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Semantics of colours:

Blue = “Standard” Mathematics

Red = Constructive, effective,

algorithm, machine object, . . .

Violet = Problem, difficulty,

obstacle, disadvantage, . . .

Green = Solution, essential point,

mathematicians, . . .

Dark Orange = Fuzzy objects.

Pale grey = Hyper-Fuzzy objects.
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Plan:

1. The Computability Problem in Algebraic Topology.

2. A harder problem can be easier.

3. Basic Homological Algebra and questionable ∃’s.

4. Mathematical structures and Functional Programming.

5. Effective vs locally effective objects.

6. Homological Reductions.

7. Basic Perturbation Lemma.

8. ⇒ Constructive Algebraic Topology OK !!!
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1/8. The computability problem in Algebraic Topology.

Typical example.

Serre (1951): π5(S
2) = Z/2 (⇒ Fields Medal).

Definition: π5(S
2) = π0(Cont(S5, S2))

with π0 := set of connected components.

Function π : (n≥2, Topological Space) 7→ Abelian Group

(5, S2) 7→ Z/2

Observation: The argument (5, S2) can be

an input of a computer program.

The value Z/2 could be

an output of a computer program.
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Lisp coding of S2 = ∂D3 = ∂∆3:

((1 2 3) (0 2 3) (0 1 3) (0 1 2))

S2 = = •

•

•

•

0

1

2

3

Coding of an abelian group of finite type:

Z/6⊕ Z/30⊕ Z2 = (6 30 0 0)

Z/2 = (2)
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Jean-Pierre Serre (1953):

Theorem: For every “reasonable” space X,

the homology groups Hn(X) and

the homotopy groups πn(X) have finite type.

Example of reasonable space:

Cont(S1, D3 ∪2 Cont(S2, P∞R/P 3R))

Example of computability problem:

H4(Cont(S1, D3 ∪2 Cont(S2, P∞R/P 3R))) = ???



6/46

Natural problem:

Does there exist an algorithm:

Input: (n,X)

n = natural number

X = topological space comb. coded

Output: (d1 d2 · · · dk)
= integer list

coding an abelian group of finite type

satisfying πn(X) = Z/d1 ⊕ Z/d2 ⊕ · · · ⊕ Z/dk
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First positive answer:

Edgar Brown (1956): X = simply connected

finite simplicial complex.

⇒ πn(X) is computable.

But Edgar Brown also warned his method is:

“much too complicated to be considered practical”.
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50 years later ⇒ same appreciation:

“Much too complicated to be considered practical” ???

Yes, because of hyper- · · · -hyper-exponential complexity.

⇒

Second natural problem:

Does there exist an algorithm (n,X) 7→ πn(X)

concretely usable ???
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Two potential current solutions (1-2)

+ one effective solution (3):

1. Approximating infinite objects

by inductive limits of finite objects.

(Rolf Schön + Alain Clément)

2. Operadic solution.

(Peter May + Michael Mandell + Benoit Fresse)

3. Constructive homological algebra.

(FS + Julio Rubio + Ana Romero)
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2/8. A harder problem can be easier.

GCD between all these methods:

Design a more ambitious problem

+ Functional programming.

Didactic analogous problem: Zeros of f ∈ F∞∞ ??

Definition: f ∈ F∞∞ (= Functions with infinite limit)

is a function f : N→ N
satisfying lim

n→∞
f(n) =∞.
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Theorem: f ∈ F∞∞ ⇒
Z(f) := #{n ∈ N st f(n) = 0} is finite.

Problem 1: Algorithm F∞∞
???−→ N : f 7−→ Z(f) ???

Theorem 1: Such an algorithm does not exist.

Theorem: f, g ∈ F∞∞ ⇒ g ◦ f ∈ F∞∞ .

Problem 2: Algorithm:

(F∞∞ × N × F∞∞ × N)
???−→ N

(f , Z(f) , g , Z(g)) 7−→ Z(g ◦ f) ???

