Morphisms between

Discrete Vector Fields

```
;; Cloc
Computing
<InPr <InEnd of computing.

;; Clock -> 2002-01-17, 19h 25m 36s.
Computing the boundary of the generator 19 (dimension 7) :
<InPr <InPr <InPr S3 <<Abar[2 S1][2 S1]>>> <<Abar>>> End of computing.

Homology in dimension 6 :

Component Z/12Z
```

---done---

;; Clock -> 2002-01-17, 19h 27m 15s

Ana Romero, Universidad de La Rioja Francis Sergeraert, Institut Fourier, Grenoble Oberwolfach, May-2013

Semantics of colours:

```
Blue = "Standard" Mathematics

Red = Constructive, effective,

algorithm, machine object, ...

Violet = Problem, difficulty,

obstacle, disadvantage, ...

Green = Solution, essential point,

mathematicians, ...
```

Plan.

- \rightarrow Introduction.
 - Basics of Algebraic Discrete Vector Fields.
 - Discrete Vector Field \Rightarrow Canonical Reduction.
 - Guessing the reduction formulas.
 - Vector Fields and Morphisms.
 - Seeing complicated products.
 - The Eilenberg-Zilber vector field.
 - The Eilenberg-Zilber vector field is natural.
 - EZ vector field \Rightarrow EZ reduction.

Introduction.

Eilenberg-MacLane conjecture (1953):

 $G = \text{simplicial group} \Rightarrow$

BG =Classifying space of G

 $Bar(C_*G) = Algebraic classifying object of C_*G$

Then \exists a reduction $\rho: C_*(BG) \Longrightarrow \operatorname{Bar}(C_*G)$

Essential for effective methods computing $\pi_n X$.

First proof = Pedro Real (1993). Never implemented. Second "proof" through discrete vector fields.

Easily implemented $\Rightarrow \begin{cases} \text{Program code divided by } \sim 3 \\ \text{Computing times divided by } \sim 20 \end{cases}$

But proof quite complex not yet finished.

Main problem =

Compatibility: Vector fields \leftrightarrow Algebraic structures

Typical problem = Naturality of reductions

coming from discrete vector fields.

Basic Algebraic Topology:

Serre + Eilenberg-Moore spectral sequences

Non-constructive

Making basic algebraic topology constructive:

- 1. Eilenberg-Zilber theorem.
- 2. Twisted Eilenberg-Zilber theorem.
- 3. Eilenberg-MacLane correspondence:

Topological Classifying space

Algebraic Classifying space

But constructive requires: with explicit homotopies.

Example: Rubio-Morace homotopy for Eilenberg-Zilber:

$$RM: C_*(X \times Y) \to C_{*+1}(X \times Y)$$

$$egin{aligned} egin{aligned} egi$$

Simpler:

once the notion of discrete vector field is understood.

Plan.

- ✓ Introduction.
- \rightarrow Basics of Algebraic Discrete Vector Fields.
 - Discrete Vector Field \Rightarrow Canonical Reduction.
 - Guessing the reduction formulas.
 - Vector Fields and Morphisms.
 - Seeing complicated products.
 - The Eilenberg-Zilber vector field.
 - The Eilenberg-Zilber vector field is natural.
 - EZ vector field \Rightarrow EZ reduction.

Basics of Algebraic Discrete Vector Fields.

<u>Definition</u>: R = unitary commutative ring.

A cellular R-chain complex is an indexed triple:

$$(C_p,oldsymbol{eta}_p,d_p)_{p\in\mathbb{Z}}$$

with:

- C_p = free R-module (non necessarily of finite type);
- β_p = distinguished R-basis of C_p ;
- $d_p: C_p \to C_{p-1} = \text{differential}.$

The elements of β_p are the *p*-cells of the cellular complex.

Main examples:

- Geometrical cellular complexes $(R = \mathbb{Z})$:
 - Cubical complexes (digital images);
 - Simplicial complexes;
 - Simplicial sets;
 - CW-complexes;
- Algebraic cellular complexes $(R = \mathfrak{k} = \text{field})$:
 - Free resolutions;
 - Koszul complexes;
 - **.**

Natural distinguished basis \Rightarrow Cellular complex.

 $C_* = \{C_p, \beta_p, d_p\}_{p \in \mathbb{Z}} = \text{Cellular chain complex.}$

<u>Definition</u>: A *p*-cell is an element of β_p .

<u>Definition</u>: If $\tau \in \beta_p$ and $\sigma \in \beta_{p-1}$,

then $\varepsilon(\sigma,\tau) := \text{coefficient of } \sigma \text{ in } d\tau$

is called the incidence number between σ and τ .

