Constructive Logic

Constructive Algebraic Topology

;5 Clock -> 2882-81-17, 1%h 25m 36s.
Computing the boundary of the generator 19 {dimension 7) :
£TnPr <TnPr <TnPr S3 <<Abar[2 S1][2 S$1]>>> <<{Abar>>> <{{Abar>>>
End of computing.

Homology in dimension 6 :

Component 251272

---done---

;: Clock -» 2802-081-17, 1%9h 27m 1

Francis Sergeraert, Institut Fourier, Grenoble
Legons de Mathématiques d’Aujourd’hui
Bordeauz, March 3, 2011
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Semantics of colours:

Blue = “Standard” Mathematics
Red = Constructive, effective,

algorithm, machine object, ...
Violet = Problem, difficulty,

obstacle, disadvantage, ...
Green = Solution, essential point,

mathematicians, ...
Dark Orange = Fuzzy objects.



Plan:

8.
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. The Computability Problem in Algebraic Topology.
. A harder problem can be easier.

. Basic Homological Algebra and questionable ’s.

Mathematical structures and Functional Programming.

. Effective vs locally effective objects.
. Homological Reductions.

. Basic Perturbation Lemma.

= Constructive Algebraic Topology OK !!!



3,/46

1/8. The computability problem in Algebraic Topology.

Typical example.
Serre (1951): w5(S?) = Z/2 (= Fields Medal).

Definition: m5(S?) = mo(Cont(S?, S?))

with my := set of connected components.

Function 7 : (n>2, Topological Space) — Abelian Group

(5,82%) — 7/2

Observation: The argument (5, S?) can be

an input of a computer program.
The value Z/2 could be

an output of a computer program.
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Lisp coding of §? = D3 = A3:

((123)(023)(013) (01 2))
3

Coding of an abelian group of finite type:

7Z/6 ®7Z/30 B 7> = (6 30 0 0)
7/2 = (2)
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Jean-Pierre Serre (1953):

Theorem: For every “reasonable” space X,

the homology groups H,(X) and
the homotopy groups m,(X) have finite type.

Example of reasonable space:

Cont(S', D?* U, Cont(S?, P*R/P?R))

Example of computability problem:

H4(Cont(S', D?®U, Cont(S?, P*R/P°R))) = 777
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Natural problem:

Does there exist an algorithm:

Input: (n,X)

n = natural number

X = topological space comb. coded

Output: (dy dy ---dg)
— integer list
coding an abelian group of finite type

satisfying 7w, (X) =2/d1 ® Z/d> B -+ ® Z/dy
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First positive answer:

Edgar Brown (1956): X = simply connected

finite simplicial complex.

= m,(X) is computable.

But Edgar Brown also warned his method is:

“much too complicated to be considered practical”.



ANNALS OF MATHEMATICS
Vol. 65, No. 1, January, 1957
Printed in U.S.A.

FINITE COMPUTABILITY OF POSTNIKOV COMPLEXES!

By Epcar H. Brown, Jr.

(Received March 3, 1956)

In [4] Postnikov associates with each arcwise connected space X a sequence

simply connected simplicial complex. From these results we are then able to
prove:

(1) If X is a simply connected simplicial complex, then m, (X) is finitely
computable for each n > 0.

(i1) If X and Y are simplv _connected simnlicial comnlexes with finite ho.

(I VC @ TIITUE TTUIITOET O TTOTT-UCZETIETA TE SIITIPIEXES. ]

It must be emphasized that although the procedures developed for solving

these problems are finite, they are much too complicated to_be considered
practical.

In the first section of this paner we give same nreliminary definitions  eon
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50 years later = same appreciation:
“Much too complicated to be considered practical” 777
Yes, because of hyper- - .- -hyper-exponential complexity.
=

Second natural problem:

Does there exist an algorithm (n, X) — m,(X)

concretely usable 777
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Two potential current solutions (1-2)

+ one effective solution (3):

1. Approximating infinite objects
by inductive limits of finite objects.

(Rolf Schon + Alain Clément)

2. Operadic solution.

(Peter May + Michael Mandell 4+ Benoit Fresse)

3. Constructive homological algebra.

(FS + Julio Rubio + Ana Romero)
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2/8. A harder problem can be easier.

GCD between all these methods:

Design a more ambitious problem

+ Functional programming.

Didactic analogous problem: Zeros of f € F5 77

Definition: f € 72 (= Functions with infinite limit)

is a function f : N — N

satisfying lim f(n) = oo.
n—oo
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Theorem: f € F =
Z(f) :=+#{n € N st f(n) = 0} is finite.

