Discrete Vector Fields and

Basic Algebraic Topology

```
Computing
<TnPr <Tn
End of computing.

;; Clock -> 2002-01-17, 19h 25m 36s.
Computing the boundary of the generator 19 (dimension 7) :
<TnPr <TnPr <TnPr S3 <<Abar[2 S1][2 S1]>>> <<Abar>>> End of computing.

Homology in dimension 6 :

Component Z/12Z
---done---
```

;; Clock -> 2002-01-17, 19h 27m 15s

;; Cloc

Francis Sergeraert, Institut Fourier, Grenoble Cirm-Luminy, March 2010

Semantics of colours:

```
Blue = "Standard" Mathematics
        Red = Constructive, effective,
                          algorithm, machine object, ...
      Violet = Problem, difficulty,
                              obstacle, disadvantage, ...
      Green = Solution, essential point,
                                    mathematicians, ...
Dark Orange = Fuzzy objects.
   Pale grey = Hyper-Fuzzy objects.
```

Plan:

- 1. Algebraic discrete vector fields.
- 2. Products of simplices.
- 3. Eilenberg-Zilber Theorem.
- 4. Vector Fields \Rightarrow Eilenberg-Zilber.
- 5. Vector Fields \Rightarrow Twisted Eilenberg-Zilber.
- 6. Vector-Fields \Rightarrow Basic Spectral Sequences.

<u>Definition</u>: A(n algebraic) cellular chain complex C_* is a pair: $C_* = ((\beta_p)_{p \in \mathbb{Z}}, (d_p)_{p \in \mathbb{Z}})$ satisfying:

- ullet eta_p is the distinguished basis of a free $\mathbb{Z} ext{-module } C_p = \mathbb{Z}[eta_p].$
- $ullet d_p: C_p o C_{p-1} ext{ is a differential } (d^2=0).$

Examples: Chain complexes coming from:

- Simplicial complexes, simplicial sets,

 CW-complexes.
- Digital images.
- Chain complexes of the very kernel of standard Algebraic Topology.

<u>Definition</u>: A p-cell is an element of β_p .

<u>Definition</u>: If $\sigma \in \beta_{p-1}$ and $\tau \in \beta_p$,

then $\varepsilon(\sigma, \tau) := \text{coefficient of } \sigma \text{ in } d\tau.$

<u>Definition</u>: σ is a face of τ if $\varepsilon(\sigma, \tau) \neq 0$.

<u>Definition</u>: σ is a regular face of τ if $\varepsilon(\sigma, \tau) = \pm 1$.

<u>Definition</u>: A vector field is a set $V = \{(\sigma_i, \tau_i)_{i \in v}\}$ satisfying:

- $(\forall i)$ σ_i is regular face of τ_i .
- $\bullet \ (\forall i \neq j) \ \ \sigma_i \neq \sigma_j \neq \tau_i \neq \tau_j.$

Examples:

 $V = \{(\sigma_i, \tau_i)_{i \in v}\} = \text{Vector field.}$

<u>Definition</u>: A critical p-cell is an element of β_p

which does not occur in V.

Other cells divided in source cells and target cells.

Example:

 $V = \{(\sigma_i, \tau_i)_{i \in v}\}$ = Vector field.

<u>Definition</u>: A V-path is a sequence:

$$(\sigma_{i_1}, au_{i_1},\sigma_{i_2}, au_{i_2},\ldots,\sigma_{i_n}, au_{i_n})$$

with $(\sigma_{i_j}, \tau_{i_j}) \in V$ and σ_{i_j} face of $\tau_{i_{j-1}}$.

Note: σ_{i_j} not necessarily regular face of $\tau_{i_{j-1}}$.

Example:

 $V = \{(\sigma_i, \tau_i)_{i \in v}\} = \text{Vector field.}$

<u>Definition</u>: A vector field is admissible if,

for every source cell σ ,

the length of the V-paths starting from σ

is bounded by $\lambda(\sigma) \in \mathbb{N}$.

 $C_* = ((eta_p)_{p \in \mathbb{Z}}, d) = ext{Cellular chain complex.}$ $V = \{(oldsymbol{\sigma}_i, au_i)_{i \in v}\} = ext{Admissible vector field.}$

Theorem: A "critical" chain complex $C^c_* = ((\beta^c_p)_{p \in \mathbb{Z}}, d^c)$ can be constructed:

- β_p^c = the set of critical *p*-cells of V.
- $ullet d_p^c: \mathbb{Z}[eta_p^c] o \mathbb{Z}[eta_{p-1}^c]$ an appropriate "critical" differential deduced from the initial differential d and the vector field V.