<u>Definition</u>: σ is a face of τ if $\varepsilon(\sigma, \tau) \neq 0$.

<u>Definition</u>: σ is a regular face of τ if $\varepsilon(\sigma, \tau)$ is R-invertible.

$$(\Leftrightarrow arepsilon(\sigma, au)=\pm 1 ext{ if } R=\mathbb{Z})$$

Definition:

$$(C_*, \beta_*, d_*) = \text{Cellular complex}$$

A Discrete Vector Field is a pairing:

$$V = \{(\sigma_i, au_i)\}_{i \in I}$$

satisfying:

- $ullet \ \forall i \in I, \quad au_i = ext{some } k_i ext{-cell and } \sigma_i = ext{some } (k_i-1) ext{-cell.}$
- $\bullet \ \forall i \in I, \quad \sigma_i \text{ is a regular face of } \tau_i.$
- $ullet \ orall i
 eq j \in I, \quad \{\sigma_i, au_i\} \cap \{\sigma_j, au_j\} = \emptyset.$

The vector field V is admissible or not.

$$C_* = \{C_p, \beta_p, d_p\}_{p \in \mathbb{Z}} = \text{Cellular chain complex.}$$

$$V = \{(\sigma_i, \tau_i)\}_{i \in I} = \text{Vector field.}$$

<u>Definition</u>: V-path = sequence $(\sigma_{i_1}, \tau_{i_1}, \sigma_{i_2}, \tau_{i_2}, \ldots, \sigma_{i_n}, \tau_{i_n})$

satisfying: 1. $(\sigma_{i_j}, \tau_{i_j}) \in V$.

- 2. σ_{i_j} face of $\tau_{i_{j-1}}$.
- 3. $\sigma_{i_i} \neq \sigma_{i_{i-1}}$.

Remark: σ_{i_i} not necessarily regular face of $\tau_{i_{i-1}}$.

Examples:

<u>Definition</u>: A vector field is admissible if

for every source cell σ ,

the length of any path starting from σ is bounded by a fixed integer $\lambda(\sigma)$.

Example of two different paths with the same starting cell.

Remark: The paths from a starting cell

are not necessarily organized as a tree.

Typical examples of non-admissible vector fields.

$$C_* = \{C_p, eta_p, d_p\}_{p \in \mathbb{Z}} = ext{Cellular chain complex.}$$
 $V = \{(\sigma_i, au_i)\}_{i \in I} = ext{Vector field.}$

<u>Definition</u>: A critical p-cell is an element of β_p

which does not occur in V.

Other cells divided in source cells and target cells.

Example:

Plan.

- ✓ Introduction.
- ✓ Basics of Algebraic Discrete Vector Fields.
- \rightarrow Discrete Vector Field \Rightarrow Canonical Reduction.
 - Guessing the reduction formulas.
 - Vector Fields and Morphisms.
 - Seeing complicated products.
 - The Eilenberg-Zilber vector field.
 - The Eilenberg-Zilber vector field is natural.
 - EZ vector field \Rightarrow EZ reduction.

Discrete Vector Field \Rightarrow Canonical Reduction.

Fundamental Theorem:

Given:
$$C_* = (C_p, \beta_p, d_p)_{p \in \mathbb{Z}} = \text{Cellular chain complex.}$$

$$V = (\sigma_i, \tau_i)_{i \in I} = \text{Admissible Discrete Vector Field.}$$

 \Rightarrow

A canonical process constructs: $d_*^c + f + g + h$ defining a canonical reduction:

$$oldsymbol{
ho_V} = oldsymbol{h} \bigcirc (C_p,eta_p,d_p)_{p\in\mathbb{Z}} \stackrel{g}{\longleftarrow} (C_p^c,eta_p^c,d_p^c)_{p\in\mathbb{Z}}$$

 $\begin{array}{c|c} \textbf{Initial Complex} & \stackrel{\rho_V}{\Rightarrow} & \textbf{Critical complex} \end{array}$

$$\operatorname{In} \;
ho = (f,g,h) = \left| h \bigcirc (C_*,eta_*,d_*) \stackrel{g}{ \stackrel{f}{ \hookrightarrow} } (C_*^c,eta_*^c,d_*^c) \right|,$$

the most important component is h.

To be understood as a contraction $C_* \Rightarrow C_*^c$.

The homotopy h reduces the "cherry" C_*

onto the "stone" C_*^c .