Problem 1: Algorithm F®° — N: f — Z(f) 777

Theorem 1: Such an algorithm does not exist.

Theorem: f,g € F = go f e FZ.

Problem 2: Algorithm:

(F* x N x F© x N) 25 N
f > 2(f) » 9 , Z(g) — Z(gof) 777

Theorem 2: Such an algorithm does not exist.
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Analysis of the problem:

Translation of lim f(n) = oo:

n—oo

(Vm € N) (3N € N) (Vn > N) (f(n) > m)
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Analysis of the problem:

Translation of lim f(n) = oo:

n—oo

(vm € N) (3N € 1) (¥n > N) (f(n) > m)

The key point is in the quantifier (3N € N):

if . non-constructive, the penalty is certain :

no algorithms to process the interesting questions.

The constructive existence of N
consists in having a process (algorithm)

producing N when m is given.
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Constructive version of .7:;?:

Definition: CFX = {(f, f)} satisfying:

f = algorithm N — N;
f = algorithm N — N st :
(F(m) = N) = [(n > N) = (f(n) > m)]

f = constructive version of lim = oo
n—oo

In this constructive context,

Theorems 1 and 2 have positive answers.
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Theorem 1’: J algorithm:

Z:CFZ — N:(f,f) — Z(f)
Solution: Examine {f(n)}o<, @)

Theorem 2’: 3 algorithm:

Cmp : CFEX x CFE—CFL : [(f,f),(9,9)] — (go f,gof)

Proof:

(go f)(n) > m < f(n) > g(m) < n > f(g(m))

= Take go f := fog. QED
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3/8. Basic Homological Algebra and questionable J’s.

1. Locate the Jd’s
in the definitions of Homological Algebra.
2. Examine whether these 3’s are constructive.
3. If not, improve the definition
to have only constructive 3’s.
4. The computability problems

can then have natural solutions.

A Requires a high level of functional programming.
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Locating non-constructive| 3’s

in standard homological algebra.

Definition: Chain complex C, :

C*:(C*,d):[-..<— m_1<d_mCmCMCm+l<_...]

with d,,, o d,,1 1 = 0.
& kerd,, D imd,,+1 =

Definition:

ker d,,

H,,(C,) :=



Typical statement in Algebraic Topology:
H5(92°S%) = H5(Cont(S?,8%)) = Z/6
Implicit translation:
3f : Hs(928%) — 7./6
But most often the initial  is non-constructive.

H5(9,S?) := ker ds/ im dg generates another problem.

(z € kerds) A (f(Z) = O)@JHC € Cg(Q2283) st dgc = =
—

But the - again is rarely constructive.

18/46
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Effective Homology

flow chart

Functional Programming

Reductions between

Chain Complexes

Basic Perturbation Lemma

“Locally” effective objects

Connections between
Eff. & Loc.Eff. objects

Constructive

Homological Algebra
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4/8. Mathematical Structures and Functional Programming.

The art of handling and creating functional objects.

Examples of functional objects:

(Z’ Ty X) (Z[X]a Ty ><)

Other example:

Kan model for the loop space Q5? := Cont(S?, S?):

(Sas3, {0 }n>1,0<i<ns {1 }n>0,0<i<n)

with Sgg¢3 = the simplex set of the Kan model.

= “Locally” effective objects.
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Main problem:

Designing programs (fi,..., f,) — f.
Example:

(R, +m,y —oy X)) = (R[X], Forix)y —m[x7] X9a[x])

Topological example. X = topological space.

(Sx,{9(X)} }n>1,0<i<ns {7(X)} tn>0,0<i<n)
= (Sax, {9(2X)} bn>1,0<i<ny {1(Q2X)} bn>0,0<i<n)

Solution = A\-calculus, Lisp, ML, Axiom, Haskell. ..
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Effective Homology

flow chart

Functional Programming

Reductions between

Chain Complexes

Basic Perturbation Lemma

“Locally” effective objects

Connections between
Eff. & Loc.Eff. objects

Constructive

Homological Algebra
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5/8. Effective vs Locally Effective Objects.

An effective object is an object

In particular the standard global information

which is essentially entirely known.

concerning this object is reachable (= computable).

A locally effective object is most often a quite infinite object.

For any

But in general

“local”

ingredient of this object,

any necessary information is reachable.

no global information

for the underlying object is reachable.
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Notion of effective chain complex :

dn 1
Co=|...—Cp1&C, Cpiy — ...
C. = (B,d)
where:
1. B: Z — List : nw— [g],... ,ggn] = distinguished basis of C,,.

