Effective Constructive

Algebraic Topology

```
Computing
<TnPr <TnR
End of computing.

;; Clock -> 2002-01-17, 19h 25m 36s.
Computing the boundary of the generator 19 (dimension 7):
<TnPr <TnPr <TnPr S3 <<Abar[2 S1][2 S1]>>> <<Abar>>> End of computing.

Homology in dimension 6:

Component Z/12Z
---done---
```

;; Clock -> 2002-01-17, 19h 27m 15s

;; Cloc

Ana Romero, Universidad de La Rioja Julio Rubio, Universidad de La Rioja Francis Sergeraert, Institut Fourier, Grenoble Map Ictp Conference, Trieste, August 25-29, 2008

Semantics of colours:

```
Blue = "Standard" Mathematics

Red = Constructive, effective,

algorithm, machine object, ...

Violet = Problem, difficulty, obstacle, disadvantage, ...

Green = Solution, essential point, mathematicians, ...
```

Three solutions for Constructive Algebraic Topology:

- 1. Rolf Schön (Inductive methods).
- 2. Effective Homology.
- 3. Operadic Algebraic Topology.

Only the second one so far

led to concrete computer programs.

Plan of the talk: 1. Computer illustration

around CW-complexes.

- 2. Constructive statement of
 - the homological problem.
- 3. Other computer illustrations.

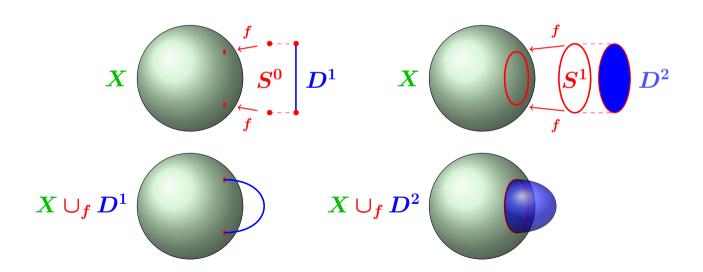
Attaching a cell D^n to a topological space X

along the boundary S^{n-1} :

X =Topological space.

 $f: S^{n-1} \to X = \text{continuous map.}$

$$\Rightarrow X \cup_f D^n := (X \text{ if } D^n)/(X \ni f(x) \sim x \in S^{n-1}).$$



Notion of CW-Complex X:

$$X=arprojlim \{X_0\subset X_1\subset X_2\subset X_3\subset \cdots \subset X_n\subset \cdots\}_{n\in \mathbb{N}}$$

with $X_0 =$ discrete space and

the *n*-skeleton X_n is obtained

from the (n-1)-skeleton X_{n-1}

by attaching *n*-disks D_1^n, D_2^n, \cdots to X_{n-1}

according to attaching maps f_1^n, f_2^n, \cdots

Every reasonable space can be presented

up to homotopy equivalence

as a CW-complex of finite type.

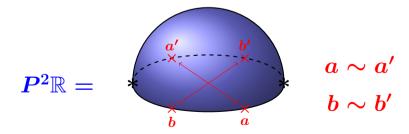
Example 1. Presentation of $X = P^2 \mathbb{R}$ as a CW-complex.

$$oldsymbol{L} D^1 \supset S^0 \stackrel{f^1}{
ightarrow} st$$

$$\Rightarrow X_1=X_0\cup_{f^1}D^1=X_1=S^1=\{Z\in\mathbb{C}\ \underline{\mathrm{st}}\ |z|=1\}$$

$$D^2\supset S^1\stackrel{f^2}{
ightarrow} S^1:z\mapsto z^2$$

$$\Rightarrow X = X_2 = X_1 \cup_{f^2} D^2 = P^2 \mathbb{R}$$



Example 2. More generally:

Presentation of $X = P^{\infty}\mathbb{R}$ as a CW-complex.