 $\Rightarrow h = \text{the "flow" generated by the vector field.}$

Toy Example.

Fundamental Reduction Theorem \Rightarrow

$$ho: extbf{C_*} \Rightarrow extstylength C^c_* = egin{bmatrix} d_1^c \ d_1^c \end{bmatrix} = \mathbb{Z} \stackrel{d_1^c = 0}{\longleftarrow} \mathbb{Z} = ext{Circle}$$

$$\operatorname{Rank}(C_*) = (16, 24, 8) \quad ext{vs} \quad \operatorname{Rank}(C_*^c) = (1, 1, 0)$$

Plan.

- ✓ Introduction.
- ✓ Basics of Algebraic Discrete Vector Fields.
- $\checkmark \bullet$ Discrete Vector Field \Rightarrow Canonical Reduction.
- \rightarrow Guessing the reduction formulas.
 - Vector Fields and Morphisms.
 - Seeing complicated products.
 - The Eilenberg-Zilber vector field.
 - The Eilenberg-Zilber vector field is natural.
 - EZ vector field \Rightarrow EZ reduction.

Guessing the reduction formulas.

Transcription for discrete vector fields:

Elementary example of:

$$f(0) = f(1) = f(2) = f(3) = 3$$
 id = fg
 $f(01) = f(12) = f(23) = 0$ id = $gf + dh + hd$
 $f(01) = f(12) = f(23) = 0$ fh = 0
 $g(3) = 3$ hg = 0
 $h(0) = -01 - 12 - 23$ hh = 0
 $h(1) = -12 - 23$
 $h(2) = -23$
 $h(3) = 0$

Just a little more complicated:

$$f(25) = 24 + 45 = -dh(25) + 25$$

 $h(25) = -245 = -\tau(25)$ (25 = negative face of 245)
 $f(23) = 24 + 45 + 56 - 36$
 $h(23) = -245 + 235 - 356 = \tau(23) + h(25) - h(35)$
 $f(13) = 12 + 24 + 45 + 56 - 36$
 $h(13) = -123 - 245 + 235 - 356 = -\tau(13) + h(23)$

 \Rightarrow General formula for h(source cells):

$$h(\sigma) = v(\sigma) - h(d_{st}v(\sigma) - \sigma)$$

to be explained.

 $(C_*, \beta_*, d_*) + V = \{(\sigma_i, \tau_i)\} = \text{vector field defines a splitting:}$

V defines a codifferential: $v(\sigma) = \varepsilon(\sigma, \tau) \tau$ if $(\sigma, \tau) \in V$

$$d = egin{bmatrix} d_{tt} & d_{ts} & d_{tc} \ d_{st} & d_{ss} & d_{sc} \ d_{ct} & d_{cs} & d_{cc} \end{bmatrix} \qquad \qquad v = egin{bmatrix} 0 & v & 0 \ 0 & 0 & 0 \ 0 & 0 & 0 \end{bmatrix}$$

$$h(\sigma) = v(\sigma) - h(d_{st}v(\sigma) - \sigma) = [v - h(dv - 1)](\sigma)$$

Deciding also $h(\sigma) = 0$ if $\sigma = \text{target or critical cell}$

+ using some elementary facts, gives the general formula:

$$h(\sigma) = v(\sigma) - h(dv(\sigma) - \sigma)$$

valid even for σ target or critical cell.

$$v - hdv = 0$$

Then:

$$f=\operatorname{pr}_c(1-dh) \qquad d^c_*=d_{cc}-d_{ct}hd_{sc} \qquad g=(1-hd)$$

defines the searched reduction:

$$ho = (f,g,h) = \left|h \bigcirc (C_*,eta_*,d_*) \stackrel{g}{ \stackrel{c}{ \hookrightarrow} } (C_*^c,eta_*^c,d_*^c)
ight|$$

Understanding: $h \Rightarrow f$ and g and d^c :

$$h=v-h(dv-1):C_*^s o C_{*+1}^t$$

Plan.

- ✓ Introduction.
- ✓ Basics of Algebraic Discrete Vector Fields.
- $\checkmark \bullet$ Discrete Vector Field \Rightarrow Canonical Reduction.
- ✓ Guessing the reduction formulas.
- → Vector Fields and Morphisms.
 - Seeing complicated products.
 - The Eilenberg-Zilber vector field.
 - The Eilenberg-Zilber vector field is natural.
 - EZ vector field \Rightarrow EZ reduction.

Vector Fields and Morphisms.

Problem: Let C_* and C'_* be two cellular chain complexes respectively provided with vector fields V and V'.

