.

• 1974 = Iris Assembly. (1975 = first keyboard terminal!)

• 1977 = Pascal. (1978 = end of punched cards!)

• 1984 = Maclisp.

• 1986 = Common Lisp.



2/26

• 1984 = Beginning of Effective Homology ⇒

• 1984 = Maclisp.

• 1986 = Common Lisp.

• 1990 = First program of Effective Homology.

• 1998 = Kenzo program.

• 2015 = Effective Homology is Polynomial.



3/26

2. Effective Homology and Functional Objects.

Functional trick to code infinite objects.

Typical examples: K(Z, 1):

K(Z, 1) is a simplicial set (∼ simplicial complex).

Set of n-simplices:

K(Z, 1)n := Zn = {(a1, . . . , an), ai ∈ Z}



4/26

Examples of face operator in K(Z, 1):

∂2(3, 4, 5, 6, 7) := (3, 4 + 5, 6, 7) = (3, 9, 6, 7)

∂4(3, 9, 6, 5, 2) := (3, 4, 6, 5 + 2) = (3, 9, 6, 7)

Remark:

∂2(3, 4, 5, 6, 7) = ∂4(3, 9, 6, 5, 2) = (3, 9, 6, 7)

so that (3, 4, 5, 6, 7) and (3, 9, 6, 5, 2) share a common face.

⇒ Terrible geometry!!

⇒ Terrible topology!!



5/26

“Functional trick” =

the art of coding infinite objects by functional objects .

Many “regular” infinite objects

can be coded thanks to the functional trick.

Problem: How to obtain “global” properties of such objects?

Typical example:

Pocket computer ⊃ functional coding of Z.

Is the ring Z principal?



6/26

Example: How to compute the homology groups

of an infinite simplicial set functionnally coded?

Definitive obstacle: standard logical negative theorems:

Gödel, Turing, Church, Post.

Effective Homology = Solution for Algebraic Topology:

Combining infinite objects and finite objects.

Obj = Inf-Part
ε⇐⇒ Fin-Part



7/26

General scheme of Effective Homology:

φ = some mathematical constructor.

Obj1 = Inf-Part1
ε1⇐⇒ Fin-Part1

Obj2 = Inf-Part2
ε2⇐⇒ Fin-Part2

φ



8/26

Example: the Classifying-Space constructor:

K(Z, 1) = Inf-Part1
ε1⇐⇒ Fin-Part1

K(Z, 2) = Inf-Part2
ε2⇐⇒ Fin-Part2

Classifying-Space



9/26

K(Z, 1) = Inf-Part1
ε1⇐⇒ Fin-Part1

K(Z, 2) = Inf-Part2
ε2⇐⇒ Fin-Part2

K(Z, 3) = Inf-Part3
ε3⇐⇒ Fin-Part3

Classifying-Space

Classifying-Space

H7(K(Z, 3)) = Z/3

Fin-Part3



10/26

3. Functional Programming is Free!

Most Functional Programming is done through Closures.

Two quite different points of view:

• The definition of one closure in the source code

= Source Closure.

• The closures generated at run-time = Closure Objects.

Each source closure will generate

several closure objects at run-time.



11/26

Closure = Code + Environment

Closure = code to be executed

with respect to an environment.

In the source code:

• Closure code = ordinary code.

• Environment = Implicit environment

defined by the lexical variables

defined outside the closure, but visible from the closure.



12/26

Standard Toy Example:

(DEFUN MAKE-MULTIPLIER (FACTOR)
#’(LAMBDA (ARG)

(* FACTOR ARG)))

Source closure = #’(LAMBDA (ARG)
(* FACTOR ARG))

Code = (* FACTOR ARG)

Environment = {FACTOR}



13/26

Closure Objects at Run-time:

• A source closure can generate

an arbitrary number of closure objects at run-time.

• A closure object is a collection of machine addresses,

one for the corresponding code,

a fixed number for the environment variables.

• The generation cost of a closure object

is constant for the same source closure,

in particular independent of

the values of the environment variables.



13/26

static world dynamic world

closure
codes

code-1

code-2

code-3

code-4

closures

clos-1• •

clos-2• •

clos-3• •

clos-4• •

closure
environments

cl-en-1
•
•

cl-en-2•

cl-en-3•

cl-en-4
•
•

data

data-1

data-2

data-4

t = 0 t = 1t = 2



14/26

Theorem: P = a program using the closure technology.

Every code segment of P,

in part. every closure code of P is polynomial.

A fixed number of closures are generated.