Theorem 2: Such an algorithm does not exist.
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Analysis of the problem:

Translation of lim
n→∞

f(n) =∞:

(∀m ∈ N) (∃N ∈ N) (∀n ≥ N) (f(n) ≥ m)
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Analysis of the problem:

Translation of lim
n→∞

f(n) =∞:

(∀m ∈ N) (∃N ∈ N) (∀n ≥ N) (f(n) ≥ m)

The key point is in the quantifier (∃N ∈ N):

if non-constructive , the penalty is certain :

no algorithms to process the interesting questions.

The constructive existence of N

consists in having a process (algorithm)

producing N when m is given.
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Constructive version of F∞∞ :

Definition: CF∞∞ = {(f, f)} satisfying:

f = algorithm N → N;

f = algorithm N → N st :

(f(m) = N)⇒ [(n ≥ N)⇒ (f(n) ≥ m)]

f = constructive version of lim
n→∞

=∞

In this constructive context,

Theorems 1 and 2 have positive answers.
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Theorem 1’: ∃ algorithm:

Z : CF∞∞ −→ N : (f, f) 7−→ Z(f)

Solution: Examine {f(n)}0≤n<f(1).

Theorem 2’: ∃ algorithm:

Cmp : CF∞∞ × CF
∞
∞→CF

∞
∞ : [(f, f), (g, g)] 7→ (g ◦ f, g ◦ f)

Proof:

(g ◦ f)(n) ≥ m⇐ f(n) ≥ g(m)⇐ n ≥ f(g(m))

⇒ Take g ◦ f := f ◦ g. QED
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3/8. Basic Homological Algebra and questionable ∃’s.

1. Locate the ∃’s
in the definitions of Homological Algebra.

2. Examine whether these ∃’s are constructive.

3. If not, improve the definition

to have only constructive ∃’s.
4. The computability problems

can then have natural solutions.

Requires a high level of functional programming.
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Locating non-constructive ∃’s
in standard homological algebra.

Definition: Chain complex C∗ :

C∗ = (C∗, d) = [· · · ← Cm−1
dm←− Cm

dm+1←− Cm+1 ← · · ·]

with dm ◦ dm+1 = 0.

⇔ ker dm ⊃ im dm+1 ⇒

Definition:

Hm(C∗) :=
ker dm

im dm+1
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Typical statement in Algebraic Topology:

H5(Ω
2S3) = H5(Cont(S2, S3)) = Z/6

Implicit translation:

∃f : H5(Ω
2S3)

∼=−→ Z/6

But most often the initial ∃ is non-constructive.

H5(Ω2S
3) := ker d5/ im d6 generates another problem.

(z ∈ ker d5) ∧ (f(z) = 0)⇔ ∃c ∈ C6(Ω
2S3) st d6c = z

But the ∃ again is rarely constructive.
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Effective Homology

flow chart

Functional Programming

“Locally” effective objects

Reductions between

Chain Complexes

Connections between

Eff. & Loc.Eff. objects

Basic Perturbation Lemma
Constructive

Homological Algebra
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4/8. Mathematical Structures and Functional Programming.

The art of handling and creating functional objects.

Examples of functional objects:

(Z,+,−,×) (Z[X],+,−,×)

Other example:

Kan model for the loop space ΩS3 := Cont(S1, S3):

(SΩS3, {∂ni }n≥1,0≤i≤n, {ηni }n≥0,0≤i≤n)

with SΩS3 = the simplex set of the Kan model.

= “Locally” effective objects.
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Main problem:

Designing programs (f1, . . ., fn) 7→ f .

Example:

(R,+R,−R,×R) 7→ (R[X],+R[X],−R[X],×R[X])

Topological example. X = topological space.

(SX, {∂(X)ni }n≥1,0≤i≤n, {η(X)ni }n≥0,0≤i≤n)

7→ (SΩX, {∂(ΩX)ni }n≥1,0≤i≤n, {η(ΩX)ni }n≥0,0≤i≤n)

Solution = λ-calculus, Lisp, ML, Axiom, Haskell. . .
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Effective Homology

flow chart

Functional ProgrammingX

“Locally” effective objects

Reductions between

Chain Complexes

Connections between

Eff. & Loc.Eff. objects

Basic Perturbation Lemma
Constructive

Homological Algebra



23/46

5/8. Effective vs Locally Effective Objects.

