
Semantics of colours:

Blue = “Standard” Mathematics

Red = Constructive, effective,

algorithm, machine object, . . .

Violet = Problem, difficulty,

obstacle, disadvantage, . . .

Green = Solution, essential point,

mathematicians, . . .

Functional Programming

and

Complexity

Workshop on Algebra, Geometry and Proofs in Symbolic Computations
Francis Sergeraert, Institut Fourier, Grenoble

Fields Institute, Toronto, December 2015

Plan.

• 1. Introduction.

• 2. Dynamic generation of functional objects is necessary.

• 3. Technology of Closure Generation.

• 4. Functional Programming and Polynomial Complexity.

• 5. Particular case of the Kenzo program

for the homology of iterated loop spaces.

• 6. Challenges for Proof Assistants.

0/39

static world dynamic world

closure
codes

code-1

code-2

code-3

code-4

closures

clos-1• •

clos-2• •

clos-3• •

clos-4• •

closure
environments

cl-en-1
•
•

cl-en-2•

cl-en-3•

cl-en-4
•
•

data

data-1

data-2

data-4

t = 0 t = 1t = 2

1/39

1. Introduction.

Standard work in complexity study:

1. Write down a program P : T1 → T2.

2. Determine the complexity of P as

a function χ : N→ N satisfying:

τ (P , ω1) ≤ χ(σ(ω1))

with: T1, T2 = some data types;

τ (P , ω1) = computing time of P

working on the arbitrary input ω1 ∈ T1;
σ(ω1) = size of the input ω1.

2/39

Subprogram technology.

Simple case: P contains two subprograms p1, and p2.

A run of P : ω1 7→ ω8 could be:

ω1
P ′7→ ω2

p17→ ω3
P ′′7→ ω4

p27→ ω5
P ′′′7→ ω6

p17→ ω7
P ′′′′7→ ω8

A subprogram p may also call other subprograms p′, p′′, . . .

or recursively call itself, and so on.

The complexity of the subprograms

usually is a subproblem of the complexity of P ,

but the nature of the problem is the same.

3/39

In “ordinary” programming,

the program and in particular all the subprograms

are written down before execution,

left unchanged during the execution.

Functional programming is the art of writing programs

which dynamically generate new functional objects

during the execution.

Question: How to process this new context

when studying the complexity of such a program?

4/39

Main tool to study the problem:

Notion of LEXICAL CLOSURE

Main results:

Most dynamic generations of functional objects

are efficiently covered by (lexical) closures.

Studying the complexity of these objects is divided in three steps:

• Arbitrary segment of program

preparing the closure generation.

• Actual generation of the closure (often free!).

• Execution of the closure body.

5/39

Example : The Kenzo program contains

about 250 segments of Lisp code

devoted to closure generations.

Several thousands of closures are generated

for every meaningful use of Kenzo.

Proving polynomiality ??

Easy through the notion of polynomial configuration.

Corollary: The computation X
Kenzo7−→ πnX

is polynomial with respect to X simply connected, n fixed.

6/39

2. Dynamic generation of functional objects is necessary.

Notion of simplicial set with effective homology XEH:

XEH = (X,E∗, ε)

with: X = one functional object implementing

the face operator of X (X often non-finite).

E∗ = Free Z-chain complex of finite type.

ε = Strong homology equivalence = .../...

7/39

ε = ((Ĉ∗, d̂), f, g, h, f ′, g′, h′)

Ĉ∗

X

C∗X E∗

f
g f ′

g′

h h′

d̂

In general, all violet objects are not of finite type

necessarily functionally coded.

8/39

Implementation of a simplicial set X not of finite type:

X = (TX, ∂X : TX×̃N→ TX)

with:

TX = Type of the simplices of X ;

∂X = Face operator of X: ∂X(σ, i) = i-th face of σ;

9/39

Whitehead tower’s method (?!) computing homotopy groups.

