Morphisms between
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Component 251272

---done---
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Semantics of colours:

Blue
Red

Violet

Green

“Standard” Mathematics

Constructive, effective,

algorithm, machine object, ...

Problem, difficulty,

obstacle, disadvantage, ...

Solution, essential point,

mathematicians, ...
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Introduction.

Eilenberg-MacLane conjecture (1953):

G = simplicial group =

BG = Classifying space of G
Bar(C,.G) = Algebraic classifying object of C.G

Then 3 a reduction p : C,(BG) = Bar(C.G)

Essential for effective methods computing m, X.
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First proof = Pedro Real (1993). Never implemented.

Second “proof” through discrete vector fields.

o Program code divided by ~ 3
Easily implemented =

Computing times divided by ~ 20

But proof quite complex not yet finished.

Main problem =

Compatibility: Vector fields <+ Algebraic structures

Typical problem = Naturality of reductions

coming from discrete vector fields.
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Basic Algebraic Topology:

Serre + Eilenberg-Moore spectral sequences

\ Non-constructive Z

Making basic algebraic topology constructive:
1. Eilenberg-Zilber theorem.
2. Twisted Eilenberg-Zilber theorem.

3. Eilenberg-MacLane correspondence:

Topological Classifying space

0

Algebraic Classifying space

But constructive requires: with explicit homotopies.
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Example: Rubio-Morace homotopy for Eilenberg-Zilber:

RM:Cy(X XY) > C,1(X XY)

RM (z, , yp) = Yoo ()P e(n, )

0<r<p-—1
0<s<p—r-—1
(n,n’')€Sh(s+1,r)

s (Tp_r_s(n,)rr’p—r—s—l8p—7’—|—1 ot apwp 9 Tp—r—s(n)ap_r_s s 6p_r_1yp)

with Sh(p, q) = {(p, g)-shuffles} = {(n:,_, - - - Mig» Mjp_y =+ - Mjo) }
for0< 40 <--- <11 <p+qg—1
and 0 < jo<---<jJg-1<ptqg-—1
and {ig,...y%p—1} N {Joy-++sJq-1} = 0.

and * (Namp -+ +) = NarwNprr -+ (1% = k-shift operator.)
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Simpler:

once the notion of discrete vector field is understood.
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Basics of Algebraic Discrete Vector Fields.

Definition: R = unitary commutative ring.

A cellular R-chain complex is an indexed triple:
(Cp’ Bp’ dp)pEZ
with:
e C), = free R-module (non necessarily of finite type);
e 3, = distinguished R-basis of Cp;
e d,: C, =+ Cp,_, = differential.

The elements of 3, are the p-cells of the cellular complex.
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Main examples:

e Geometrical cellular complexes (R = Z):

— Cubical complexes (digital images);
— Simplicial complexes ;
— Simplicial sets ;

— CW-complexes ;
e Algebraic cellular complexes (R = ¢ = field):

— Free resolutions;

— Koszul complexes;

Natural distinguished basis = Cellular complex.
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C, = {C,, Bp,dp}pcz = Cellular chain complex.

Definition: A p-cell is an element of 3,.

Definition: If 7 € 8, and o € G,_1,

then e(o, 7) := coefficient of o in dr
is called the incidence number between o and T.

Definition: o is a face of 7 if e(o, 7) # 0.

Definition: o is a regular face of 7 if (o, 7) is R-invertible.

(& e(o,7) = £1if R = 7)
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Definition:

(Cy, B4, d,) = Cellular complex
A Discrete Vector Field is a pairing:

V= {(aia Ti)}iEI

satisfying:

eViec I, t; =some k;-cell and o; = some (k; — 1)-cell.

eVic I, o;is a regular face of ;.

oevi£jel, A{oi,n}n{o;7}=0.

The vector field V is admissible or not.
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C. = {Cyp, By, dp}pcz = Cellular chain complex.
V = {(o0;, 7i) }ict = Vector field.