1.
$$X_0 = P^0 \mathbb{R} = S^0 /\!\! \sim \ = \ *.$$

- 2. Let us assume $X_n = P^n \mathbb{R}$ constructed.
- 3. $D^{n+1}\supset S^n\stackrel{f^{n+1}}{\longrightarrow} P^n\mathbb{R}$

with f^{n+1} = the canonical projection.

$$4. \Rightarrow X_{n+1} = D^{n+1} \cup_{f^{n+1}} X_n = P^{n+1} \mathbb{R}.$$

$$(++n)$$
; goto 2.

5.
$$X = \lim_{\rightarrow} X_n = P^{\infty} \mathbb{R}$$
.

Example 3. Simplicial complexes and simplicial sets.

X = simplicial set.

Definition: The <u>n</u>-skeleton X_n of X is obtained from X by keeping the non-degenerate simplices of dimension $\leq n$ (and their degeneracies), throwing away the non-degenerate simplices of dimension > n (and their degeneracies).

 $|X_n|$ obtained from $|X_{n-1}|$

by attaching n-simplices = n-disks.

 $\Rightarrow X = \text{CW-complex with } |X| = \lim_{\longrightarrow} |X_n|.$

Simplicial version of $P^{\infty}\mathbb{R}$:

$$egin{aligned} P^{\infty}\mathbb{R} &= X = K(\mathbb{Z}_2,1) \ &\Rightarrow X_n^{ND} = \{\sigma_n\} \ &\partial_i \sigma_n = \sigma_{n-1} & ext{if } i = 0, n; \ &= \eta_{i-1} \sigma_{n-2} & ext{if } 0 < i < n. \ &\Rightarrow C_* X = \{\cdots \stackrel{0}{\leftarrow} \stackrel{0}{\mathbb{Z}} \stackrel{1}{\leftarrow} \stackrel{\times 2}{\mathbb{Z}} \stackrel{2}{\leftarrow} \stackrel{0}{\mathbb{Z}} \stackrel{3}{\leftarrow} \stackrel{\times 2}{\mathbb{Z}} \stackrel{4}{\leftarrow} \stackrel{0}{\mathbb{Z}} \stackrel{5}{\leftarrow} \stackrel{\times 2}{\sim} \cdots \} \ &\Rightarrow H_i(P^{\infty}\mathbb{R}) = \mathbb{Z} & ext{if } i = 0; \ &\mathbb{Z}_2 & ext{if } i > 0 & ext{odd}; \ &0 & ext{if } i > 0 & ext{even}. \end{aligned}$$

The same for $P^{\infty}\mathbb{C}$?

Topological version? Easy.

 $P^{\infty}\mathbb{C} = X = \lim_{\longrightarrow} X_{2n}$ where:

$$X_{2n} = X_{2n-2} \cup_{f^{2n}} D^{2n}$$

with: $D^{2n} \supset S^{2n-1} \to P^{n-1}\mathbb{C}$ the canonical projection.

Simplicial version?

Much harder!

Easy up to homotopy.

Easiest solution = $K(\mathbb{Z}, 2)$.

Justification = two principal fibrations:

$$egin{aligned} S^1 &\hookrightarrow S^\infty \longrightarrow P^\infty \mathbb{C} \ &K(\mathbb{Z},1) \hookrightarrow E(\mathbb{Z},1) \longrightarrow K(\mathbb{Z},2) \end{aligned}$$

$$+ (K(\mathbb{Z},1) \sim S^1) + (S^{\infty} \text{ contractible}) + (E(\mathbb{Z},1) \text{ contractible})$$

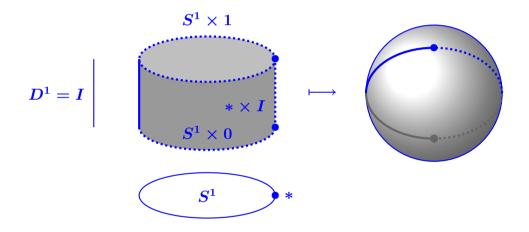
$$\Rightarrow P^{\infty}\mathbb{C} \sim K(\mathbb{Z},2)$$

Remark: $K(\mathbb{Z},2)$ not of finite type!

Simplicial model of finite type for $P^2\mathbb{C}$??