1. X simply connected given.

2. Hurewicz ⇒ π2X = H2X computable (?).

3. X3 = K(π2, 1)×τ X (= X with π2 killed) is 2-connected.

4. Hurewicz ⇒ π3X = π3X3 = H3X computable (??).

5. X4 = K(π3, 2)×τ X3 (= X3 with π3 killed

= X with π2 and π3 killed) is 3-connected.

6. Hurewicz ⇒ π4X = π4X4 = H4X4 computable (???).

7. X5 =

10/39

Groups actually computable ???

Answer = Yes if all the objects

are simplicial sets with effective homology

⇒ Actual Whitehead’s algorithm.

1. [X,EX
∗ , ε

X] simply connected given.

2. EX
∗ of finite type ⇒ H2X = H2E

X
∗ computable !

3. Effective homology theory ⇒
[X,EX

∗ , ε
X] + [K(π2, 1), EK(π2,1)

∗ , εK(π2,1)] 7→ [X3, E
X3
∗ , ε

X3]

= version with effective homology of X3.

11/39

3. Effective homology theory ⇒
[X,EX

∗ , ε
X] + [K(π2, 1), EK(π2,1)

∗ , εK(π2,1)] 7→ [X3, E
X3
∗ , ε

X3]

= version with effective homology of X3.

4. EX3
∗ of finite type ⇒ π3X = π3X3 = H3X3 computable !

5. Effective homology theory ⇒

Remark: Requires also versions with effective homology

of the Eilenberg-MacLane spaces K(π, n)

for π = Abelian group of finite type.

Effective homology theory ⇒ [K(π, n), EK(π,n)
∗ , εK(π,n)].

12/39

Finally Whitehead’s algorithm X 7→ πnX

must necessarily be decomposed:

X 7→ X3 7→ · · · 7→ Xn−1 7→ Xn 7→ HnXn

with auxiliary Eilenberg-MacLane spaces.

All the objects Xi and K(π, i) contain lots of components

that are functional objects.

⇒ A complexity study of the Whitehead’s algorithm requires

a study of the cost

of the dynamic generation of all these functional objects.

13/39

3. Technology of Closure Generation.

Two facts:

• A machine can only execute

program segments “imagined” by the programmer.

• A programmer remains the only “object”

finally able to “imagine”

from scratch program segments.

Functional object ⊃ Program segment

⇒ A machine may not itself “imagine” such a segment.

⇒ A machine cannot create from scratch a functional object.

14/39

Facts:

• A machine can only create a functional object

following a pattern defined by the programmer.

• In particular, the code of the functional object

must be defined by the programmer before execution.

Finally:

• A lexical closure is a constant code

combined with arbitrary extra data

constituting its own environment.

15/39

General organization of closures:

• Most problems of dynamic generation of functional objects

can be solved through the notion of (lexical) closure.

• A closure is a pair [code + environment].

• The code of a closure

must be defined by the programmer before execution.

• An arbitrary number of generated closures

may share the same code .

• Only one copy of such a code is in the memory,

present before execution.

• All the closures sharing this code can reach it for use

when they are invoked.

• · · · · · ·

16/39

static world dynamic world

closure
codes

code-1

code-2

code-3

code-4

closures

clos-1• •

clos-2• •

clos-3• •

clos-4• •

closure
environments

cl-en-1
•
•

cl-en-2•

cl-en-3•

cl-en-4
•
•

data

data-1

data-2

data-3

data-4

t = 0 t = 1t = 2

17/39

General organization of closures (continued).

• · · · · · ·

• All the closures sharing this code can reach it for use

when they are invoked.

• The environment of a closure is dynamically generated

when the closure is generated.

• The environment of a closure is a table of machine addresses.

• This table is made of

the addresses of the objects constituting the environment

of this particular copy of the closure.

• · · · · · ·

17/39

static world dynamic world

closure
codes

code-1

code-2

code-3

code-4

closures

clos-1• •

clos-2• •

clos-3• •

clos-4• •

closure
environments

cl-en-1
•
•

cl-en-2•

cl-en-3•

cl-en-4
•
•

data

data-1

data-2

data-3

data-4

t = 0 t = 1t = 2

18/39

General organization of closures (continued).