Definition: V-path = sequence (0, Ti;y Tiys Tins o+« s Tis Tiy)
satisfying: 1. (o4, 7;) € V.
2. o face of Ti;_q-

3. Uij 75 Gij—l’

Remark: o;; not necessarily regular face of Tij_y-

L 4 L 4 €
Examples: U A V-path of length 6

V-path of length 3

T
&1 <5
(I.\
——t
(—
——&

<—¢
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Definition: A vector field is admissible if

for every source cell o,
the length of any path starting from o
is bounded by a fixed integer (o).

Example of two different paths with the same starting cell.

Remark: The paths from a starting cell

are not necessarily organized as a tree.
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Typical examples of non-admissible vector fields.

77

~ 0

777

R x I
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C. = {Cp, Bp,dp}pcz = Cellular chain complex.

V = {(o0;, 7i) }ic1 = Vector field.

Definition: A critical p-cell is an element of 3,

which does not occur in V.

Other cells divided in source cells and target cells.

'—I—°—I—°—I—'<— Source cells

Example: ‘—I—‘—‘—I—'
l i\l 2 1 —— Target cells

\_/

o < < =
\; Critical cells
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Discrete Vector Field = Canonical Reduction.

Fundamental Theorem:

Given: C, = (C,, Bp, dp)pez = Cellular chain complex.

V = (04, Ti)icr = Admissible Discrete Vector Field.
=
A canonical process constructs: dS 4+ f + g+ h

defining a canonical reduction:

pv = hl = (Cpa Bpa dp)pEZ j’: (Cﬁa 1697 d;)pez

Initial Complex| == Critical complex
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»

In p=(f,g9,h) = hC}(C*,,B*,d*)%(C:, o d)

the most important component is h.

To be understood as a contraction C, == Ct.

The homotopy h reduces the “cherry” C,

onto the “stone” C¢.

= h = the “flow” generated by the vector field.
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Toy Example. f\

Source cells

—— Target cells

Critical cells

Fundamental Reduction Theorem =

d$=0
p:C,=CS = Cy = 7 <— 7 = Circle
d

Rank(C,) = (16,24,8) vs Rank(C¢) = (1,1,0)
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Guessing the reduction formulas.

Transcription for discrete vector fields:

Elementary example of :

h© ® ? @ O ® —— o
f(0)=f(1)=f(2)=f(3) =3 id = fg
id = gf 4+ dh + hd
F(01) = f(12) = f(23) =0 theo
g(3)=3 hg = 0

h(0) = —01 —12 — 23 hh — 0O

h(1) = —12—23

h(2) = —23

h(3) = 0
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Just a little more complicated:

N

f(25) = 24+ 45 = —dh(25) + 25

h(25) = —245 = —71(25) (25 = negative face of 245)
£(23) = 24+ 45+ 56 — 36

h(23) = —245 + 235 — 356 = 7(23) + h(25) — h(35)
£(13) = 12+ 24 + 45 + 56 — 36

h(13) = —123 — 245 + 235 — 356 = —7(13) + h(23)

= General formula for h(source cells):

h(o) = v(o) — h(dsv(o) — o)

to be explained.
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(Cs, Byydy) + V = {(0;,7;)} = vector field defines a splitting:

. C’t? ! d “ “ Cfll/’c’tz
Cs_l c; °e 0781:,—1 sz
...CC ce ... ...CC_, ce ...

d

V defines a codifferential: v(o) = e(o, 7)7 if (0,7) €V

dyy dis dic 0 v O
d= | dy ds ds v=1000
de des dee 000

h(o) = v(o) — h(dsv(o) — o) = [v — h(dv — 1)](0o)
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Deciding also h(o) = 0 if o = target or critical cell

+ using some elementary facts, gives the general formula:
h(o) = v(o) — h(dv(o) — o)

valid even for o target or critical cell.