Also a canonical reduction $\rho: C_* \Longrightarrow C_*^c$ is provided.

 \Rightarrow Any homological problem in C_* can be solved in C_*^c .

Simple example.

$\underline{\text{Theorem}} \Rightarrow$

$$ho: C_* rianglequip C_*^c = egin{bmatrix} d_1^c \ d_1^c \end{bmatrix} = \mathbb{Z} \overset{d_1^c = 0}{\longleftarrow} \mathbb{Z} = ext{Circle}$$

More sophisticated example:

$$K = K(\mathbb{Z}, 1) = \text{Kan minimal (!) model of } B\mathbb{Z}.$$

$$K_n = \mathbb{Z}^n_* \; \Rightarrow \; C_n(K) = \mathbb{Z}[\mathbb{Z}^n_*]$$

$$d[1|2|3|4] := [2|3|4] - [3|3|4] + [1|5|4] - [1|2|7] + [1|2|3]$$

Represents the functor $X \mapsto H^1(X, \mathbb{Z})$

in the simplicial world.

 $K(\mathbb{Z},1)$ = the fundamental base

of the algebraic topology of the fibrations.

What about the homological nature of $K(\mathbb{Z},1)$??

Solution = Vector Field V.

Recipe:

Every $[1|a_2|a_3|\cdots]$ with $a_2>0$ is the target of the vector $([a_2+1|a_3|\cdots],\ [1|a_2|a_3|\cdots]).$

Every $[1|a_2|a_3|\cdots]$ with $a_2<0$ is the target of the vector $([a_2|a_3|\cdots], [1|a_2|a_3|\cdots])$.

Exercise: The critical cells are $\beta_0^c = \{[]\}$ and $\beta_1^c = \{[1]\}$.

 $\Rightarrow K(\mathbb{Z},1)$ has the homology type of the circle S^1 and also the homotopy type.

Continuation of the story:

Vector Fields \Rightarrow Eilenberg-Zilber

⇒ Twisted Eilenberg-Zilber ⇒ Serre spectral sequence
 ⇒ Eilenberg-Moore spectral sequence.

Main problem: Triangulation of $\Delta^p \times \Delta^q$???

Two
$$\Delta^2$$
 in $\Delta^1 \times \Delta^1$: $(0,0) < (0,1) < (1,1)$
 $(0,0) < (1,0) < (1,1)$

Three
$$\Delta^3$$
 in $\Delta^2 \times \Delta^1$: $(0,0) < (0,1) < (1,1) < (2,1)$
$$(0,0) < (1,0) < (1,1) < (2,1)$$
$$(0,0) < (1,0) < (2,0) < (2,1)$$

Rewriting the triangulation of $\Delta^2 \times \Delta^1$.

"Seeing" the triangulation of $\Delta^5 \times \Delta^3$.

Example of 5-simplex:

$$\sigma \in (\Delta^5 imes \Delta^3)_5$$

 \Rightarrow 6 faces:

$$\partial_5 \sigma$$

 \Rightarrow Canonical discrete vector field for $\Delta^5 \times \Delta^3$.

Recipe: First "event" = Diagonal step =
$$\checkmark$$
 \Rightarrow Source cell.
= (-90°) -bend = \checkmark \Rightarrow Target cell.

Critical cells ??

Critical cell = cell without any "event" = without any diagonal or -90° -bend.

Examples.

Conclusion:

$$C_*^c = C_*(\Delta^5) \otimes C_*(\Delta^3)$$

Fundamental theorem of vector fields \Rightarrow

Canonical Homological Reductions:

$$oldsymbol{
ho}: C_*(\Delta^5 imes \Delta^3) imes C_*(\Delta^5) \otimes C_*(\Delta^3)$$

$$oldsymbol{
ho}: C_*(\Delta^p imes \Delta^q) imes C_*(\Delta^p) \otimes C_*(\Delta^q)$$

$$p = q = 10 \implies 16,583,583,743 \text{ vs } 4,190,209$$

More generally: X and Y =simplicial sets.

An admissible discrete vector field is canonically defined on $C_*(X \times Y)$.

$$\Rightarrow$$
 Critical chain complex $C^c_*(X \times Y) = C_*(X) \otimes C_*(Y)$.

