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Semantics of colours:

Blue = “Standard” Mathematics

Red = Constructive, effective,

algorithm, machine object, . . .

Violet = Problem, difficulty,

obstacle, disadvantage, . . .

Green = Solution, essential point,

mathematicians, . . .

Dark Orange = Fuzzy objects.

Pale grey = Hyper-Fuzzy objects.
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Plan.

1. Constructive Homological Algebra.

2. Triangulations and fundamental cycles.

3. Complex projective spaces.

4. Connection P nC ←→ P∞C.

5. Kenzo program + Constructive Homological Algebra

⇒ Constructive Triangulation of P nC.
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1/5. Constructive Homological Algebra.

General style of Homological Algebra:

First step in the classification of angiosperms:

Number of cotyledons = 1 or 2.

n = 1⇒ Monocotyledons (∼ 60.000 species).

n = 2⇒ Dicotyledons (∼ 200.000 species)

First step in the classification of topological spaces:

(∀X ∈ Top)⇒ [(∀d ∈ N) ⇒ Hd(X) ∈ AbGroup].

Only partial classification !!!
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Main problem:

Let Φ : Top× Top→ Top be a constructor.

Example: Φ(X,Y ) := X × Y .

Homological version of this constructor ??

ΦH : (H∗(X),H∗(Y ))
???7−→

???

H∗(Φ(X,Y ))

Sometimes possible, for example

for the product constructor (Künneth formulas).

In general not !!
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Example:

The loop space constructor Ω : X 7→ ΩX := C(S1, X)

Example2:

X = S2 ∨ S4 Y = P 2C

H∗(X) = H∗(Y ) = (Z, 0,Z, 0,Z, 0, 0, 0, . . .)

H∗(ΩX) = (Z, Z, Z, Z2, Z3, Z4, Z6, Z9, Z13, . . .)

H∗(ΩY ) = (Z, Z, 0, 0, Z, Z, 0, 0, Z, . . .)

Corollary: ∃ algorithm ΩH : H∗(X) 7→ H∗(ΩX).
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Analysis of the problem.

Ordinary homological algebra is not constructive .

H4(X) “=” Z means:

∃ isomorphism H4(X)
∼=←→ Z ;

But most often ∃ is not constructive.

Reorganizing Homological Algebra

to make these ∃’s constructive

⇒ Constructive Homological Algebra

⇒ Algorithms:

ΦCH : (CH∗(X), CH∗(Y )) 7→ CH∗(Φ(X,Y )).

⇒ (JR) Efficient solution of Adams’ problem for loop spaces.
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2/5. Triangulations and fundamental cycles.

Amazing spin-off of Constructive Homological Algebra:

Using constructive isomorphisms

to produce difficult triangulations.

Notion s of triangulation.

Triangulation as a simplicial complex of S1 × I.

∼=
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Triangulations of S1 as simplicial:

• •

•

S1

complex

• •

•

⇒
•
S1

set

Triangulations of S2 as simplicial:

•

•

•

•

S2

complex

• •

•

•

⇒
•

set

S2
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Fundamental Homological Theorem for closed manifolds:

M = closed n-manifold ⇒ M is triangulable.

We assume M orientable.

Let T be some triangulation

and Tn the corresponding collection of n-simplices.

Then Hn(M) = Z
and a cycle representing a generator of Hn is z =

∑
τ∈Tn

εττ .

Example for M = 2-torus:

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
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In a context of Constructive Homological Algebra,

the result can sometimes be reversed .

Toy example with S1 × I H∼ S1.

H∗(S
1 × I) = H∗(S

1) = (Z,Z, 0, 0, 0, . . .)

• •

•

• •

•

S1 × I

• •

•

• •

•

Good generator

of H1(S
1 × I)

• •

•

• •

•

Bad generator

of H1(S
1 × I)
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3/5. Complex projective spaces.

Using this method to construct a triangulation of P nC.

