The Eilenberg-Zilber

Combinatorial Reduction

```
;; Cloc
Computing
<InPr <InF
End of computing.

;; Clock -> 2002-01-17, 19h 25m 36s.

Computing the boundary of the generator 19 (dimension 7):
<InPr <InPr <InPr <S3 <<Abar[2 S1][2 S1]>>> <<Abar>>> End of computing.

Homology in dimension 6:

Component 2/12Z
```

;; Clock -> 2002-01-17, 19h 27m 15s

---done---

Ana Romero, Universidad de La Rioja Francis Sergeraert, Institut Fourier, Grenoble Noon Seminar, ETH Zurich, June 14, 2012

Plan.

- 1. Homological Reduction.
- 2. Homotopy and Vector Fields.
- 3. Discrete Vector Fields.
- 4. Eilenberg-Zilber and Vector Fields.

1/4. Homological Reduction.

Standard Algebraic Topology:

Topological object \longrightarrow Algebraic object

Topological Object \longrightarrow Chain Complex \longmapsto Homology group

Chain complex:

$$\cdots \xleftarrow{d_{p-2}} C_{p-2} \xleftarrow{d_{p-1}} C_{p-1} \xleftarrow{d_p} C_p \xleftarrow{d_{p+1}} C_{p+1} \xleftarrow{d_{p+2}} \cdots$$

$$d_{p-2}d_{p-1} = \mathbf{0} \qquad d_{p-1}d_p = \mathbf{0} \qquad d_pd_{p+1} = \mathbf{0} \qquad d_{p+2}d_{p+1} = \mathbf{0}$$

$$dd=0 \quad \Leftrightarrow \quad \ker d_p \supset \operatorname{im} d_{p+1} \quad \Rightarrow \quad H_p := rac{\ker d_p}{\operatorname{im} d_{p+1}}$$

<u>Definition</u>: A (homological) reduction is a diagram:

$$ho = (f,g,h) = \left[h \bigcirc (\widehat{C}_*,\widehat{d}_*) \stackrel{g}{ \stackrel{f}{\leftarrow}} (C_*,d_*)
ight]$$

with:

- 1. \widehat{C}_* and C_* = chain complexes.
- 2. f and g = chain complex morphisms.
- 3. h = homotopy operator (degree +1).
- $4. \quad fg=\operatorname{id}_{C_*} \text{ and } d_{\widehat{C}}h+hd_{\widehat{C}}+gf=\operatorname{id}_{\widehat{C}_*}.$
- 5. fh = 0, hg = 0 and hh = 0.

Meaning = Reduction Diagram:

$$\{\cdots \stackrel{h}{\rightleftharpoons} \widehat{C}_{m-1} \stackrel{h}{\rightleftharpoons} \widehat{C}_m \stackrel{h}{\rightleftharpoons} \widehat{C}_{m+1} \stackrel{h}{\rightleftharpoons} \cdots \} = \widehat{C}_*$$
 $\{\cdots A_{m-1} \quad A_m \quad A_{m+1} \quad \cdots \} = A_*$
 $\{\cdots \quad B_{m-1} \quad B_m \quad B_{m+1} \quad \cdots \} = B_*$
 $\{\cdots \stackrel{h}{\rightleftharpoons} C'_{m-1} \stackrel{d}{\rightleftharpoons} C'_m \stackrel{d}{\rightleftharpoons} C'_{m+1} \stackrel{d}{\rightleftharpoons} \cdots \} = C'_*$
 $\{\cdots \stackrel{d}{\rightleftharpoons} C_{m-1} \stackrel{d}{\rightleftharpoons} C_m \stackrel{d}{\rightleftharpoons} C_{m+1} \stackrel{h}{\rightleftharpoons} \cdots \} = C_*$

$$\text{In } \rho = (f,g,\textcolor{red}{h}) = \overbrace{\textcolor{red}{h \bigcirc (\widehat{C}_*,\widehat{d}_*) \overset{g}{ \hookleftarrow_f}}(C_*,d_*)},$$

the most important component is h.