2. d: ZxN, - U : (n,i) — d,(g')€ Cp_1 when g makes sense.

In particular every C,, is a free Z-module with a finite distinguished basis.
= Every d,, : C,, — C,,_1 is computable.

= Every homology group H,,(C,) is computable

(every global information is reachable).



Notion of | locally| effective chain complex:

25,46

d, dni1

C*: e 00 n_1<_Cn<_Cn+]_<_o-o

C, = (X7 d)

where:

l. x: U XZ — Bool ={T,1}: (w,n)— T

if and only if w is a generator of C,,;

2. d: UXZ — U : (w,n) — dp(w)E Cpr_y

when w is a generator of C,, (&x(w,n) = T).

Any finite set of pointwise| computations may be done.

Godel + Church + Turing + Post = no global information is reachable;

in particular, the homology groups of C, are

not computable |
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Effective Homology

flow chart

Functional Programming

Reductions between

Chain Complexes

Basic Perturbation Lemma

“Locally” effective objects

Connections between
Eff. & Loc.Eff. objects

Constructive

Homological Algebra
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6/8. Homological Reductions.

Definition: A (homological) reduction is a diagram:

pP: h( S C* A— C*

with:

1. C, and C, = chain complexes.

2. f and g = chain complex morphisms.
3. h = homotopy operator (degree +1).

4. fg = idc, and dgh + hdg + gf = idg, .

5. fh = 0, hg = 0 and hh = 0.
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Effective Homology

flow chart

Functional Programming

Reductions between

Chain Complexes

Basic Perturbation Lemma

“Locally” effective objects

Connections between
Eff. & Loc.Eff. objects

Constructive

Homological Algebra




30,46

Let p: nC=C,.~2-C,| be a reduction.

Frequently:

AN

1. C, is a locally effective chain complex:

its homology groups are unreachable.

2. C, is an effective chain complex:

its homology groups are computable.

3. The reduction p is an entire description of

the homological nature of C..

4. Any homological problem in C. is solvable

thanks to the information provided by p.
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1. What is H,,(C.)? Solution: Compute H,(C.,).
2. Let x € C,. Is = a cycle? Solution: Compute d; ().

3. Let =, 2’ € é’n be cycles. Are they homologous?

Solution: Look whether f(x) and f(x’) are homologous.

4. Let z, 2’ € é’n be homologous cycles.
Find y € CAZ’TH_l satisfying dy — « — 2’7
Solution:
(a) Find z € C,, . satisfying dz = f(x) — f(z').

(b) y = g(2) + h(x — x').
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Effective Homology

flow chart

Functional Programming

Reductions between

Chain Complexes

Basic Perturbation Lemma

“Locally” effective objects

Connections between
Eff. & Loc.Eff. objects

Constructive

Homological Algebra




7/8. Basic Perturbation Lemma.

Definition: (C,,d) = given chain complex.

33,46

A perturbation 0 : C, — C,_; is an operator of degree -1
satisfying (d + §)? = 0 (< (dé + dd + §%) = 0):
(Cy,d) + (0) — (C,,d+9).

Problem: Let p: | hCS(C., d) % (Cs,d)

5 a perturbation of d.

How to determine a new reduction:

be a given reduction and

g+7
_|_'7

777: | h+7CS(Cy, d+0)

(C.,d+7)

describing in the same way the homology of

the chain complex with the perturbed differential?




Basic Perturbation “Lemma” (BPL):

hC,— 6

Given: f”g satisfying:

C.

1.5 is a perturbation of the differential d of 6’*;

2. The operator h o 5 is pointwise nilpotent.

Then a general algorithm BPL constructs:

5

BPL
—>

ht 6,CSCeDd + 0
f+ 61{{9"‘ dg
C, Dd+da

34/46
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Effective Homology

flow chart

Functional Programming

Reductions between

Chain Complexes

Basic Perturbation Lemma

“Locally” effective objects

Connections between
Eff. & Loc.Eff. objects

Constructive

Homological Algebra
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8/8. = Algebraic Topology becomes Constructive

Serre: “Everything” in Algebraic Topology

can be reduced to Fibration problems.

Examples: Loop spaces, Classifying spaces, Homogeneous spaces, White-

head tower, Postnikov tower, ...

Remark: Fibration = Twisted Product

= Perturbation of Trivial Product.

