Constructive Homological Algebra II - Homological Perturbations

;; Cloc Computing <TnPr <Tnr. End of computing.

;; Clock -> 2002-01-17, 19h 25m 36s. Computing the boundary of the generator 19 (dimension 7) : <TnPr <TnPr <TnPr S3 <<Abar[2 S1][2 S1]>>> <<Abar>>> <<Abar>>> End of computing.

Homology in dimension 6 :

Component Z/12Z

---done---

;; Clock -> 2002-01-17, 19h 27m 15s

Ana Romero, Universidad de La Rioja Julio Rubio, Universidad de La Rioja Francis Sergeraert, Institut Fourier, Grenoble Workshop: Formal Methods in Commutative Algebra Oberwolfach, November 9-14, 2009 Problem when implementing SHPs:

1

Implementation of $h : \mathbb{Z}/2 \to \mathbb{Z}$???

The Basic Perturbation Lemma (BPL)

frequently allows to efficiently overcome this difficulty.

- \Rightarrow Effective Homology I :
 - Notion of object with effective homology.
 - Most exact and spectral sequences become effective.
 - But spectral sequences coming from exact couples fail!
- \Rightarrow Effective homology II = SHPs only.

The art of handling functional objects.

Examples of functional objects:

$$(\mathbb{Z},+,-, imes)$$
 $(\mathbb{Z}[X],+,-, imes)$

Other example:

Kan model for the loop space $\Omega S^3 := \mathcal{C}(S^1, S^3)$:

$$(\mathcal{S}_{\Omega S^3}, \{\partial_i^n\}_{n\geq 1, 0\leq i\leq n}, \{\eta_i^n\}_{n\geq 0, 0\leq i\leq n})$$

with $S_{\Omega S^3}$ = the simplex set of the Kan model.

= "Locally" effective objects.

Main problem:

Designing programs $(f_1, ..., f_n) \mapsto f$.

Example:

$$(\mathfrak{R},+_{\mathfrak{R}},-_{\mathfrak{R}}, imes_{\mathfrak{R}})\mapsto (\mathfrak{R}[X],+_{\mathfrak{R}[X]},-_{\mathfrak{R}[X]}, imes_{\mathfrak{R}[X]})$$

Topological example. X =topological space.

$$egin{aligned} & (\mathcal{S}_X, \{\partial(X)_i^n\}_{n\geq 1, 0\leq i\leq n}, \{\eta(X)_i^n\}_{n\geq 0, 0\leq i\leq n}) \ & \mapsto (\mathcal{S}_{\Omega X}, \{\partial(\Omega X)_i^n\}_{n\geq 1, 0\leq i\leq n}, \{\eta(\Omega X)_i^n\}_{n\geq 0, 0\leq i\leq n}) \end{aligned}$$

Solution = λ -calculus, Lisp, ML, Axiom, Haskell...

<u>Definition</u>: A (homological) reduction is a diagram:

$$ho: h \widehat{C}_* \stackrel{g}{\xleftarrow{}} C_*$$

with:

- 1. \widehat{C}_* and C_* = chain complexes.
- 2. f and g = chain complex morphisms.
- 3. h = homotopy operator (degree +1).
- $4. \; \boldsymbol{fg} = \operatorname{id}_{C_*} \; \text{and} \; \boldsymbol{d}_{\widehat{C}}\boldsymbol{h} + \boldsymbol{hd}_{\widehat{C}} + \boldsymbol{gf} = \operatorname{id}_{\widehat{C}_*}.$
- 5. fh = 0, hg = 0 and hh = 0.

$$\left\{ \begin{array}{ccc} \cdots & \stackrel{d}{\longrightarrow} \widehat{C}_{m-1} & \stackrel{d}{\longrightarrow} \widehat{C}_{m} & \stackrel{d}{\longrightarrow} \widehat{C}_{m+1} & \stackrel{d}{\longrightarrow} \cdots \end{array} \right\} = \widehat{C}_{*} \\ \left\{ \begin{array}{cccc} \cdots & A_{m-1} & A_{m} & A_{m+1} & \cdots \end{array} \right\} = A_{*} \\ \left\{ \begin{array}{cccc} \cdots & A_{m-1} & A_{m} & A_{m+1} & \cdots \end{array} \right\} = A_{*} \\ \stackrel{d}{\longrightarrow} & \stackrel{d}{\oplus} &$$

$$A_* = \ker f \cap \ker h \hspace{0.5cm} B_* = \ker f \cap \ker d \hspace{0.5cm} oldsymbol{C}'_* = \operatorname{im} g$$

 $\widehat{C}_* = \fbox{A_* \oplus B_* \text{ exact}} \oplus \fbox{C'_* \cong C_*}$

Let $\rho: h \bigoplus \widehat{C}_* \xleftarrow{g}{f} C_*$ be a reduction.