Question: Right notion

of morphism
$$\phi:(C_*,V)\to(C'_*,V')$$
 ????

- 1. Not trivial.
- 2. Essential to master the Eilenberg-Zilber vector fields.
- 3. Quite amazing !!

Definition: A cellular morphism:

$$\phi: (C_*, d_*, eta_*) o (C'_*, d'_*, eta'_*)$$

is a chain complex morphism $\phi:(C_*,d_*) o (C_*',d_*')$ satisfying the extra condition:

For every p-cell $\sigma \in \beta_p$,

 $\phi(\sigma)$ is null or $\in \beta_p'$.

$$(C_*,d,\beta,V)$$
 and (C'_*,d',β',V')

= cellular chain complexes

with respective admissible discrete vector fields V and V'.

<u>Definition</u>: A vectorious morphism:

$$\phi: (C_*, d, \beta, V) \rightarrow (C'_*, d', \beta', V')$$

is a cellular morphism $\phi := (C_*, d, \beta) \to (C'_*, d', \beta')$ satisfying the extra conditions:

- 1. For every critical cell $\chi \in \beta_p^c$, $\phi(\chi)$ is null or $\in \beta_p'^c$.
- 2. For every target cell $\tau \in \beta_n^t$, $\phi(\tau)$ is null or $\in \beta_n'^t$.
- 3. No condition at all for the source cells !!

Theorem:
$$\phi: (C_*, d, \beta, V) \to (C'_*, d', \beta', V')$$

= vectorious morphism.

Then ϕ defines a morphism (ϕ, ϕ^c)

between the corresponding reductions:

Note: $\phi^c := \phi | C^c_*$

Proof:

Definition:

$$\lambda_{\sigma} = egin{cases} 0 & ext{for target and critical cells,} \ & \lambda_{\sigma} = egin{cases} 0 & ext{for target and critical cells,} \ & ext{maximal length of a V-path} \ & ext{starting from the source cell σ.} \end{cases}$$

Remember: Recursive formula:

$$egin{aligned} h(\sigma) &= v(\sigma) - h(dv(\sigma) - \sigma) \ &\Rightarrow hdv(\sigma) = v(\sigma) \ &\Rightarrow hd au = au ext{ for every target cell } au \end{aligned}$$

QED

1.
$$h'\phi\sigma = \phi h\sigma$$
??

Obvious for σ target or critical cell.

Assumed known for $\lambda_{\sigma} < k$.

Let σ be a source cell with $\lambda_{\sigma} = k$.

$$\phi h\sigma = \phi v\sigma - \phi h(dv\sigma - \sigma)$$

$$OK \text{ for } (dv\sigma - \sigma) \Rightarrow \qquad = \phi v\sigma - h'\phi(dv\sigma - \sigma)$$

$$\phi d = d'\phi \Rightarrow \qquad = \phi v\sigma - h'd'\phi v\sigma + h'\phi\sigma$$

$$\phi v\sigma = \text{target cell} \Rightarrow \qquad = h'\phi\sigma$$

2.
$$g'\phi^c = \phi g$$
 ???

For a critical cell χ : $g\chi = \chi - hd\chi = (1 - hd)\chi$

$$\Rightarrow \phi g \chi = \phi (1 - hd) \chi$$

$$\phi h d = h' d' \phi \Rightarrow = (1 - h' d') \phi \chi$$

$$\phi \chi = \phi^c \chi \Rightarrow = g' \phi^c \chi$$
QED

3.
$$\phi^c d^c = d'^c \phi^c$$
 ??

$$g'\phi^c = \phi g \implies g'\phi^c d^c = \phi g d^c$$
 $g d^c = dg \implies = \phi dg$
 $\phi d = d'\phi \implies = d'\phi g$
 $\phi g = g'\phi^c \implies = d'g'\phi^c$
 $d'g' = g'd'^c \implies = g'd'^c\phi^c$
 $g' \text{ injective } \implies \phi^c d^c = d'^c\phi^c$
QED

4.
$$f'\phi = \phi^c f$$
 ??
 $g' \text{ injective} \Rightarrow [(f'\phi = \phi^c f) \Leftrightarrow (g'f'\phi = g'\phi^c f)]$

$$g'f'\phi = (1 - d'h' - h'd')\phi$$

$$(d'\phi = \phi d) + (h'\phi = \phi h) \Rightarrow = \phi(1 - dh - hd)$$

$$= \phi g f$$

$$= g'\phi^c f$$

 \mathbf{QED}

Plan.