• · · · · · ·

• The objects of this environment, not their addresses,

may be arbitrarily modified during execution.

• The environments of the closures sharing the same code

have the same format, in particular the same size ,

• These environments and the corresponding closures

are generated in constant time .

• ⇒ With respect to complexity problems,

most often, the generation of a closure is free .

18/39

static world dynamic world

closure
codes

code-1

code-2

code-3

code-4

closures

clos-1• •

clos-2• •

clos-3• •

clos-4• •

closure
environments

cl-en-1
•
•

cl-en-2•

cl-en-3•

cl-en-4
•
•

data

data-1

data-2

data-3

data-4

t = 0 t = 1t = 2

18/39

static world dynamic world

closure
codes

code-1

code-2

code-3

code-4

closures

clos-1• •

clos-2• •

clos-3• •

clos-4• •

closure
environments

cl-en-1
•
•

cl-en-2•

cl-en-3•

cl-en-4
•
•

data

data-1

data-2

data-4

t = 0 t = 1t = 2

19/39

4. Functional Programming and Polynomial Complexity.

Assumed: Functional Programming is done

through (lexical) closures

and it is legal to ignore

the generation cost of the closures.

⇔

The number of generated closures is uniformly bounded.

20/39

Type reminder:

Atomic types: Numbers, booleans, characters, symbols, . . .

a atomic object ⇒
Obvious notion of size σ(a).

Decidable types: Atomic objects, lists, arrays, records, . . .

made of decidable objects.

a decidable object ⇒
Obvious notion of size σ(a).

21/39

Functional types: T1 and T2 = types already defined.

T1 → T2 := types of functional objects α satisfying

a ∈ T1 ⇒ α(a) terminates and α(a) ∈ T2.

The functional types can in turn be used

to compose other arbitrary complex types.

Example: A, . . . ,H decidable types. Then the type:

[(A→ B)→ (C → D)]→ [(E → F)→ (G→ H)]

is defined.

What about a size function for the objects of this type?

22/39

In ordinary programming:

α : A→ B with A and B decidable.

Then:

σ(α(a)) ≤ τ (α, a)

Proof: Turing machine model.

In functional programming:

α : N→ (N→ N)

can be a very small program α producing very quickly

a very small functional object α(a) : N→ N
being a terrible Ackermann function.

Solution ???

23/39

Standard type equivalences via currying and uncurrying:

A→ (B → C) (A×B)→ C
uncurrying

currying

A→ B

C → D

E → F

G→ H
T :=

Uncurrying ⇒ T is equivalent to:

{[[(A → B)× C] → D]× [(E → F)×G]} −→ H

with all targets decidable if A, . . . ,H are.

24/39

Definition: A (polynomial) configuration for a type T
is a map: arrow 7→ degree

defined on the arrows of a complete uncurrying of T .

Examples: T decidable ⇒ empty configuration.

A → B with A and B decidable.

A configuration is simply a degree d.

Means we intend to work only with

the functional objects α ∈ (A→ B)

proved ≤ d-polynomially complex:

τ (α, a) ≤ k(1 + σ(a)d)

25/39

A configuration for :
A→ B

C → D

E → F

G→ H
T :=

= {[[(A → B)× C] → D]× [(E → F)×G]} −→ H

26/39

A configuration for :
A→ B

C → D

E → F

G→ H
T :=

=
{[

[(A
dB→ B)× C]

dD→ D
]
× [(E

dF→ F)×G]
}

dH−→ H

χ = (dB, dD, dF , dH) ∈ ConfT

27/39{[
[(A

dB→ B)× C]
dD→ D

]
× [(E

dF→ F)×G]
}

dH−→ H

Definition: (T , χ) := (T ′, χ′) dH→ H

with H decidable and χ = (χ′, dH).

α ∈ T := (T ′ → H).

Then σχ(α) := sup
a∈(T ′,χ′)

τ (α, a)

1 + σχ′(a)dH

with a ∈ (T ′, χ′) and σχ′(a)

assumed recursively already defined.

α ∈ (T , χ) iff σχ(α) < +∞.