Frequently:

- 1. \hat{C}_* is a locally effective chain complex: its homology groups are unreachable.
- 2. C_* is an effective chain complex: its homology groups are computable.
- 3. The reduction ρ is an entire description of the homological nature of \widehat{C}_* .
- 4. Any homological problem in \widehat{C}_* is solvable thanks to the information provided by ρ .

$$ho: h \widehat{C}_* \xleftarrow{g}{f} C_*$$

- 1. What is $H_n(\widehat{C}_*)$? Solution: Compute $H_n(C_*)$.
- 2. Let $x \in \widehat{C}_n$. Is x a cycle? Solution: Compute $d_{\widehat{C}_*}(x)$.
- 3. Let $x, x' \in \widehat{C}_n$ be cycles. Are they homologous? Solution: Look whether f(x) and f(x') are homologous.
- 4. Let $x, x' \in \widehat{C}_n$ be homologous cycles.

Find $y \in \widehat{C}_{n+1}$ satisfying dy = x - x'?

Solution:

- (a) Find $z \in C_{n+1}$ satisfying dz = f(x) f(x').
- (b) y = g(z) + h(x x').

<u>Definition</u>: (C_*, d) = given chain complex.

A perturbation $\delta: C_* \to C_{*-1}$ is an operator of degree -1 satisfying $(d + \delta)^2 = 0$ ($\Leftrightarrow (d\delta + \delta d + \delta^2) = 0$): $(C_*, d) + (\delta) \mapsto (C_*, d + \delta).$

Problem: Let
$$\rho$$
: $h \subset (\widehat{C}_*, \widehat{d}) \xrightarrow[f]{g} (C_*, d)$ be a given reduction and $\widehat{\delta}$ a perturbation of \widehat{d} .

How to determine a new reduction:

describing in the same way the homology of

the chain complex with the perturbed differential?

Basic Perturbation "Lemma" (BPL):

1. $\hat{\delta}$ is a perturbation of the differential \hat{d} of \hat{C}_* ;

2. The operator $h \circ \hat{\delta}$ is pointwise nilpotent.

Then a general algorithm BPL constructs:

Proof:

 $\phi := \sum_{i=1}^{\infty} (-1)^i (h \widehat{\delta})^i$ and $\psi := \sum_{i=1}^{\infty} (-1)^i (\widehat{\delta}h)^i$ are defined.

Then:

$$ullet \delta_d := f \widehat{\delta}(\operatorname{id}_{\widehat{C}} + \phi)g = f(\operatorname{id}_{\widehat{C}} + \psi)\widehat{\delta}g$$

 $ullet \delta_f := f\psi$
 $ullet \delta_g := \phi g$
 $ullet \delta_h := \phi h = h\psi$

is the solution.

QED

<u>Serre</u>: "Everything" in Algebraic Topology can be reduced to Fibration problems.

Examples: Loop spaces, Classifying spaces, Homogeneous spaces, Whitehead tower, Postnikov tower, ...

<u>Remark</u>: Fibration = Twisted Product

= Perturbation of Trivial Product.

Corollary: BPL is effective

+ Fibration = Perturbation of Trivial Product

+ Everything is Fibration

 \Rightarrow Alg. Topology becomes **Constructive**.

 $\begin{array}{l} \underline{\text{Definition:}} \ \text{A (strong chain-) equivalence } \varepsilon:C_* \lll D_*\\ \text{is a pair of reductions } C_* \lll^{\ell\rho} E_* \overset{r\rho}{\Longrightarrow} D_*: \end{array}$

Normal form problem ??

More structure often necessary in C_* .

Most often: no possible choice for C_* .

Definition: An object with effective homology X

is a 4-tuple:

$$X = X, C_*(X), EC_*, \varepsilon$$

with:

- 1. X = an arbitrary object (simplicial set, simplicial group, differential graded algebra, ...)
- 2. $C_*(X) =$ "<u>the</u>" chain complex "traditionally" associated with X to define the homology groups $H_*(X)$.
- 3. $EC_* =$ some effective chain complex.