An effective object is an object

which is essentially entirely known.

In particular the standard global information

concerning this object is reachable (= computable).

A locally effective object is most often a quite infinite object.

For any “local” ingredient of this object,

any necessary information is reachable.

But in general no global information

for the underlying object is reachable.
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Notion of effective chain complex :

C∗ = . . .← Cn−1
dn← Cn

dn+1← Cn+1 ← . . .

C∗ = (β, d)

where:

1. β: Z→ List : n 7→ [gn1 , . . . , g
n
kn

] = distinguished basis of Cn.

2. d: Z×̃N∗ → U : (n, i) 7→ dn(gni )∈ Cn−1 when gni makes sense.

In particular every Cn is a free Z-module with a finite distinguished basis.

⇒ Every dn : Cn → Cn−1 is computable.

⇒ Every homology group Hn(C∗) is computable

(every global information is reachable).



25/46

Notion of locally effective chain complex:

C∗ = . . .← Cn−1
dn← Cn

dn+1← Cn+1 ← . . .

C∗ = (χ, d)

where:

1. χ: U × Z→ Bool = {>,⊥} : (ω, n) 7→ >
if and only if ω is a generator of Cn;

2. d: U×̃Z→ U : (ω, n) 7→ dn(ω)∈ Cn−1

when ω is a generator of Cn (⇔χ(ω, n) = >).

Any finite set of pointwise computations may be done.

Gödel + Church + Turing + Post ⇒ no global information is reachable;

in particular, the homology groups of C∗ are not computable .
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Effective Homology

flow chart

Functional ProgrammingX

“Locally” effective objectsX

Reductions between

Chain Complexes

Connections between

Eff. & Loc.Eff. objects

Basic Perturbation Lemma
Constructive

Homological Algebra
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6/8. Homological Reductions.

Definition: A (homological) reduction is a diagram:

ρ: Ĉ∗ C∗
f

g
h

with:

1. Ĉ∗ and C∗ = chain complexes.

2. f and g = chain complex morphisms.

3. h = homotopy operator (degree +1).

4. fg = idC∗ and dĈh+ hdĈ + gf = idĈ∗.

5. fh = 0, hg = 0 and hh = 0.
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{ · · · Ĉm−1 Ĉm Ĉm+1 · · · } = Ĉ∗

{ · · · Am−1 Am Am+1 · · · } = A∗

{ · · · Bm−1 Bm Bm+1 · · · } = B∗

{ · · · C′m−1 C′m C′m+1 · · · } = C′∗

{ · · · Cm−1 Cm Cm+1 · · · } = C∗

h

d

h

d

h

d

h

d

d

h

∼=
d

h

∼=
d

h

∼=
d

h

∼=⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕ ⊕
d d d d

d d d d

f g∼= f g∼= f g∼= f g∼=

A∗ = ker f ∩ kerh B∗ = ker f ∩ ker d C′∗ = im g

Ĉ∗ = A∗ ⊕B∗ exact ⊕ C′∗
∼= C∗
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Effective Homology

flow chart

Functional ProgrammingX

“Locally” effective objectsX

Reductions between

Chain ComplexesX
Connections between

Eff. & Loc.Eff. objects

Basic Perturbation Lemma
Constructive

Homological Algebra
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Let ρ: Ĉ∗ C∗
f

g
h be a reduction.

Frequently:

1. Ĉ∗ is a locally effective chain complex:

its homology groups are unreachable.

2. C∗ is an effective chain complex:

its homology groups are computable.

3. The reduction ρ is an entire description of

the homological nature of Ĉ∗.

4. Any homological problem in Ĉ∗ is solvable

thanks to the information provided by ρ.