28/39

{[
[(A

dB→ B)× C]
dD→ D

]
× [(E

dF→ F)×G]
}

dH−→ H

α : T ′ → A , A decidable.

Definition: α is polynomial if,

for every configuration χ′ = (dB, dD, dF) ∈ ConfT ′,

there exists dH < +∞ satisfying:

α ∈(T , (χ′, d))

29/39

Proposition: Every composition diagram

of polynomial functional objects

is a polynomial functional object.

Proof: Obvious.

Example:

XEHH3(X)

K(H3(X), 1)EH K(H3(X), 2)EH YEH

30/39

5. Particular case of the Kenzo program

for the homology of iterated loop spaces.

Main algorithm: ρ : SSEH → SSEH : XEH 7→ (ΩX)EH

SSEH := type of Simplicial Sets with Effective Homology ;

XEH = some simplicial set with effective homology ;

ΩX := Loop space of X := Cont(S1, X).

(ΩX)EH = Version with effective homology of ΩX.

⇒ Trivial iteration !!

31/39

Ĉ∗

X

C∗X E∗

f
g f ′

g′

h h′

d̂

XEH

Ĉ′′∗

ΩX

C∗ΩX E′′∗

f ′′

g′′ f ′′′

g′′′

h′′ h′′′

d̂′′

ΩXEH

ρ = J. Rubio’s algorithm

H∗E
′′
∗ = H∗ΩX

C

32/39

•

X

C∗X E∗XEH

f
g f ′

g′

h h′

d̂

•

ΩX

C∗ΩX E′∗ΩXEH

f
g f ′

g′

h h′

d̂

F. Adams (1956)

•

Ω2X

C∗Ω
2X E′′∗Ω2XEH

f
g f ′

g′

h h′

d̂

H. Baues (1980)

•

Ω3X

C∗Ω
3X E′′′∗Ω3XEH

f
g f ′

g′

h h′

d̂

J. Rubio (1989)

33/39

Lemma: ρ is polynomial [up to some fixed dimension].

Proof: Exercise.

Corollary: ρn is polynomial [n fixed].

Corollary2 : The computation of Hp(Ω
nX)

is polynomial / X.

XEH 7→ (ΩX)EH 7→ · · · 7→ (ΩnX)EH 7→ HpΩ
nX

34/39

Typical example of computation :

X = P∞R/P 3R

H5(Ω
3X) = ???

34/39

Typical example of computation :

X = P∞R/P 3R

H5(Ω
3X) = (Z/2)4 ⊕ Z/6⊕ Z

35/39

Analogous technology for homotopy groups,

more complicated.

Example: π6(ΩS
3 ∪2 D

3) = (Z/2)5 ⊕ Z

36/39

Requires:

• EH-version of the second Eilenberg-Moore SS (1×)

• EH-version of the first Eilenberg-Moore SS (6×)

• EH-version of the Serre SS (4×)

• 9 Eilenberg-MacLane spaces with effective homology:

K(Z/2, 1)EH K(Z/2, 1)EH

K(Z + Z/4, 1)EH K(Z + Z/4, 2)EH K(Z + Z/4, 3)EH

K((Z/2)4, 1)EH K((Z/2)4, 1)EH K((Z/2)4, 1)EH K((Z/2)4, 1)EH

+ 14 days of calculations on a good machine.

37/39

Theorem: The EH-algorithm:

(n,X) 7−→ πn(X)

is polynomial with respect to X.

Theorem (Anick, 1989): The polynomiality of πn(X)

with respect to n

is as difficult as P = NP .

38/39

6. Challenges for Proof Assistants:

• Certified Proof for Hn(ΩpX) polynomial / X.

• Certified Proof for πnX polynomial / X.

• Certified Proof for the Hn(ΩpX) computed by Kenzo.

• Certified Proof for the πnX computed by Kenzo.

The END

Workshop on Algebra, Geometry and Proofs in Symbolic Computations
Francis Sergeraert, Institut Fourier, Grenoble

Fields Institute, Toronto, December 2015