- ✓ Introduction.
- ✓ Basics of Algebraic Discrete Vector Fields.
- $\checkmark \bullet$ Discrete Vector Field \Rightarrow Canonical Reduction.
- ✓ Guessing the reduction formulas.
- ✓ Vector Fields and Morphisms.
- \rightarrow Seeing complicated products.
 - The Eilenberg-Zilber vector field.
 - The Eilenberg-Zilber vector field is natural.
 - EZ vector field \Rightarrow EZ reduction.

Seeing complicated products.

Triangulating prisms $\Delta^p \times \Delta^q$:

$$(0,1) \\ (0,0) \\ (1,0) \\ (0,0) \\ (1,0) \\ (1,0) \\ (2,1) \\ (2,0) \\ (2,0) \\ (1,0) \\ (2,0) \\ (2,0) \\ (2,0) \\ (2,0) \\ (3,0) \\ (4,0) \\ (4,0) \\ (5,0$$

Two
$$\Delta^2$$
 in $\Delta^1 \times \Delta^1$: $(0,0) < (0,1) < (1,1)$
 $(0,0) < (1,0) < (1,1)$

Three
$$\Delta^3$$
 in $\Delta^2 \times \Delta^1$: $(0,0) < (0,1) < (1,1) < (2,1)$
 $(0,0) < (1,0) < (1,1) < (2,1)$
 $(0,0) < (1,0) < (2,0) < (2,1)$

Rewriting the triangulation of $\Delta^2 \times \Delta^1$.

Planar representations of simplices of $\Delta^p \times \Delta^q$:

Example of 5-simplex:

$$\sigma \in (\Delta^5 imes \Delta^3)_5$$

\Rightarrow 6 faces:

Plan.

- ✓ Introduction.
- ✓ Basics of Algebraic Discrete Vector Fields.
- $\checkmark \bullet$ Discrete Vector Field \Rightarrow Canonical Reduction.
- ✓ Guessing the reduction formulas.
- ✓ Vector Fields and Morphisms.
- ✓ Seeing complicated products.
- \rightarrow The Eilenberg-Zilber vector field.
 - The Eilenberg-Zilber vector field is natural.
 - EZ vector field \Rightarrow EZ reduction.

The Eilenberg-Zilber vector field.

Eilenberg-Zilber problem for $\Delta^1 \times \Delta^1$:

Cubical version of $\Delta^1 \times \Delta^1$:

$$C_0 \longleftarrow C_1 \longleftarrow C_2$$

$$\mathbb{Z}^4 \longleftarrow \mathbb{Z}^4 \longleftarrow \mathbb{Z}$$

$$C_*\Delta^1\otimes C_*\Delta^1$$

$$C_0\Delta^1\otimes C_0\Delta^1\longleftarrow (C_0\Delta^1\otimes C_1\Delta^1)\oplus (C_1\Delta^1\otimes C_0\Delta^1)\longleftarrow C_1\Delta^1\otimes C_1\Delta_1$$

Simplicial version of $\Delta^1 \times \Delta^1$:

$$(0,1)$$
 $(1,1)$
 $(0,0)$
 $(1,0)$
 $(1,0)$
 $C'_0 \longleftarrow C'_1 \longleftarrow C'_2$
 $\mathbb{Z}^4 \longleftarrow \mathbb{Z}^5 \longleftarrow \mathbb{Z}^2$

To be compared with:

$$C_0 \longleftarrow C_1 \longleftarrow C_2$$
 $\mathbb{Z}^4 \longleftarrow \mathbb{Z}^4 \longleftarrow \mathbb{Z}^1$

Difference = a vector field with a unique "vector"

Eilenberg-Zilber reduction as induced by a vector field:

Translation in planar diagrams: $V = \{(\sigma, \tau)\}\$

$$\sigma= ext{source cell}= ext{edge}[(0,0),(1,1)]=$$
 $extstyle \partial_1 au=\sigma$ $au= ext{target cell}= ext{triangle}[(0,0),(0,1),(1,1)]=$

Generalizing the idea \Rightarrow

Canonical discrete vector field for $\Delta^5 \times \Delta^3$.

Recipe: First "event" = Diagonal step =
$$\checkmark$$
 \Rightarrow Source cell.
= (-90°) -bend = \checkmark \Rightarrow Target cell.

Critical cells ??

Critical cell = cell without any "event" = without any diagonal or -90° -bend.

Examples.