In particular: v— hdv =0

Then:
f=pr,(1—dh) d°=d,.—duhd,, g=(1—hd)

defines the searched reduction:

P = (fagah) — hQ(C*HBMd*)%(C:’ :’di)




Understanding: h = f and g and d“:
h=v—h(dv—-1):C:— C!,

CZ sz+1 sz—l thz sz 1 sz
. h : ; h g 5 h 5

C; Cin  Ci o Col e C;
det e d..

Ce Cs.y C:_, Ce Cﬁ 1——Cr,

f — prc(l dh) g — (1 - h’d) - dcc - dcthdsc

Zx&
N

f(01) =01

£(02) =01 4 12

F(012) =

<

F£(013) =013

f(123)=0

g(013) =013 + 123
d°(013) =01 + 12 + 23 — 03

21/56
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Vector Fields and Morphisms.

Problem: Let C, and C’ be two cellular chain complexes

respectively provided with vector fields V and V.

Question: Right notion
of morphism ¢ : (C,,V) — (C., V') 777

1. Not trivial.
2. Essential to master the Eilenberg-Zilber vector fields.

3. Quite amazing !!



Definition: A cellular
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morphism:

¢ : (Cy, dy, Bi) — (CL, d,, B))

is a chain complex morphism ¢ : (C,,d.) — (C’,d.)

satisfying the extra condition:

For every p-cell o € 3,

¢(o) is null or € 3.
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(Cs,d,3,V) and (C.,d,3', V')
= cellular chain complexes

with respective admissible discrete vector fields V and V.

Definition: A vectorious morphism:

¢:(Csd,B3,V) = (C,,d,3,V')
is a cellular morphism ¢ := (C,,d,3) — (C’,d’,3)

satisfying the extra conditions:

1. For every critical cell x € B;, (x) is null or € 3.

2. For every target cell 7 € 8], ¢(7) is null or € 3.

3. |No condition at all for the source cells !!
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Theorem: ¢ : (C,,d,3,V) — (C.,d,B', V')

= vectorious morphism.

Then ¢ defines a morphism (¢, ¢°)

between the corresponding reductions:

h—C., b Cl—>w with:
dcpc = ¢°de
fl|9 f'l|g’ f'o = o°f
g9 = og
ce— > .Cr h'¢p = ¢h

Note: ¢ := ¢|C¢
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Proof:

Definition:

)
0 for target and critical cells,

As = { maximal length of a V-path

starting from the source cell o.
\

Remember: Recursive formula:
h(o) = v(o) — h(dv(o) — o)
= hdv(o) = v(o)
= hdtT = 7 for every target cell T
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1. h'po = pho 77
Obvious for o target or critical cell.
Assumed known for A\, < k.

Let o be a source cell with \, = k.

¢ho = ¢vo — ¢h(dvo — o)
¢vo — h'¢(dvo — o)
¢vo — h'd pvo + h/po
h'po

OK for (dve — o) =
pd =d¢ =
¢dvo = target cell =

QED



2. g'¢° = ¢pg 77 g o

dc @ ® J°c

Q/)C

For a critical cell x: gx =x — hdx = (1 — hd)x

= ¢gx = ¢(1 — hd)x

ohd = Wd'¢p = = (1 —h'd)px
ox = ¢°x = = g'¢°x

QED



3. ¢°d® = d'°¢° 77

g’ o¢ = ¢g
gd® = dg
¢pd =d'¢

Pg = g'¢°

d/g/ — gldlc

g’ injective

L4438l

g/¢CdC

¢Cdc

Ppgd*
¢pdg
d'¢g
d'g'¢°
g'drede
d' e
QED
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4. f'¢o = @°f 77
g' injective = [(f'¢ = ¢°f) <& (9'f'¢ =9 ¢°f)]
gf'¢ = (1—-dh'—h'd)¢
(d'¢ = ¢d) + (h'p = ph) = = ¢(1 — dh — hd)
= ¢gf
= g'¢°f
QED
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Seeing complicated products.