Cellular homology.

$$S^n = S^1 imes D^{n-1} / \sim ext{with } (z,x) \sim (z',x') ext{ if } x = x' \in \partial D^{n-1}.$$



Canonical self-map of degree k for S^n :

$$lpha_k:S^n o S^n:(z,x)\mapsto (z^n,x).$$

Theorem (Hopf): $\mathcal{C}(S^n, S^n)/\sim \cong \mathbb{Z}$.

CW-complex:

$$X=\lim_{\stackrel{
ightarrow}{
ightarrow}}X_n=\{(D^n_i,f^n_i:S^{n-1}
ightarrow X_{n-1})_{1\leq i\leq m_n}\}_{n\in\mathbb{N}}$$

Associated cellular chain complex:

$$\cdots \longleftarrow \mathbb{Z}^{(m_{n-1})} \stackrel{d_n}{\longleftarrow} \mathbb{Z}^{(m_n)} \longleftarrow \cdots$$

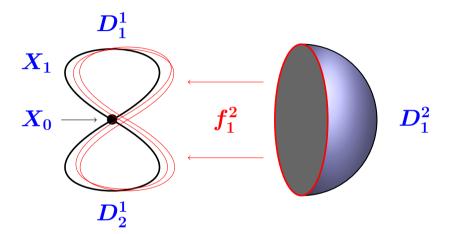
Coefficient $\alpha_{1,1}$ of d_n in column 1 and row 1

obtained from $g_{1,1}^n$:

$$f_1^n:S^{n-1} o X^{n-1}$$

$$egin{align} \Rightarrow g^n_{1,1}: S^{n-1} o Y^{n-1}_1 = X^{n-1}/[X^{n-2} \cup (\cup_{i
eq 1} D^{n-1}_i)] = S^{n-1} \ &\Rightarrow lpha_{1,1} = \ \deg(g^n_{1,1}). \end{matrix}$$

Example: X =



Cellular complex =
$$\{0 \longleftarrow \mathbb{Z} \stackrel{d_1}{\longleftarrow} \mathbb{Z}^2 \stackrel{d_2}{\longleftarrow} \mathbb{Z} \longleftarrow 0\}$$

with $d_1 = [0 \ 0]$ and $d_2 = \begin{bmatrix} 2 \\ 2 \end{bmatrix} \Rightarrow H_* = \{\mathbb{Z}, \mathbb{Z}_2 + \mathbb{Z}, 0\}$

Theorem (Adams, 1956): Let X be a 1-reduced CW-complex (one vertex, no 1-cell).

Examples:

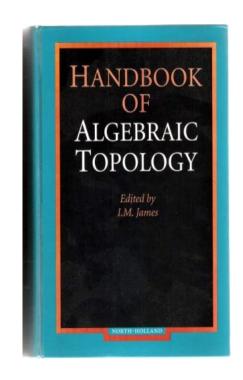
$$S^3=(*,0,0,1) \;\Rightarrow\; \Omega S^3=(*,0,1,0,1,0,1,\ldots).$$
 $P^2\mathbb{C}=(*,0,1,0,1) \Rightarrow \Omega P^2\mathbb{C}=(*,1,1,2,3,4,6,9,13,19,28,\ldots).$

Typical example

extracted from

the encyclopedy:

(Ioan James editor).



Chapter 13

Stable Homotopy
and Iterated Loop Spaces

Gunnar Carlsson James Milgram

CHAPTER 13

Stable Homotopy and Iterated Loop Spaces

Gunnar Carlsson

Department of Mathematics, Stanford University, Stanford, CA, USA e-mail: gunnar@gauss.stanford.edu

R. James Milgram

Department of Mathematics, Stanford University, Stanford, CA, USA e-mail: milgram@gauss.stanford.edu

Contents
L Introduction
1 Preroquisites
2.1. Basic homotopy theory
2.2. Hurewicz fibrations
2.3 Serie fibrations
2.4. Quasifiberings
2.5. Associated quasifibrations
The Freudenthal suspension theorem
6 Spanier-Whitehead duality
4.1. The definition and main properties
4.2. Existence and construction of S-duals
The construction and geometry of loop spaces
5.1. The space of Moore loops
52. Free topological monoids
5.3. The James construction
5.4. The Adams-Hilton construction for ΩY
5.5. The Adams cohar construction
The structure of second loop spaces
6.1. Homotopy commutativity in second loop spaces
6.2. The Zilcheon model for G ² X
The degree of importer the autogen section 1
6.4 The Zilchgon models for iterated loop spaces of iterated suspensions

Both authors were partially supported by grants from the N.S.F.