31/46

ρ: Ĉ∗ C∗
f

g
h

1. What is Hn(Ĉ∗)? Solution: Compute Hn(C∗).

2. Let x ∈ Ĉn. Is x a cycle? Solution: Compute dĈ∗(x).

3. Let x, x′ ∈ Ĉn be cycles. Are they homologous?

Solution: Look whether f(x) and f(x′) are homologous.

4. Let x, x′ ∈ Ĉn be homologous cycles.

Find y ∈ Ĉn+1 satisfying dy = x− x′?
Solution:

(a) Find z ∈ Cn+1 satisfying dz = f(x)− f(x′).

(b) y = g(z) + h(x− x′).
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Effective Homology

flow chart

Functional ProgrammingX

“Locally” effective objectsX

Reductions between

Chain ComplexesX
Connections between

Eff. & Loc.Eff. objects

Basic Perturbation Lemma
Constructive

Homological Algebra

X



33/46

7/8. Basic Perturbation Lemma.

Definition: (C∗, d) = given chain complex.

A perturbation δ : C∗ → C∗−1 is an operator of degree -1

satisfying (d+ δ)2 = 0 (⇔ (dδ + δd+ δ2) = 0):

(C∗, d) + (δ) 7→ (C∗, d+δ).

Problem: Let ρ: (Ĉ∗, d̂) (C∗, d)
f

g
h be a given reduction and

δ̂ a perturbation of d̂.

How to determine a new reduction:

???: (Ĉ∗, d̂+δ̂) (C∗, d+?)
f+?

g+?
h+?

describing in the same way the homology of

the chain complex with the perturbed differential?
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Basic Perturbation “Lemma” (BPL):

Given:

C∗

Ĉ∗

f g

h δ̂

satisfying:

1. δ̂ is a perturbation of the differential d̂ of Ĉ∗;

2. The operator h ◦ δ̂ is pointwise nilpotent.

Then a general algorithm BPL constructs:

C∗

Ĉ∗

f g

h d̂

d

+ Ĉ∗ δ̂
BPL7→

C∗

Ĉ∗

f + δf g + δg

h+ δh d + δ̂

d+ δd
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Effective Homology

flow chart

Functional ProgrammingX

“Locally” effective objectsX

Reductions between

Chain ComplexesX
Connections between

Eff. & Loc.Eff. objects

Basic Perturbation LemmaX
Constructive

Homological Algebra

X
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8/8. ⇒ Algebraic Topology becomes Constructive

Serre: “Everything” in Algebraic Topology

can be reduced to Fibration problems.

Examples: Loop spaces, Classifying spaces, Homogeneous spaces, White-

head tower, Postnikov tower, . . .

Remark: Fibration = Twisted Product

= Perturbation of Trivial Product.

Corollary: BPL is effective

+ Fibration = Perturbation of Trivial Product

+ Everything is Fibration

⇒ Alg. Topology becomes Constructive .
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Effective Homology

flow chart

Functional ProgrammingX

“Locally” effective objectsX

Reductions between

Chain ComplexesX
Connections between

Eff. & Loc.Eff. objects

Basic Perturbation LemmaX
Constructive

Homological Algebra

X

X
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Definition: A (strong chain-) equivalence ε : C∗ WWWVVV D∗

is a pair of reductions C∗
`ρ

WWW E∗
rρ

VVV D∗:

C∗ D∗

E∗

`f

`g rf

rg

`h rh

21

15

14

10

42

30

7

5Normal form problem ??

More structure often necessary in C∗.

Most often: no possible choice for C∗.
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Definition: An object with effective homology X is a 4-

tuple:

X = X,C∗(X), EC∗, ε

with:

1. X = an arbitrary object (simplicial set, simplicial group,

differential graded algebra, . . . )

2. C∗(X) = “the” chain complex “traditionally” associated

with X to define the homology groups H∗(X).