Conclusion:

$$C_*^c = C_*(\Delta^5) \otimes C_*(\Delta^3)$$

Fundamental theorem of vector fields \Rightarrow

Canonical Homological Reductions:

$$ho: C_*(\Delta^5 imes \Delta^3) \implies C_*(\Delta^5) \otimes C_*(\Delta^3)$$

$$ho: C_*(\Delta^p imes \Delta^q) imes C_*(\Delta^p) \otimes C_*(\Delta^q)$$

$$p = q = 10 \implies 16,583,583,743 \text{ vs } 4,190,209$$

Plan.

- ✓ Introduction.
- ✓ Basics of Algebraic Discrete Vector Fields.
- $\checkmark \bullet$ Discrete Vector Field \Rightarrow Canonical Reduction.
- ✓ Guessing the reduction formulas.
- ✓ Vector Fields and Morphisms.
- ✓ Seeing complicated products.
- ✓ The Eilenberg-Zilber vector field.
- \rightarrow The Eilenberg-Zilber vector field is natural.
 - EZ vector field \Rightarrow EZ reduction.

The Eilenberg-Zilber vector field is natural.

Naturality of the Eilenberg-Zilber reduction with respect to product morphisms.

Standard methods $\Rightarrow (\Delta^p \to \Delta^{p'}) \times (\Delta^q \to \Delta^{q'})$ is enough.

$$egin{aligned} ext{ Given:} & \phi: \Delta^p o \Delta^{p'} \ \psi: \Delta^q o \Delta^{q'} \end{aligned} ext{ simplicial.}$$

is commutative??

Proof:

Representation of a simplex of $\Delta^p \times \Delta^q$ via an s-path.

= subsimplex of
$$\alpha \times \beta \subset (\Delta^p \times \Delta^q)_4$$

spanned by the vertices $(0,0) - (0,1) - (2,2) - (3,3) - (4,3)$.

The game first event "diagonal ?"

or "right-angle bend !""

determines the nature source, target or critical.

Examples:

Here:

Two maps
$$\begin{vmatrix} \phi: \Delta^p o \Delta^{p'} \\ \psi: \Delta^q o \Delta^{q'} \end{vmatrix} = ext{simplicial morphisms.}$$

<u>Claim</u>:

$$au$$
 target cell in $\Delta^p imes \Delta^q \Rightarrow$

$$(\phi imes \psi)(au) ext{ target or degenerate cell in } \Delta^{p'} imes \Delta^{q'}$$

$$\chi$$
 critical cell in $\Delta^p \times \Delta^q \Rightarrow$

$$(\phi \times \psi)(\chi) \text{ critical or degenerate cell in } \Delta^{p'} \times \Delta^{q'}$$

Typical accidents with source cells.

 $\alpha = \mathrm{id} : \Delta^2 \to \Delta^2$ and $\psi : \Delta^2 \to \Delta^1$ as below:

1)

$$\stackrel{\varphi\times\psi}{\longmapsto}$$

Then $(\phi \times \psi)(\text{source}) = \text{source}$

but for reasons which do not match!

Compare corresponding target cells.

2) The image of a source cell can be a critical cell:

or a target cell:

But we don't care about source cells!

General shape of an Eilenberg-Zilber target cell:

$$(\phi \times \psi)(\alpha \times \beta) = (\eta \alpha' \times \theta \beta')$$

If no index of η is < i + 1 and no index of θ is < j, then $(\phi \times \psi)(\tau)$ has the same shape and therefore is a target cell (or can be degenerate),

otherwise $(\phi \times \psi)(\tau)$ is degenerate.

Same study for critical cells (easier) \Rightarrow OK.

Finally:
$$(\phi \times \psi)$$
(target cell) = target cell or 0.
 $(\phi \times \psi)$ (critical cell) = critical cell or 0.

 $\Rightarrow \phi \times \psi$ is a vectorious morphism.

$$\Rightarrow \qquad h \stackrel{\textstyle \frown}{ } C_*(\Delta^p imes \Delta^q) \stackrel{\phi imes \psi}{\longrightarrow} C_*(\Delta^{p'} imes \Delta^{q'}) \stackrel{h'}{ } \ f \stackrel{\textstyle \downarrow}{ } g \stackrel{\textstyle \longleftarrow}{ } C_*\Delta^p \otimes C_*\Delta^q \stackrel{\phi \otimes \psi}{\longrightarrow} C_*\Delta^{p'} \otimes C_*\Delta^{q'}$$

Plan.