BANDBOOK OF ALGEBRAIC TOPOLOGY Balled by I.M. James © 1995 Elsevier Science B.V. All rights reserved

6. The structure of second loop spaces

In Section 5 we showed that for a connected CW complex with no one cells one may produce a CW complex, with cell complex given as the free monoid on generating cells, each in one dimension less than the corresponding cell of X, which is homotopy equivalent to ΩX . To go further one should study similar models for double loop spaces, and more generally for iterated loop spaces.

In principle this is direct. Assume X has no i-cells for $1 \le i \le n$ then we can iterate the Adams-Hilton construction of Section 5 and obtain a cell complex which represents $\Omega^n X$. However, the question of determining the boundaries of the cells is very difficult as we already saw with Adams' solution of the problem in the special case that X is a simplicial complex with $sk_1(X)$ collapsed to a point. It is possible to extend Adams' analysis to $\Omega^2 X$, but as we will see there will be severe difficulties with extending it to higher loop spaces except in the case where $X = \Sigma^n Y$.

Translation: No known algorithm using these methods computes $H_*(\Omega^n X)$ for $n \geq 3$

except when X is an n-suspension $X = \Sigma^n Y$.

Typical example: $H_*(\Omega^3(P^{\infty}\mathbb{R}/P^3\mathbb{R})) = ???$

Adams: There exists a finite-type CW-complex with the homotopy type of $\Omega^3(P^{\infty}\mathbb{R}/P^3\mathbb{R})$.

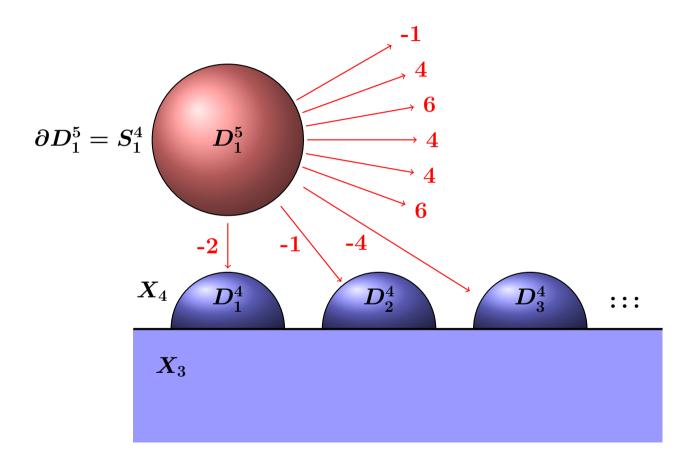
Dimension	0	1	2	3	4	5	6	7	8	9	10	• • •
Cell-#	1	1	2	5	13	33	84	214	545	1388	3535	• • •

But what about the homological boundary matrices???

Kenzo computing $d_5: [C_5(\Omega^3)=\mathbb{Z}^{33}] \to [C_4(\Omega^3)=\mathbb{Z}^{13}]:$

```
L1 = [C1 = -2]
L2=[C1=-1]
L3 = [C1 = -4][C2 = 1][C3 = -1][C4 = -2]
L4=[C2=1][C3=-1][C6=2]
L5=[C1=6][C4=1][C6=1]
L6 = [C1 = 4][C4 = 4][C6 = 4][C7 = 3]
L7=[C1=4][C12=-2][C14=2]
L8 = [C1 = 6][C4 = 1][C6 = 1]
L9 = [C1 = 4][C4 = 4][C6 = 4][C7 = 3]
L10=[C8=4][C10=1][C11=-1][C14=-4][C15=-2][C20=-2]
L11 = [C1 = 4][C8 = 4][C10 = 1][C11 = -1][C16 = -4][C18 = -1][C19 = 1][C23 = -2]
L12=[C12=4][C13=2][C16=-4][C18=-1][C19=1][C27=-2]
L13 = [C1 = -1][C20 = 4][C21 = 2][C23 = -4][C24 = -2][C27 = 4][C28 = 2]
======= END-MATRIX
```

Meaning:



Analysis of the problem:

"Standard" homological algebra is not constructive.