To be understood as a reduction $\hat{C}_* \Rightarrow C_*$.

The homotopy h reduces the "cherry" \widehat{C}_*

onto the "stone" C_* .

General notion of homotopy.

Given: $f_0, f_1: X \to Y$.

<u>Definition</u>: f_0 homotope to $f_1 \Leftrightarrow$

 $\exists H: X \times I \rightarrow Y \text{ satisfying:}$

$$f_0(x) = \boldsymbol{H}(x,0)$$

$$f_1(x) = \boldsymbol{H}(x,1)$$

2/4. Vector field \Rightarrow Flow \Rightarrow Homotopy.

Vector field $= V : x \mapsto V(x) \in T_x X$.

 \Rightarrow Corresponding flow $\Phi(x,t)$:

solution of
$$\left\{ rac{\partial \Phi(x,t)}{\partial t} = V(\Phi(x,t)) + \Phi(x,0) = x
ight\}$$
.

 \Rightarrow Auto-Homotopy $H(x,t) := \Phi(x,t)$ for $t \in [0,1]$.

3/4. Corresponding combinatorial notion ??

Example of reduction:

Appropriate discrete vector field

on a triangulation of the square:

 $V \text{ contracts } abc \Rightarrow ab||bc;$

V inflates the triangle dac to the square abcd.

C = cellular complex = collection of cells satisfying...

Definition: A discrete vector field

is a set of pairs of cells $V = \{(\sigma_i, \tau_i)_{i \in v}\}$ satisfying:

- $(\forall i)$ σ_i is regular face of τ_i .
- $\bullet \ (\forall i \neq j) \ \ \sigma_i \neq \sigma_j \neq \tau_i \neq \tau_j.$

Examples:

 σ_i regular face of $\tau_i \Leftrightarrow$ incidence number $\varepsilon(\sigma_i, \tau_i) = \pm 1$.

C =Cellular chain complex.

 $V = \{(\sigma_i, \tau_i)_{i \in v}\}$ = Vector field.

<u>Definition</u>: A critical p-cell is a p-cell

which does not occur in V.

Other cells divided in source cells and target cells.

Example:

C = Cellular complex.

 $V = \{(\sigma_i, \tau_i)_{i \in v}\} = \text{vector field.}$

Theorem: A "critical" chain complex $C^c_* = ((\beta^c_p)_{p \in \mathbb{Z}}, d^c)$ can be constructed:

- β_p^c = the set of critical p-cells of V.
- $d_p^c: \mathbb{Z}[\beta_p^c] \to \mathbb{Z}[\beta_{p-1}^c]$ an appropriate "critical" differential deduced from the initial differential d

and the vector field V.

Also a canonical reduction $\rho: C_* \Longrightarrow C_*^c$ is provided.

 \Rightarrow Any homological problem in C_* can be solved in C_*^c .

Simple example.

Theorem \Rightarrow

$$ho: C_* \Rightarrow\!\!\!\!> C_*^c = egin{bmatrix} d_1^c \ d_1^c \end{bmatrix} = \mathbb{Z} \stackrel{d_1^c=0}{\longleftarrow} \mathbb{Z} = ext{Circle}$$

4/4. Eilenberg-Zilber Vector Field.

Vector Fields \Rightarrow Eilenberg-Zilber

 \Rightarrow Twisted Eilenberg-Zilber \Rightarrow Serre spectral sequence \Rightarrow Eilenberg-Moore spectral sequence.

Main problem: Triangulation of $\Delta^p \times \Delta^q$???

Two
$$\Delta^2$$
 in $\Delta^1 \times \Delta^1$: $(0,0) < (0,1) < (1,1)$
 $(0,0) < (1,0) < (1,1)$

Three
$$\Delta^3$$
 in $\Delta^2 \times \Delta^1$: $(0,0) < (0,1) < (1,1) < (2,1)$
 $(0,0) < (1,0) < (1,1) < (2,1)$
 $(0,0) < (1,0) < (2,0) < (2,1)$

Rewriting the triangulation of $\Delta^2 \times \Delta^1$.