- ✓ Introduction.
- ✓ Basics of Algebraic Discrete Vector Fields.
- $\checkmark \bullet$ Discrete Vector Field \Rightarrow Canonical Reduction.
- ✓ Guessing the reduction formulas.
- ✓ Vector Fields and Morphisms.
- ✓ Seeing complicated products.
- ✓ The Eilenberg-Zilber vector field.
- ✓ The Eilenberg-Zilber vector field is natural.
- \rightarrow EZ vector field \Rightarrow EZ reduction.

EZ vector field \Rightarrow EZ reduction.

Theorem: The Eilenberg-Zilber vector field

previously described

gives the standard Eilenberg-Zilber reduction.

Standard Eilenberg-Zilber reduction:

$$EZ: \overrightarrow{RM} \subset C_*(X imes Y) \stackrel{EML}{\longleftarrow} C_*(X) \otimes C_*(Y)$$

AW = Alexander-Whitney

EML = Eilenberg-MacLane

RM = Rubio-Morace

$$EZ = AW + EML + RM$$
:

$$egin{aligned} oldsymbol{AW}(oldsymbol{x_p} imesoldsymbol{y_p}) &= \sum_{i=0}^p \partial_{p-i+1}\cdots\partial_p x_p \otimes \partial_0\cdots\partial_{p-i-1} y_p \end{aligned}$$

$$egin{aligned} m{EML}(m{x}_p \otimes m{y}_q) \ &= \sum_{(\eta, \eta') \in \mathrm{Sh}(p,q)} arepsilon(\eta, \eta') \left(\eta' m{x}_p imes \eta m{y}_q
ight) \end{aligned}$$

$$egin{array}{ll} oldsymbol{RM}(oldsymbol{x}_p imes oldsymbol{y}_p) &= \sum_{\substack{0 \leq r \leq p-1 \ 0 \leq s \leq p-r-1 \ (\eta, \eta') \in \mathrm{Sh}(s+1,r)}} (-1)^{p-r-s} \, arepsilon(\eta, \eta') \ldots \end{array}$$

$$\dots (\uparrow^{p-r-s}(\eta')\eta_{p-r-s-1}\partial_{p-r+1}\cdots\partial_p x_p imes \dots$$

$$\dots \! \uparrow^{p-r-s} \! (\eta) \partial_{p-r-s} \cdots \partial_{p-r-1} y_p)$$

Plan of Proof:

- 1. Prove $h_V = RM$.
- 2. Use the dependency $h \mapsto (f, g, d^c)$ to prove:

$$egin{array}{ll} f_V &= AW \ g_V &= EML \ (C^c,d^c) &= (C_*X\otimes C_*Y,d^\otimes) \end{array}$$

Proof of $h_V = RM$:

- 1. Prove $RM = 0 = h_V$ for target and critical cells.
- 2. Prove RM satisfies the same recursive formula as h_V :

$$RM(\sigma) = v(\sigma) - RM(dv(\sigma) - \sigma)$$

Reminders:

1. Commutation relations face \leftrightarrow degeneracy operators:

$$egin{array}{lll} \partial_i \eta_j &=& \eta_{j-1} \partial_i & ext{for } i < j \ &=& ext{id} & ext{for } i = j ext{ or } j+1 \ &=& \eta_j \partial_{i-1} & ext{for } i \geq j+2 \end{array}$$

2. Canonical form of a degenerate simplex:

$$\sigma = \eta_{i_{k-1}} \cdots \eta_{i_0} \sigma' \quad ext{with } i_{k-1} > \cdots > i_0.$$

3. A product simplex in canonical form:

$$\sigma=(\eta_{i_{k-1}}\cdots\eta_{i_0}x\;,\;\eta_{j_{\ell-1}}\cdots\eta_{j_0}y)$$
 is non-degenerate iff $\{i_0,\cdots,i_{k-1}\}\cap\{j_0,\ldots,j_{\ell-1}\}=\emptyset.$

Example 1: Case of the target cell:

$$\sigma = (\eta_{u-1} \cdots \eta_0 \ x_t \ , \ \eta_{t+u-1} \cdots \eta_u \ y_u)$$

Generic RM-term (sign omitted):

$$(\uparrow^{p-r-s}(\eta') \; \eta_{p-r-s-1} \; \partial_{p-r+1} \cdots \partial_{p} \; \eta_{u-1} \cdots \eta_{0} \; x_{t} \; , \ldots \ \ldots, \; \uparrow^{p-r-s}(\eta) \; \partial_{p-r-s} \cdots \partial_{p-r-1} \; \eta_{t+u-1} \cdots \eta_{u} \; y_{u})$$

$$(\eta, \eta') \in \operatorname{Sh}(s+1, r) \Rightarrow$$

$$\#(\eta) \ge r + 1 + (u - r) + s + 1 + (t - s) = t + u + 2$$

 \Rightarrow too many degeneracy operators \Rightarrow collision $\Rightarrow RM(\sigma) = 0$

 \Rightarrow OK!