Eilenberg-Zilber Theorem: Canon. homological reduction:

$$ho_{EZ}: C_*(X imes Y) riangleqsilon_*^c(X imes Y) = C_*(X)\otimes C_*(Y)$$

 \Rightarrow Künneth theorem to compute $H_*(X \times Y)$.

Notion of twisted product.

Simplest example: $\mathbb{Z} \times S^1$ vs $\mathbb{Z} \times_{\tau} S^1 = \mathbb{R}$:

General notion of twisted product: B = base space.

F =fibre space.

G =structural group.

Action $G \times F \to F$.

 $\tau: B \to G = \text{Twisting function}.$

Structure of $F \times_{\tau} B$:

$$egin{aligned} \partial_i(\sigma_f,\sigma_b) &= (\partial_i\sigma_f,\partial_i\sigma_b) & ext{for } i>0 \ \partial_0(\sigma_f\;,\;\sigma_b) &= (au(\sigma_b).\partial_0\sigma_f\;,\;\partial_0\sigma_b) \end{aligned}$$

 \Rightarrow Only the $\boxed{0\text{-face}}$ is modified in the twisted product.

Reminder about the EZ-vector field of $\Delta^5 \times \Delta^3$.

The vector field is concerned by faces ∂_i only if i > 0.

- 1. The twisting function τ modifies only 0-faces.
- 2. The EZ-vector field V_{EZ} of $X \times Y$ uses only i-faces with $i \geq 1$.

 $\Rightarrow V_{EZ}$ is defined and admissible as well on $X \times_{|\tau|} Y$.

Fundamental theorem of admissible vector fields \Rightarrow

Known as the twisted Eilenberg-Zilber Theorem.

Corollary: Base B 1-reduced \Rightarrow Algorithm:

$$egin{aligned} [(F,C_*(F),EC_*^F,arepsilon_F)+(B,C_*(B),EC_*^B,arepsilon_B)+G+ au] \ &\longmapsto (F imes_{ au}B,C_*(F imes_{ au}B),EC_*^{F imes_{ au}B},arepsilon_{F imes_{ au}B}). \end{aligned}$$

Version of F with effective homology

- + Version of B with effective homology
- $+ G + \tau$ describing the fibration $F \hookrightarrow F \times_{\tau} B \to B$
- \Rightarrow Version with effective homology of the total space $F \times_{\tau} B$.
- = Version with effective homology

of the Serre Spectral Sequence

Analogous result for the Eilenberg-Moore spectral result.

Key results:

$$G = \text{Simplicial group} \Rightarrow BG = \text{classifying space.}$$

$$BG = \dots (((SG \times_{\tau} SG) \times_{\tau} SG) \times_{\tau} SG) \times_{\tau} \dots \dots$$

$$X = \text{Simplicial set} \Rightarrow KX = \text{Kan loop space.}$$

$$KX = \dots (((S^{-1}X \times_{\tau} S^{-1}X) \times_{\tau} S^{-1}X) \times_{\tau} S^{-1}X) \times_{\tau} \dots$$

Analogous process \Rightarrow Algorithms:

$$(G, C_*G, EC_*^G, \varepsilon_G) \mapsto (BG, C_*BG, EC_*^{BG}, \varepsilon_{BG})$$

 $(G, C_*X, EC_*^X, \varepsilon_X) \mapsto (KX, C_*KX, EC_*^{KX}, \varepsilon_{KX})$

More generally:

$$[\alpha: E \to B] + [\alpha': E' \to B] + [\alpha \text{ fibration}]$$

 $\Rightarrow \text{ algorithm: } (B_{EH}, E_{EH}, E'_{EH}, \alpha, \alpha') \mapsto (E \times_B E')_{EH}.$

$$egin{array}{cccc} E' imes_BE&\longrightarrow&E\ &&&&\downarrow^lpha\ &&&\downarrow^lpha\ E'&\longrightarrow&B \end{array}$$

= Version with effective homology

of Eilenberg-Moore spectral sequence I.

Also:

= Version with effective homology

of Eilenberg-Moore spectral sequence II.

The END

```
Computing
<TnPr <Tn
End of computing.

;; Clock -> 2002-01-17, 19h 25m 36s.
Computing the boundary of the generator 19 (dimension 7) :
<TnPr <TnPr <TnPr S3 <<Abar[2 S1][2 S1]>>> <<Abar>>> End of computing.

Homology in dimension 6 :

Component Z/12Z
---done---
```

;; Clock -> 2002-01-17, 19h 27m 15s

;; Cloc

Francis Sergeraert, Institut Fourier, Grenoble Cirm-Luminy, March 2010