Triangulating prisms AP x A4:

(0, 1) 1y O

(0,0) (1,0) (0,0)

Al x Al (1,0)

A? x Al
Two A% in Al x Al: (0,0) < (0,1) < (1,1)
(0,0) < (1,0) < (1,1)

Three A® in A2 x A': (0,0) < (0,1) < (1,1) < (2,1)
(0,0) < (1,0) < (1,1) < (2,1)
(0,0) < (1,0) < (2,0) < (2,1)



32/56
Rewriting the triangulation of A2 x Al.

p(2,1)

(2,0)

(1,0)

(0,0) < (1,0) < (2,0) < (2,1)
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Planar representations of simplices of AP x A4:

3 e °
: 2 g 5 3
Example of 5-simplex : |,, J =0 € (A° X A°);
0Oe °
0 5
= 6 faces:
30 o o ° 3 e ° 3 e °
20 o o e o 2 e ° 2 e °
1e e o o 1e ° 1e °
0Oe © © o o o 0e ° 0Oe °
0 1 2 3 4 5 0 5 0 5
800'
3 e ° 3 e ° 3 e e o
20 ° 2 e ° 2 e e o
1 e ° 1 e ° 1 e e o
0Oe ° 0Oe ° 0Oe e o
0 5 0 5 0 4 5
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The Eilenberg-Zilber vector field.

Eilenberg-Zilber problem for A! x Al:

Cubical version of Al x Al:

(0,1)

(0,0)

(1,1)

(1,0)

C()(—C:[(—Cg

74 <

Z

C.A'® C. Al
C()Al X C()Al <— (C()Al X ClAl) D (ClAl X C()Al) < ClAl X ClAl

34/56



Simplicial version of A! x A!l:

(0,1) (1,1)

(0,0) (1,0)
C, +— C| «— C,

74 «+— 7° «—— 772

To be compared with:

C()(—Cl(—Cg

AN
N
p—

74 «— 74

35/56

Difference = a vector field with a unique “vector”



Eilenberg-Zilber reduction as induced by a vector field:

(0,1) (1,1) (0,1) (1,1) (0,1) (1,1)

— 2

(0,00  (1,0) (0,00 (1,00  (0,0) (1,0

Translation in planar diagrams: V = {(o,7)}

o = source cell = edge[(0,0), (1,1)] =

T = target cell = triangle[(0, 0), (0,1),(1,1)] = ‘ >

81’7':0'

36,/56
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Generalizing the idea =-

Canonical discrete vector field for A®% x A3.

cte o o o

S = N ©w

e o o o

Recipe: First “event” = Diagonal step = / = Source cell.
= (-90°)-bend = 7 = Target cell.
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Critical cells ??

Critical cell = cell without any ‘“event”

= without any diagonal or —90°-bend.

Examples.
30 © o o o o 30 © o o o o 3 e o e o o
20 © © o o o 20 © © o o o 20 o e o o
10 ¢ @ o o o l1e o OO ¢ O l1e e e o o
0Oe © o o o o 0Oe © o o o o 0Oe © © o o o
0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5
0 0 2 0 0 2
A2®A1 A2,3,5®A1 A2® 1,2,3
3 e o o o ° 3
20 o o o ° 2
l1e e ° 1
O © o o o o 0
0 1 2 3 4 5 0 1 2 3 4 5

5 3
A0,1,2,3,4,5 ® A0,1,2,3
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Conclusion:

Ce = C.(A%) ® C.(AY)

Fundamental theorem of vector fields =

Canonical Homological Reductions:
p: Ci(A® X A®) == C.(A®) ® C.(A?)

p: Ci(A? X A?) = C,(AP) ® C.(A?)

p=q=10 = 16,583,583,743 vs 4,190,209
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The Eilenberg-Zilber vector field is natural.

Naturality of the Eilenberg-Zilber reduction

with respect to product morphisms.