The generation cost of a closure object

is constant for the same source closure,

in particular independent of

the values of the environment variables

⇒ P is polynomial.



15/26

Corollary:

The main programs of Effective Homology

have a polynomial complexity.



16/26

4. Polynomial complexity

with respect to Functional Programming.

Type reminder:

Atomic types: Numbers, booleans, characters, symbols, . . .

a atomic object ⇒
Obvious notion of size σ(a).

Decidable types: Atomic objects, lists, arrays, records, . . .

made of decidable objects.

a decidable object ⇒
Obvious notion of size σ(a).



17/26

Functional types: T1 and T2 = types already defined.

T1 → T2 := types of functional objects α satisfying

a ∈ T1 ⇒ α(a) terminates and α(a) ∈ T2.

The functional types can in turn be used

to compose other arbitrary complex types.

Example: A, . . . ,H decidable types. Then the type:

[(A→ B)→ (C → D)]→ [(E → F )→ (G→ H)]

is defined.

What about a size function for the objects of this type?



18/26

In ordinary programming:

α : A→ B with A and B decidable.

Then:

σ(α(a)) ≤ τ (α, a)

Proof: Turing machine model.

In functional programming:

α : N→ (N→ N)

can be a very small program α producing very quickly

a very small functional object α(a) : N→ N
being a terrible Ackermann function.

Solution ???



19/26

Standard type equivalences via currying and uncurrying:

A→ (B → C) (A×B)→ C
uncurrying

currying

A→ B

C → D

E → F

G→ H
T :=

Uncurrying ⇒ T is equivalent to:

{[[(A → B)× C] → D]× [(E → F )×G]} −→ H

with all targets decidable if A, . . . ,H are.



20/26

Key point = Notion of Polynomial Size .

Definition: A and B = Decidable types.

α ∈ A→ B, d = natural integer.

Then: σd(α) = sup
a∈A

τ (α, a)

1 + σ(a)d

with τ (α, a) = computing time

for α working on the input a.

⇒ Polynomial size with respect to a given degree d:

τ (α, a) ≤ σd(α)(1 + σ(a)d)

In general: σd(α) = +∞ if d small.

11



21/26

Case of α ∈ [A→ B]→ [C → D] with A,B,C,D, decidable.

Uncurrying ⇒ α ∈ [[A→ B]× C]→ D.

Notion of σd/dA→B:

σd/dA→B(α) := sup
φ∈A→B, c∈C

[
τ (α, (φ, c))

1 + (σdA→B(φ) + σ(c))d

]

⇒

τ (α, (φ, c) ≤ σd/dA→B(α)
[
1 + (σdA→B(φ) + σ(c))d

]



22/26

Definition: α ∈ [[A→ B]× C]→ D

= [A
φ→ B]→ [C

α(φ)→ D]

α is polynomial if,

for every dA→B, there exists d (= πα(dA→B))

such that σd/dA→B(α) < +∞.

Corollary: For every d, there exists d′ such that:

σd′(α(φ)) ≤ 22d′σd′/d(α)(1 + σd(φ)d
′
)

⇒ α polynomial with respect to σd(φ) and σd′(α(φ)).



23/26

Systematic Uncurrying ⇒
Can easily be generalized to arbitrarily complex situations.

A→ B

C → D

E → F

G→ H
T :=

Uncurrying ⇒ T is equivalent to:{[
[(A

d1→ B)× C]
d2→ D

]
× [(E

d3→ F )×G]
} d
−→ H

α ∈ T is polynomial if

for every (d1, d2, d3), there exists d such that . . .



24/26

Theorem: Arbitrary complex compositions of

polynomial functions is a polynomial function.

A

B

C

D

E

F
γ

α

β δ

φ

α, β, γ, δ polynomial ⇒ φ polynomial.

Remark: α and γ must generate closures,

the cost of which is independent of the size of the initial input a ∈ A.



25/26

Corollary:

The main programs of Effective Homology

have a polynomial complexity.



25/26

5. Typical example of Kenzo computation.

Example: π5(Ω(S3)∪2D
3) = (Z/2)4

Ω(S3) = C(S1, S3)

Natural subspace S2 ⊂ Ω(S3).

∪2D
3 = Glue a 3-Disk by a map:

α : S2 → S2 ⊂ Ω(S3) of degree 2.

C(S5, (Ω(S3)∪2D
3)) has 16 connected components.



26/26

→

←

→

←
α−→

D3 ⊃ S2 S2 ⊂ Ω(S3)



The END

9th European Lisp Symposium
Francis Sergeraert, Institut Fourier, Grenoble

Krakow – 9-10 May 2016