(General case of a target cell combinatorially more complicated but analogous)

Example 2: Case of the source cell:

$$egin{aligned} \sigma &= (\eta_{u-2} \cdots \eta_0 x_t \;,\; \eta_{t+u-2} \cdots \eta_u y_u) \ &\qquad \qquad (\eta_{u-1} \; ext{absent}) \end{aligned}$$

Generic RM-term (sign omitted):

$$(\uparrow^{p-r-s}(\eta') \; \eta_{p-r-s-1} \; \partial_{p-r+1} \cdots \partial_{p} \; \eta_{u-2} \cdots \eta_0 \; x_t \; , \ldots \ \ldots, \; \uparrow^{p-r-s}(\eta) \; \partial_{p-r-s} \cdots \boxed{\partial_{p-r-1} \; \eta_{t+u-2}} \cdots \eta_u \; y_u)$$

Same computation about $\#(\eta) \Rightarrow \#(\eta) \geq t + u$

 \Rightarrow no collision only if perfect simplifications between ∂ 's and η 's.

$$\Rightarrow$$
 in particular $\partial_{p-r-1}\eta_{t+u-2}$ must simplify + $p = \text{dimension} = t + u - 1 \Rightarrow r = 0.$

Case of the source cell:

$$\sigma = (\eta_{u-2} \cdots \eta_0 x_t \;,\; \eta_{t+u-2} \cdots \eta_u y_u) \ (\eta_{u-1} \; ext{absent})$$

r=0 + simplifications in the second factor \Rightarrow Generic RM-term:

$$egin{aligned} \left(\overline{\eta_{p-s-1}}
ight) \eta_{u-2} \cdots \eta_0 \ x_t \ , \ \uparrow^{p-s}(\eta) \ \overline{\eta_{t+u-s-2}} \cdots \eta_u \ y_u \ \end{aligned}$$
 $p=t+u-1 \quad \Rightarrow \quad p-s-1=t+u-s-2 \quad \Rightarrow ext{collision}$ except if $\quad t+u-s-2=u-1 \quad \Leftrightarrow \quad s=t-1.$

Finally only one remaining term:

$$(\overline{\eta_{u-1}}\eta_{u-1}\cdots\eta_0\;x_t\;,\;\eta_{t+u-1}\cdots\eta_u\;y_u)$$

Case of the source cell:

$$\sigma = (\eta_{u-2} \cdots \eta_0 x_t \;,\; \eta_{t+u-2} \cdots \eta_u y_u) \ (\eta_{u-1} ext{ absent})$$

r=0 + simplifications in the second factor \Rightarrow Generic RM-term:

$$(\left \lceil \eta_{p-s-1}
ight
ceil \eta_{u-2} \cdots \eta_0 \ x_t \ , \ extstyle \uparrow^{p-s} (\eta) \left \lceil \eta_{t+u-s-2}
ight
ceil \cdots \eta_u \ y_u)$$

$$p=t+u-1$$
 \Rightarrow $p-s-1=t+u-s-2$ \Rightarrow collision except if $t+u-s-2=u-1$ \Leftrightarrow $s=t-1$.

Finally only one remaining term:

$$(\boxed{\eta_{u-1}}\eta_{u-1}\cdots\eta_0\ x_t\ ,\ \eta_{t+u-1}\cdots\eta_u\ y_u)$$
 = previous target cell.

More complex but analogous calculations \Rightarrow

RM satisfies the same recursive formula as the Eilenberg-Zilber vector field.

+ Dependency $h \mapsto (f, g, d^c) \Rightarrow \text{QED}$.

The Eilenberg-Zilber vector field is the key point
to obtain a very efficient algorithm
computing the effective homology
of the Eilenberg-MacLane spaces.

The END

```
;; Cloc
Computing
<TnPr <Tn
End of computing.

;; Clock -> 2002-01-17, 19h 25m 36s.
Computing the boundary of the generator 19 (dimension 7) :
<TnPr <TnPr <TnPr S3 <<Abar[2 S1][2 S1]>>> <<Abar>>> End of computing.

Homology in dimension 6 :
```

;; Clock -> 2002-01-17, 19h 27m 15s

---done---

Ana Romero, Universidad de La Rioja Francis Sergeraert, Institut Fourier, Grenoble Oberwolfach, May-2013