S2n+1 = unit sphere(Cn+1)

P nC := S2n+1/S1

S1 ⊂ S3 ⊂ S5 ⊂ · · · ⊂ S∞

∗ ⊂ P 1C ⊂ P 2C ⊂ P 3C ⊂ · · · ⊂ P∞C

Universal fibration:

K(Z, 1) = S1 ↪→ S∞ � P∞C

⇒ P∞C = K(Z, 2)
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K(Z, 2) = “catalog” space =

collection of all the possible configurations

of elements z ∈ H2(−,Z)

Standard simplicial model for K(Z, 2)

due to Eilenberg-MacLane.

K(Z, 2) = Monster: K(Z, 2)n ∼ Z
n(n−1)

2

But the methods of Constructive Algebraic Topology

can handle this monster.
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4/5. Connection P nC ←→ P∞C.

P∞C = lim
n→∞

P nC has a good homological translation:

H∗(P
∞C) = (

0
Z, 0,

2
Z, 0,

4
Z, 0,

6
Z, 0,

8
Z, 0,

10
Z, 0, . . .)

H∗(P
1C) = (Z, 0,Z, 0, 0, 0, 0, 0, 0, 0, 0, 0, . . .)

H∗(P
2C) = (Z, 0,Z, 0,Z, 0, 0, 0, 0, 0, 0, 0, . . .)

H∗(P
3C) = (Z, 0,Z, 0,Z, 0,Z, 0, 0, 0, 0, 0, . . .)

· · · = · · ·

Also the inclusion P nC ↪→ P∞C
induces an inclusion H∗(P

nC) ↪→ H∗(P
∞C).

So that a generator g2n of H2n(P∞C)

corresponds to a generator g2n of H2n(P nC)

which could correspond to a triangulation of P nC.
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5/5. Kenzo calculations.

1. kz2 := K(Z, 2)

2. “Local” calculations are possible.

3. The effective homology is computable:

[C∗(K(Z, 2)) = K86] WWW K216 VVV K212

4. G4 = generator of H4(K212) = Z.

5. GP4 = generator of H4(K86) = H4(K(Z, 2)) = Z.

6. P2C? = finite simplicial subset of K(Z, 2)

generated by GP4.
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Kenzo calculations (continuation):

5. GP4 = generator of H4(K86) = H4(K(Z, 2)) = Z.

6. P2C? = finite simplicial subset of K(Z, 2)

generated by GP4.

Next question: P2C?
???
= P 2C

Proposition: P2C? = P 2C ⇐ the inclusion P2C? ↪→ K(Z, 2)

induces isomorphisms:

Hk(P2C?)
∼= ??
−→ Hk(K(Z, 2))

for k ≤ 4.

Proof: Hurewicz-Whitehead Theorem.
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P2C? = P 2C ⇔ Hk(P2C?)
∼= ??
−→ Hk(K(Z, 2))

Cone constructor: P2C? K(Z, 2)
inclusion

C∗(P2C?) C∗(K(Z, 2))
inclusion

Cone(inclusion) := C∗(P2C?)
[+1] ⊕inclusion C∗(K(Z, 2))

Proposition: Hk(P2C?)
∼= ??
−→ Hk(K(Z, 2)) for k ≤ 4

⇔
Hk(Cone(inclusion)) = 0 for k ≤ 5

Proof: Elementary homological algebra.
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Kenzo calculations (continuation):

5. GP4 = generator of H4(K86) = H4(K(Z, 2)) = Z.

6. P2C? = finite simplicial subset of K(Z, 2)

generated by GP4.

7. Construction of Cone
{
C∗(P2C?) C∗(K(Z, 2))

inclusion

}
8. Calculation of Hk(Cone

{
· · ·
}
) for k ≤ 6.

9. Hk(Cone) = 0 for k ≤ 5 ⇒ P2C? = P 2C.

⇒ a triangulation of P 2C as P2C? is obtained.

10. The same for higher dimensions.
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