Standard methods = (A? — AP) x (A? — AY) is enough.

. ¢: AP — AP
Given: simplicial.

P AT — A7

¢ XY ’ ’
Prove: , ——= C.(AP x A9) ke C.(AP X AT) — p

g com ? i H g

O QY , ’
C.A? @ C. A1 2% o AY @ AT

f

1Is commutative 77?7
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Proof:

Representation of a simplex of AP X A9 via an s-path.

= subsimplex of a X 3 C (AP x A9),
spanned by the vertices (0,0) — (0,1)— (2,2) — (3,3) — (4,3).

The game first event “diagonal ,””
or “right-angle bend {*7”

determines the nature source, target or critical.
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Examples:

ol

a o o
source = o target = 7 critical =
Here:
82(7') = O

= v(io) = T
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¢ AP — AP
P AT — AT

Two maps — simplicial morphisms.

Claim:

7 target cell in AP X A9 =
(¢ x ¥)(7) target or degenerate cell in AP x A7

x critical cell in AP X A? =
(¢ x ) (x) critical or degenerate cell in A? x A7
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Typical accidents with source cells.

a=id : A? =+ A? and v : A? — A'as below:
v :>l/~—’>10

1) el

Then (¢ X 1)(source) = source
but for reasons which do not match!

Compare corresponding target cells.
) pxXp ©e
[ ] ® |I—— [ ]
[ I ]
1%
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2) The image of a source cell can be a critical cell:

ee e ,xqy o0
5 e | ——— e-o9
°o 0

or a target cell:

([ ] [ ]
([ ] .IM)O—I_:

But we don’t care about source cells!
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General shape of an Eilenberg-Zilber target cell:

(@ X P)(a x B) = (na’ x 63')

If no index of n is < 2 + 1 and no index of 0 is < 7,
then (¢ X 1)(7) has the same shape and therefore is a target cell

(or can be degenerate),

otherwise (¢ X 1)(7) is degenerate.



Same study for critical cells (easier) = OK.

Finally: (¢ X v)(target cell) = target cell or 0.
(¢ X ) (critical cell) = critical cell or 0.

= ¢ X 1 is a vectorious morphism.

» X P ’ ’
= n = Cu(AP x A7) 225, Ci(AP X AT) —> w
flle com. OK! i H g

c.Ar® C.A1 22 oAV @ C.AY

47/56
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EZ vector field = EZ reduction.

Theorem: The Eilenberg-Zilber vector field

previously described

gives the standard Eilenberg-Zilber reduction.

Standard Eilenberg-Zilber reduction:

EZ :|[rMSC(X X Y) if‘gf C.(X)® C.(Y)

AW = Alexander-Whitney
EML = Eilenberg-MacLane
RM = Rubio-Morace
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EZ =AW + EML + RM:

p
AW (zp X yp) = Z Op—it1°*+ Opxp @ Bo*++ Op—i—1Yp

1=0
EML(z, @ yq) = Z e(n,n’) (77'% X MYq)
(n,n’)€Sh(p,q)
RM (xp X yp) = Y., (=) ey ..
0<r<p-—1
0<s<p—r—1

(n,m’)€Sh(s+1,r)

e (PP ) Np—r—s—10p—r g1 -+ - Bpp XL

...Tp_f_ﬁ(n)ak—r—s"'6%—T—1yp)
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Plan of Proof:

1. Prove hy = RM.

2. Use the dependency h — (f, g,d) to prove:

fv = AW
gv — EML
(Ce,d°) = (C, X ® C.Y,d®)

Proof of hy = RM:

1. Prove RM = 0 = hy for target and critical cells.

2. Prove RM satisfies the same recursive formula as hy:

RM (o) =v(oc) — RM (dv(o) — o)
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Reminders:

1. Commutation relations face <+ degeneracy operators:

&mj = 77]'_131' for 2 < ]

id fore =j5o0rj+1
= 1;0;_1 fori>j+2

2. Canonical form of a degenerate simplex:
O =TMi_,°"°" 777:00-, with ik‘—l > e > iO‘

3. A product simplex in canonical form:

T = (Mig_y** " MioT 5 Mjy_y*** NjoY)
is non-degenerate iff {79, six_1} N {Jos.-.5Je—1} = 0.
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u u—+1 t4+u—1
Example 1: Case of the target cell: | =~
u—1
o= (Nu-1"""M0 Tt 5 Nitu—1"""*Mu Yu) y“
1
Generic RM-term (sign omitted): I
0
Tt

(P77 (") Mp—r—s—1 Op—ry1++Op Mu—1* M0 Tt 5.
oy PPTTTE(M) Op—r—st Op—r—1 Miqu—1""*Nu Yu)

(m,m') € Sh(s+1,7) =
#mM)>r+14+(u—r)+s+1+({E—s)=t+u-+ 2
= too many degeneracy operators = collision = RM (o) =0

= OK'!

(General case of a target cell combinatorially more complicated but analogous)
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u t+u—2
................... ._.
Example 2: Case of the source cell: /
¥ u—1
o= (Mu—2*""MNoTt 5 Nitu—2"""TuYu) Yu
(Mu—1 absent) . 1
.
Tt

Generic RM-term (sign omitted):

(Tp—r—s (77,) Np—r—s—1 8p—7’+1 °c 8p Nu—2°°°T70 Lt 4.
N (77) 8p—fr—.s ce 8p—r—l Nttu—2|""*TNu yu)

Same computation about #(n) = #(n) > t+ u
= no collision only if perfect simplifications between 9’s and n’s.

= in particular 9,_,_1My—2 must simplify 4

p =dimension =t 4+ u—1 = r = 0.
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u t+u—2
................... ._.
Case of the source cell: /
¥ u—1
g = (nu—2 e NoLt 3 Mt4u—2"°"°" nuyu) Yu
(Mu—1 absent) ‘1
l
Tt

r = 0 4+ simplifications in the second factor = Generic RM-term:

( Nu—2°°°To T¢ , Tp_s(ﬂ) "'nu yu)

p=t+u—1 = p—s—1=t4+u—s—2 = collision
except if t4+u—s—2=u—1 & s=1t—1.

Finally only one remaining term:

(Mu—1Mu—1-+"T0 Tt 5 Mtu—1""*Nu Yu)
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Case of the source cell: [7

o = (nu—2 cccNoxt 3 MNttu—2"°"" nuyu) Yu

(Mu—1 absent) b1

®0
Tt

r = 0 4+ simplifications in the second factor = Generic RM-term:

( Nu—2°°°To T¢ , Tp_s(ﬂ) "'nu yu)

p=t4+u—1 = p—s—1=t4+u—s—2 = collision
except if t4+u—s—2=u—1 & s=1t—1.

Finally only one remaining term:

(77u—1 Mo Tty M4u—1"""T yu)

= previous target cell.
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More complex but analogous calculations =-

RNM satisfies the same recursive formula

as the Eilenberg-Zilber vector field.

+ Dependency h — (f,g,d¢) = QED.

The Eilenberg-Zilber vector field is the key point
to obtain a very efficient algorithm
computing the effective homology

of the Eilenberg-MacLane spaces.



;5 Clock -> 2882-81-17, 1%h 25m 36s.
Computing the boundary of the generator 19 {dimension 7) :

£TnPr <TnPr <TnPr S3 <<Abar[2 S1][2 S$1]>>> <<{Abar>>> <{{Abar>>>
End of computing.

Homology in dimension 6 :

Component 251272

---done---

;: Clock -» 2802-081-17, 1%9h 27m 1

The END

Ana Romero, Universidad de La Rioja
Francis Sergeraert, Institut Fourier, Grenoble
Oberwolfach, May-2013