Typical statement:

The sequence $A \stackrel{\alpha}{\longleftarrow} B \stackrel{\beta}{\longleftarrow} C$ is exact.

Common translation:

$$(\forall b \in B) \ \ [(\alpha(b) = 0) \Rightarrow (\exists c \in C \ \underline{\text{st}} \ b = \beta(c))]$$
 with $\exists c \in C \ \text{most often non-constructive}.$

Constructive exactness:

$$A \stackrel{\alpha}{\longleftarrow} B \stackrel{\beta}{\longleftarrow} C$$
 constructively exact

if an algorithm $\rho : \ker \alpha \to C$ is given satisfying:

⇒ Organizational algebraic problems:

$$0 \longleftarrow \mathbb{Z}/2\mathbb{Z} \stackrel{\mathrm{pr}}{\longleftarrow} \mathbb{Z}$$

where ρ cannot be a group homomorphism.

<u>Definition</u>: A (homological) reduction is a diagram:

$$ho$$
: $h \subset \widehat{C}_* \stackrel{g}{\longleftrightarrow} C_*$

with:

- 1. \widehat{C}_* and C_* = chain complexes.
- 2. f and g = chain complex morphisms.
- 3. h = homotopy operator (degree +1).
- $4. \ fg = \operatorname{id}_{C_*} \text{ and } d_{\widehat{C}}h + hd_{\widehat{C}} + gf = \operatorname{id}_{\widehat{C}_*}.$
- 5. fh = 0, hg = 0 and hh = 0.

Let ρ : $h \subset \widehat{C}_* \stackrel{g}{\longleftarrow} C_*$ be a reduction.

Frequently:

1. \widehat{C}_* is a locally effective chain complex:

its homology groups are unreachable.

2. C_* is an effective chain complex:

its homology groups are computable.

- 3. The reduction ho is an entire description of the homological nature of \widehat{C}_* .
- 4. Any homological problem in \widehat{C}_* is solvable thanks to the information provided by ρ .

$$ho : h \widehat{C}_* \stackrel{g}{\longleftarrow} C_*$$

- 1. What is $H_n(\widehat{C}_*)$? Solution: Compute $H_n(C_*)$.
- 2. Let $x \in \widehat{C}_n$. Is x a cycle? Solution: Compute $d_{\widehat{C}_x}(x)$.
- 3. Let $x, x' \in \widehat{C}_n$ be cycles. Are they homologous? Solution: Look whether f(x) and f(x') are homologous.
- 4. Let $x, x' \in \widehat{C}_n$ be homologous cycles.

Find
$$y \in \widehat{C}_{n+1}$$
 satisfying $dy = x - x'$?

Solution:

- (a) Find $z \in C_{n+1}$ satisfying dz = f(x) f(x').
- (b) y = g(z) + h(x x').

The END

```
Computing
<TnPr <TnP
End of computing.

;; Clock -> 2002-01-17, 19h 25m 36s.
Computing the boundary of the generator 19 (dimension 7):
<TnPr <TnPr <TnPr S3 <<Abar[2 S1][2 S1]>>> <<Abar>>> End of computing.

Homology in dimension 6:

Component Z/12Z
---done---
;; Clock -> 2002-01-17, 19h 27m 15s
```

;; Cloc

Ana Romero, Universidad de La Rioja Julio Rubio, Universidad de La Rioja Francis Sergeraert, Institut Fourier Map Ictp Conference, Trieste, August 25-29, 2008