"Seeing" the triangulation of $\Delta^5 \times \Delta^3$.

Example of 5-simplex:

$$\sigma \in (\Delta^5 imes \Delta^3)_5$$

 \Rightarrow 6 faces:

 \Rightarrow Canonical discrete vector field for $\Delta^5 \times \Delta^3$.

Recipe: First "event" = Diagonal step =
$$\checkmark$$
 \Rightarrow Source cell.
= (-90°) -bend = \checkmark \Rightarrow Target cell.

Critical cells ??

Critical cell = cell without any "event" = without any diagonal or -90° -bend.

Examples.

$$\Delta^5_{0,1,2,3,4,5} imes \Delta^3_{0,1,2,3}$$

Conclusion:

$$C_*^c = C_*(\Delta^5) \otimes C_*(\Delta^3)$$

Fundamental theorem of vector fields \Rightarrow

Canonical Homological Reductions:

$$ho: C_*(\Delta^5 imes \Delta^3) \implies C_*(\Delta^5) \otimes C_*(\Delta^3)$$

$$ho: C_*(\Delta^p imes \Delta^q) imes C_*(\Delta^p) \otimes C_*(\Delta^q)$$

$$p = q = 10 \implies 16,583,583,743 \text{ vs } 4,190,209$$

More generally: X and Y =simplicial sets.

An admissible discrete vector field is canonically defined on $C_*(X \times Y)$.

$$\Rightarrow$$
 Critical chain complex $C^c_*(X \times Y) = C_*(X) \otimes C_*(Y)$.

Eilenberg-Zilber Theorem: Canon. homological reduction:

$$ho_{EZ}: C_*(X \times Y) \Longrightarrow C_*^c(X \times Y) = C_*(X) \otimes C_*(Y)$$

 \Rightarrow Künneth theorem to compute $H_*(X \times Y)$.

Analogous result for the Eilenberg-Moore spectral sequence.

Key results:

$$G = \text{Simplicial group} \Rightarrow BG = \text{classifying space.}$$

$$BG = \dots (((SG \times_{\tau} SG) \times_{\tau} SG) \times_{\tau} SG) \times_{\tau} \dots \dots$$

$$X = \text{Simplicial set} \Rightarrow KX = \text{Kan loop space.}$$

$$KX = \dots (((S^{-1}X \times_{\tau} S^{-1}X) \times_{\tau} S^{-1}X) \times_{\tau} S^{-1}X) \times_{\tau} \dots$$

Analogous process \Rightarrow Algorithms:

$$(G, C_*G, EC_*^G, \varepsilon_G) \mapsto (BG, C_*BG, EC_*^{BG}, \varepsilon_{BG})$$

 $(G, C_*X, EC_*^X, \varepsilon_X) \mapsto (KX, C_*KX, EC_*^{KX}, \varepsilon_{KX})$

Example: $\pi_5(\Omega S^3 \cup_2 D^3) = (\mathbb{Z}/2)^4$.

$$\#[S^5, \operatorname{Cont}(S^1, S^3) \cup_2 D^3] = 16$$

Computing plan: Five fibrations (twisted products):

$$egin{array}{lll} egin{array}{lll} egin{arra$$

Applying five times our effective version

of the Serre spectral sequence and

five times the effective version

of the Eilenberg-Moore spectral sequence

$$\Rightarrow \quad \pi_5(X_2) = \pi_5(X_5) = H_5(X_5) = (\mathbb{Z}/2)^4.$$

The END

```
;; Cloc
Computing
<TnPr <Tn
End of computing.

;; Clock -> 2002-01-17, 19h 25m 36s.
Computing the boundary of the generator 19 (dimension 7) :
<TnPr <TnPr <TnPr S3 <<Abar[2 S1][2 S1]>>> <<Abar>>> End of computing.

Homology in dimension 6 :
Component Z/12Z
```

---done---

;; Clock -> 2002-01-17, 19h 27m 15s

Ana Romero, Universidad de La Rioja Francis Sergeraert, Institut Fourier, Grenoble Noon Seminar, ETH Zurich, June 14, 2012