Corollary:  BPL is effective
+ Fibration = Perturbation of Trivial Product
+ Everything is Fibration

= Alg. Topology becomes | Constructive .
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Effective Homology

flow chart

Functional Programming

Reductions between

Chain Complexes

Basic Perturbation Lemma

“Locally” effective objects

Connections between
Eff. & Loc.Eff. objects

Constructive

Homological Algebra
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Definition: A (strong chain-) equivalence € : C, &> D,

Lp )
is a pair of reductions C, &= FE, = D,:

—SE 2

th —

4444447 <§§§§§> !////:3()\\\\~
21 14
15. .10

Normal form problem 77 5

More structure often necessary in C,.

Most often: no possible choice for C,.
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Definition: An object with effective homology X is a 4-

tuple:

X = X,C.,(X),EC,,¢

with:

1. X = an arbitrary object (simplicial set, simplicial group,

differential graded algebra, ...)

2. C.(X) = “the” chain complex “traditionally” associated

with X to define the homology groups H,(X).
3. EC, = some effective chain complex.

4. ¢ = some equivalence C,(X) @ EC..
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Main result of effective homology:

Meta-theorem: Let X,,..., X,, be a collection of objects with

effective homology and ¢ be a reasonable con-
struction process:

¢ (Xy...,Xp) — X.
Then there exists a version with effective ho-

mology ¢rm:

¢EH: (Xlac*(Xl)aECI*a €1 X?’w C*(Xn)aECn*aen)

-
°
.

-

— | X,Cy(X), EC,, e

The process is perfectly stable

and can be again used with X for further calculations.
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Example:

Julio Rubio’s solution of Adams’ problem.

X = (X, C.(X), ECX, &%)

NN

Eil.-Mooregg

QX = (2X, C.(QX), ECHX, £9X)

—> Trivial iteration now available.
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= Very simple solution of | Adam’s problem| :

Indefinite iteration of the Cobar construction 777

X = (X,0.(X), ECX,e¥)
“U’ QEH
QX = (2X,C.(QX), ECHX, 0X)
‘U’ QEH
QX = (02X, C,(Q2X), ECTX,c7X)
‘U’ QEH
PX = (X, C.(0PX), ECPX, 2X)
‘U’ QEH
04X = é‘Cobar”(EC’f)
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Example: Effective homology version of

the Serre spectral sequence.

F = (F, C.(F), ECY, &F)
+ B = (B, C.(B), ECB, £P)
+ 7:B—- F

$ 44U Serregny
E=F x,.B=(E, C.(E), ECE, ¢F)

(Serre + G. Hirsch + H. Cartan + Shih W.
+ Szczarba + Ronnie Brown + J. Rubio + FS)



Proof.

id EZ
C.(F x B) 4= C,(F x B) = C.F ® C.B

X ~ ~ 0%
C.,FRC.B«=CFCPF= ECF ECE

W Serrepn

EPL
CF®CB & CFr®

tl

Shih

BPL
CB = ECF®

t//

ECB

+ Composition of equivalences —> O.K.

44/46
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Combining these ingredients =-

Homological Algebra becomes constructive.

Corollary: The “standard” exact and spectral sequences

of Homological Algebra

really become computational tools.

= Concrete computer programs (EAT, Kenzo).
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Example of computation.

PRC P3RCP*RC.--C P>*R
=P| = P*°R/P°R is defined.

= Q?P| = Cont(S?, P*R/P>R)

m,((00P)) = H>((00P)) = Z
=f:8% - of degree 2 defined.

= D00P| = D3 ,U defined.
= QD00P| = Cont(S', D?3,U Cont(S?, P*R/P>R)).
Exercise: Hy(0ODOOP|)) = 77
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Example of computation.

PRC P3RCP*RC.--C P>®R
=P| = P*°R/P°R is defined.

= Q?P| = Cont(S?, P*R/P>R)

m,((00P)) = H>((00P)) = Z
=f:8% - of degree 2 defined.

=/ D00P| = D3 ,U defined.
= QDO0P| = Cont(S', D?U; Cont(S?, P*R/P3R)).
Solution: H,(|0DOOP]) = (Z/2)® + Z



;5 Clock -> 2882-81-17, 1%h 25m 36s.
Computing the boundary of the generator 19 {dimension 7) :

£TnPr <TnPr <TnPr S3 <<Abar[2 S1][2 S$1]>>> <<{Abar>>> <{{Abar>>>
End of computing.

Homology in dimension 6 :

Component 251272

---done---

;: Clock -» 2802-081-17, 1%9h 27m 1

The END

Francis Sergeraert, Institut Fourier, Grenoble
Legons de Mathématiques d’Aujourd’hui
Bordeauz, March 3, 2011