4. $\varepsilon = \text{some equivalence } C_*(X) \ll^{\varepsilon} EC_*.$

Main result of effective homology:

Meta-theorem: Let X_1, \ldots, X_n be a collection of objects with effective homology and ϕ be a reasonable construction process: $\phi:(X_1,\ldots,X_n)\mapsto X.$ Then there exists a version with effective homology ϕ_{EH} : $\phi_{EH}: \ (X_1, C_*(X_1), EC_{1*}, \varepsilon_1, \ldots, X_n, C_*(X_n), EC_{n*}, \varepsilon_n)$ $\mapsto \left| X, C_*(X), EC_*, \varepsilon \right|$

The process is perfectly stable

and can be again used with X for further calculations.

Julio Rubio's solution of Adams' problem.

 \implies Trivial iteration now available.

 \Rightarrow Very simple solution of Adam's problem :

Indefinite iteration of the Cobar construction ???

$$X = (X, C_*(X), EC_*^X, \varepsilon^X)$$

$$\Downarrow \Omega_{EH}$$

$$\Omega X = (\Omega X, C_*(\Omega X), EC_*^{\Omega X}, \varepsilon^{\Omega X})$$

$$\Downarrow \Omega_{EH}$$

$$\Omega^2 X = (\Omega^2 X, C_*(\Omega^2 X), EC_*^{\Omega^2 X}, \varepsilon^{\Omega^2 X})$$

$$\Downarrow \Omega_{EH}$$

$$\Omega^3 X = (\Omega^3 X, C_*(\Omega^3 X), EC_*^{\Omega^3 X}, \varepsilon^{\Omega^3 X})$$

$$\Downarrow \Omega_{EH}$$

$$\Omega^4 X = \dots$$
"Cobar" (3)

Example: Effective homology version of

the Serre spectral sequence.

(Serre + G. Hirsch + H. Cartan + Shih W. + Szczarba + Ronnie Brown + J. Rubio + FS) Proof.

$$egin{aligned} C_*(F imes B) \stackrel{ ext{id}}{\ll} C_*(F imes B) \stackrel{EZ}{\Longrightarrow} C_*F\otimes C_*B \ C_*F\otimes C_*B \stackrel{\otimes}{\ll} \widehat{C}^F\otimes \widehat{C}^B \stackrel{\otimes}{\Longrightarrow} EC^F\otimes EC^B \end{aligned}$$

$\Downarrow \Downarrow \Downarrow \Downarrow \Downarrow \Downarrow \blacksquare \mathbf{Serre}_{EH}$

$$C_*(F imes_{\overline{\mathcal{T}}} B) \stackrel{\mathrm{id}}{\ll} C_*(F imes_{\overline{\mathcal{T}}} B) \stackrel{\mathrm{Shih}}{\Longrightarrow} C_*F \otimes_{\overline{\boldsymbol{t}}} C_*B$$
 $C_*F \otimes_{\overline{\boldsymbol{t}}} C_*B \stackrel{EPL}{\ll} \widehat{C}^F \otimes_{\overline{\boldsymbol{t}'}} \widehat{C}^B \stackrel{BPL}{\Longrightarrow} EC^F \otimes_{\overline{\boldsymbol{t}''}} EC^B$

+ Composition of equivalences \implies O.K.

Combining these ingredients \Rightarrow

Homological Algebra becomes constructive.

<u>Corollary:</u> The "standard" exact and spectral sequences of Homological Algebra really become computational tools.

 \Rightarrow Concrete computer programs (EAT, Kenzo).

Warning about the right chronology. Example, let:

 $\phi: F \hookrightarrow E \longrightarrow B$

be a fibration with B simply connected.

- 1. The ordinary Serre Spectral Sequence is not constructive.
- 2. Methods of Effective Homology give an algorithm: $[EH_*(F) + EH_*(B) + \phi] \mapsto EH_*(E).$
- 3. Methods of Effective Homology can then compute: $[EH_*(F) + EH_*(B) + \phi + EH_*(E) \mapsto SSS(\phi)].$ That is, the SSS is a byproduct of Effective Homology. (Ana Romero)

Are your computer programs efficient?

What about benchmarks?

Do you compute new sphere homotopy groups?

Non-relevant question!

To be compared with prime number chasing.

Two different activities:

- 1. Searching for very big prime numbers.
- 2. Designing methods applicable to arbitrary numbers.

Most efficient current methods for big prime numbers:

Specific tests (Lucas-Lehmer):

$$\Rightarrow (2^{32,582,657} - 1) \text{ prime } (2006).$$

Most "efficient" general method:

Agrawal-Kayal-Saxena n^{12} -algorithm.

Both methods have totally different scopes.

Analogous situation in Algebraic Topology.

In case of spheres (\sim Mersenne numbers), specific methods go very far.

But these methods are inapplicable in general situations.

Typical situation:

Modifying a loop space by "pre-attaching" a cell.