3. EC∗ = some effective chain complex.

4. ε = some equivalence C∗(X)
ε

WWWVVV EC∗.
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Main result of effective homology:

Meta-theorem: Let X1, . . . , Xn be a collection of objects with

effective homology and φ be a reasonable con-

struction process:

φ : (X1, . . . , Xn) 7→ X.

Then there exists a version with effective ho-

mology φEH:

φEH: (X1, C∗(X1), EC1∗, ε1 , . . . , Xn, C∗(Xn), ECn∗, εn )

7→ X,C∗(X), EC∗, ε

The process is perfectly stable

and can be again used with X for further calculations.
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Example:

Julio Rubio’s solution of Adams’ problem.

X = (X, C∗(X), ECX
∗ , ε

X)

⇓⇓⇓

ΩX = (ΩX, C∗(ΩX), ECΩX
∗ , εΩX)

=⇒ Trivial iteration now available.

Eil.-MooreEH
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⇒ Very simple solution of Adam’s problem :

Indefinite iteration of the Cobar construction ???

X = (X,C∗(X), ECX
∗ , ε

X)

⇓ ΩEH

ΩX = (ΩX,C∗(ΩX), ECΩX
∗ , εΩX)

⇓ ΩEH

Ω2X = (Ω2X,C∗(Ω
2X), ECΩ2X

∗ , εΩ2X)

⇓ ΩEH

Ω3X = (Ω3X,C∗(Ω
3X), ECΩ3X

∗ , εΩ3X)

⇓ ΩEH

Ω4X = . . . “Cobar”
3

(ECX
∗ )

6

-
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Example: Effective homology version of

the Serre spectral sequence.

F = (F , C∗(F ), ECF
∗ , ε

F )

+ B = (B, C∗(B), ECB
∗ , ε

B)

+ τ : B → F

⇓ ⇓ ⇓ ⇓ ⇓ SerreEH

E = F ×τ B = (E, C∗(E), ECE, εE)

(Serre + G. Hirsch + H. Cartan + Shih W.

+ Szczarba + Ronnie Brown + J. Rubio + FS)
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Proof.

C∗(F ×B)
id
WWW C∗(F ×B)

EZ
VVV C∗F ⊗ C∗B

C∗F ⊗ C∗B
⊗

WWW ĈF ⊗ ĈB
⊗

VVV ECF ⊗ ECB

⇓⇓⇓⇓⇓ SerreEH

C∗(F × τ B)
id
WWW C∗(F × τ B)

Shih
VVV C∗F ⊗ t C∗B

C∗F ⊗ t C∗B
EPL
WWW ĈF ⊗

t′
ĈB

BPL
VVV ECF ⊗

t′′
ECB

+ Composition of equivalences =⇒ O.K.
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Combining these ingredients ⇒

Homological Algebra becomes constructive.

Corollary: The “standard” exact and spectral sequences

of Homological Algebra

really become computational tools.

⇒ Concrete computer programs (EAT, Kenzo).
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Example of computation.

P 2R ⊂ P 3R ⊂ P 4R ⊂ · · · ⊂ P∞R
⇒ P = P∞R/P 3R is defined.

OOP = Ω2 P = Cont(S2, P∞R/P 3R)

π2( OOP ) = H2( OOP ) = Z
⇒f : S2 → OOP of degree 2 defined.

⇒ DOOP = D3
2∪ OOP defined.

ODOOP = Ω DOOP = Cont(S1, D3
2∪ Cont(S2, P∞R/P 3R)).

Exercise: H4( ODOOP ) = ??
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Example of computation.

P 2R ⊂ P 3R ⊂ P 4R ⊂ · · · ⊂ P∞R
⇒ P = P∞R/P 3R is defined.

OOP = Ω2 P = Cont(S2, P∞R/P 3R)

π2( OOP ) = H2( OOP ) = Z
⇒f : S2 → OOP of degree 2 defined.

⇒ DOOP = D3
2∪ OOP defined.

ODOOP = Ω DOOP = Cont(S1, D3 ∪2 Cont(S2, P∞R/P 3R)).

Solution: H4( ODOOP ) = (Z/2)8 + Z
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