What influence about

the homology groups of the new loop space?

Attaching a cell D^n to a topological space

along the boundary S^{n-1} :

- X = Topological space.
- $f: S^{n-1} \rightarrow X =$ continuous map.

 $\Rightarrow X \cup_f \mathbf{D}^n := (X \coprod \mathbf{D}^n) / (X \ni f(x) \sim x \in \mathbf{S}^{n-1}).$

Given:

- X = Topological space.
- $H_*(X) =$ Homology of X.
- $H_*(\Omega X)$ = Homology of the loop space ΩX .
- $f: S^{n-1} \to X$ continue.

Problem:

• Determine $H_*(\Omega(X \cup_f D^n)) = ???$

Example:

 $H_*(\Omega S^3)$ computed by J.-P. Serre (1950).

 $H_*(\Omega^2 S^3 := \Omega(\Omega S^3))$ computed by W. Browder (1958).

Modifying $\Omega S^3 \mapsto \Omega S^3 \cup_2 D^3$.

 \Rightarrow Problem:

 $H_*(\Omega(\Omega S^3 \cup_2 D^3)) = ???$

<u>Remark</u>: $H_*(\Omega S^3 \cup_2 D^3)$ direct consequence of Serre's result.

"Standard" Algebraic Topology \Rightarrow ???

In Effective Homology:

 $S^3 =$ Finite simplicial set $\Rightarrow S^3 = OEH^{1}$. EMSSEH²⁾ $\Rightarrow \Omega S^3 = OEH^{1}$. MVESEH³⁾ $\Rightarrow \Omega S^3 \cup_2 D^3 = OEH^{1}$. EMSSEH²⁾ $\Rightarrow \Omega(\Omega S^3 \cup_2 D^3) = OEH^{1}$. $\Omega(\Omega S^3 \cup_2 D^3) = \operatorname{OEH}^{(1)} \Rightarrow H_*(\Omega(\Omega S^3 \cup_2 D^3)) \text{ computable}.$

 \Rightarrow OK.

- 1) OEH = Object with Effective Homology.
- 2) EMSSEH = Eilenberg-Moore Spectral Sequence with Effective Homology.
- 3) MVESEH = Mayer-Vietoris Exact Sequence with Effective Homology

A more complicated analogous computation:

 $X = \Omega(\Omega(\Omega(P^{\infty}\mathbb{R}/P^{3}\mathbb{R})\cup_{4}D^{4})\cup_{2}D^{3})) \qquad \qquad H_{*}X = ???$

 $egin{aligned} H_0(X) &= \mathbb{Z}, \ H_1(X) &= \mathbb{Z}/2\mathbb{Z}, \ H_2(X) &= (\mathbb{Z}/2\mathbb{Z})^2 + \mathbb{Z}, \ H_3(X) &= (\mathbb{Z}/2\mathbb{Z})^4 + \mathbb{Z}/8\mathbb{Z}, \ H_4(X) &= (\mathbb{Z}/2\mathbb{Z})^{10} + \mathbb{Z}/4\mathbb{Z} + \mathbb{Z}^2, \ H_5(X) &= (\mathbb{Z}/2\mathbb{Z})^{23} + \mathbb{Z}/8\mathbb{Z} + \mathbb{Z}/16\mathbb{Z}, \ H_6(X) &= (\mathbb{Z}/2\mathbb{Z})^{52} + (\mathbb{Z}/4\mathbb{Z})^3 + \mathbb{Z}^3, \ H_7(X) &= (\mathbb{Z}/2\mathbb{Z})^{113} + \mathbb{Z}/4\mathbb{Z} + (\mathbb{Z}/8\mathbb{Z})^3 + \mathbb{Z}/16\mathbb{Z} + \mathbb{Z}/32\mathbb{Z} + \mathbb{Z}. \end{aligned}$

The longest Kenzo computation (2 months).

Two main steps in a Kenzo calculation H(d) = ???

- "Automatic" writing of a sophisticated highly functional program P.
 Using program P to compute P(d) = H(d).
- 1) \Rightarrow Always very fast (< 1 sec.).
- 2) \Rightarrow Can be very long (hours, days, months, years, centuries, ...)

High efficiency in functional programming with Common-Lisp \Rightarrow No technical difficulty in 1).

Terrible problem of memory management in 2).

Only heuristic methods available:

EAT-1: No result stored \Rightarrow poor time computing efficiency.

EAT-2: "Non-trivial" results stored \Rightarrow Computing time divided by ~10.

Kenzo-1: Strong improvement in storing-searching methods. \Rightarrow Computing time divided by ~10.

Kenzo-2: For overcoming space complexity: Periodic cleaning of stored results. \Rightarrow Computing time divided by ~10.

Theoretical framework for a rational study ??? Open !!!

"Vertical" vs "Horizontal" time complexity.

Computing
$$H_n(X), \pi_n(X)...$$

Two parameters: n and X.

"Horizontal" complexity := wrt X.

"Vertical" complexity := wrt n.

Effective homology \Rightarrow Horizontal complexity = P.

David Annick (1986) \Rightarrow

Vertical complexity $\geq NP$ -complete.

Back to "standard" Mathematics.

Traditional main problem of Algebraic Topology: Classifying the homotopy types.

- 1. Only "reasonable" spaces: CW-complexes \cong Simp. sets.
- 2. Non-simply connected topology excluded (word problem).
- 3. Classification "up to homeomorphism" out of scope \Rightarrow Only classification "up to homotopy equivalence".

4. "Standard" solution = Postnikov "invariants".

Main problem of Algebraic Topology: Algebraic Models for Topological Spaces ?

Main idea: Topology is difficult, Algebra is easy (!?).

Subquestion: what does the word "Algebra" means? Answer: No meaning at all, only a "cultural" tradition.

Correct question:

Computable Models for Topological Spaces ?

Three solutions:

- 1. Rolf Schön.
- 2. Effective Homology.
- 3. Operads.

Schön's solution =

Intensive use of inductive limits

to approximate infinite objects.

Only one computer application:

Alain Clément, Lausanne, Haskell program.

Comparison: Effective Homology \leftrightarrow Operads ???

Object with effective homology = Triple: (X, HX, ε) with:

 $X = ext{locally effective version of the object.}$ $HX = ext{Effective chain complex}$ $ext{describing the ordinary homology of } X.$ $\varepsilon = ext{Strong connection } X \xleftarrow{\varepsilon} HX.$

<u>Theorem</u>: The triple (X, HX, ε) is a <u>computable model</u> of the homotopy type of X. Operadic model for a topological space X:

 (HX,\mathcal{M})

with:

HX = Effective chain complexdescribing the ordinary homology of X.

 $\mathcal{M} = E_{\infty}$ -operadic structure over HX.

<u>Theorem</u> (Mandell): The pair (HX, \mathcal{M}) is an "algebraic" model of the homotopy type of X. Connection between (X, HX, ε) and (HX, \mathcal{M}) ?

<u>Theorem</u>: There exists a canonical correspondance:

$$(X,HX,arepsilon)\longleftrightarrow (HX,\mathcal{M})$$

1. " \longrightarrow " = Berger-Fresse.

2. " \leftarrow " = S.-Mandell.

Far from concrete implementations !!

Main open problems in Effective Homology:

1. Eilenberg-Zilber = " $\Box \longleftrightarrow \Box$ ".

Problem: General formula

of unavoidable exponential complexity. How to design an efficient algorithm for concrete particular cases?

2. Twisted Eilenberg-Zilber.

New important results experimentally discovered in 98. Not yet proved! 3. Spectral sequences.

Filtrated chain complexes vs Exact Couples. Particular cases of Bousfield-Kan, Adams, May, Adams-Novikov... spectral sequences. Cf recent thesis by Ana Romero.

4. Commutative Algebra.

Recent result:

Canonical correspondance between:

Effective resolution of $K[x_1, \ldots, x_m]$ -modules

 $1 \cong$

Effective homology of Koszul complex. \Rightarrow New algorithms producing effective resolutions. 5. Concrete implementation of the canonical correspondance:

 $(X, HX, \varepsilon) \longleftrightarrow (HX, \mathcal{M})$

6. Efficient memory management

for high level functional programming ???

7. Program proof, theorem proving.

Recent result (Jesus Aransay):

Isabelle-certified proof of the Basic-Perturbation-Lemma.

Competing work by Coq people.

The END

;; Cloc Computing <TnPr <Tn End of computing.

;; Clock -> 2002-01-17, 19h 25m 36s. Computing the boundary of the generator 19 (dimension 7) : <TnPr <TnPr <TnPr S3 <<Abar[2 S1][2 S1]>>> <<Abar>>> <<Abar>>> End of computing.

Homology in dimension 6 :

Component Z/12Z

---done---

;; Clock -> 2002-01-17, 19h 27m 15s

Ana Romero, Universidad de La Rioja Julio Rubio, Universidad de La Rioja Francis Sergeraert, Institut Fourier, Grenoble Workshop: Formal Methods in Commutative Algebra Oberwolfach, November 9-14, 2009