Effective Constructive

;5 Clock -> 2@882-81-17, 19h 25m 36s.
Computing the boundary of the generator 19 {dimension 7} :
{TnPr <TnPr <{TnPr 33 <{<Abar[2 S1][2 S1]>>> <<Abar>>> <{<Abar>>>
End of computing.

Homology in dimension 6 :

Component 27122

---done---
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Semantics of colours:

Blue
Red

Violet

Green

“Standard” Mathematics

Constructive, effective,

algorithm, machine object, ...

Problem, difficulty, obstacle, disadvantage, ...

Solution, essential point, mathematicians, ...



Three solutions for Constructive Algebraic Topology:

1. Rolf Schon (Inductive methods).
2. Effective Homology.
3. Operadic Algebraic Topology.

Only the second one so far

led to concrete computer programs.

Plan of the talk: 1. Computer illustration

around CW-complexes.
2. Constructive statement of
the homological problem.

3. Other computer illustrations.



Attaching a cell D" to a topological space X
along the boundary S"!:

X = Topological space.

f: 8" 1 - X = continuous map.

= XU;D":= (X [ D")/(X > f(z) ~x € S™1).

f - - =

X

foo
* B
P
XufD10> X Uy D?




Notion of CW-Complex X:

X:li_H}{XOCXlCXzCXSC“'CXnC'”}nEN

with Xy = discrete space and
the n-skeleton X,, is obtained
from the (n — 1)-skeleton X,,
by attaching n-disks D7, DZ,--- to X,

according to attaching maps f*, f3', - -

Every reasonable space can be presented
up to homotopy equivalence

as a CW-complex of finite type.



Example 1. Presentation of X = P?R as a CW-complex.

XOZ*

:>X1:X0Uf1D1:X1:S’1:{ZECﬂ|Z|:1}

:>X:X2:X1Uf2D2:P2R

a~ a

b~b




Example 2. More generally:
Presentation of X = P*°R as a CW-complex.

1. Xg = P'R= 8%~ = =,
2. Let us assume X,, = P"R constructed.
fn+1
3. D"t > 8" L P"R
with f*t! = the canonical projection.
4. = X, = D1 Upntr Xy = PHIR,

(++ n) ; goto 2.

5. X =lim_, X,, = P*°R.



Example 3. Simplicial complexes and simplicial sets.
X = simplicial set.

Definition: The n-skeleton X, of X is obtained from X by

keeping the non-degenerate simplices of dimen-
sion < n (and their degeneracies), throwing away
the non-degenerate simplices of dimension > n

(and their degeneracies).

| X,| obtained from |X,,_1|

by attaching n-simplices = n-disks.

= X = CW-complex with | X| = lim_, | X,|.



Simplicial version of P°°R:
PR = X = K(Zs,1)

= szVD = {on}

0;0, = On—1 if 1 = 0, n;
= Mi_10n_2 If 0 <12 < n.
0 1 x2

0 X2

0 9 x2

0 2 3 4
= C. X ={-++ «—F— P F—J— T+
= H;(P>*R) = Z ifi = 0;

Ziy if © > 0 odd;

0 ifz > 0 even.



The same for P>°C ?
Topological version 7 Easy.
P°C = X = lim_, X5, where:
Xon = Xop_z Upza D™
with: D?" D §?"~! — P"IC the canonical projection.
Simplicial version?

Much harder!



Easy up to homotopy.

Easiest solution = K (Z,2).

Justification = two principal fibrations:
St §%° — P>C

K(Z,1) — E(Z,1) — K(Z,2)

+ (K(Z,1) ~ SY)4+(S* contractible) +(E(Z, 1) contractible)
= P*C ~ K(Z,2)

Remark: K(Z,2) not of finite type!
Simplicial model of finite type for P2C??
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Cellular homology.

S" = 8 x D" '/ ~ with (z,z) ~ (2/,2') ifx =2’ € D" .

D'=1

Canonical self-map of degree k for S™:

a: S"— S": (z,x) — (2", ).

Theorem (Hopf): C(S", S")/~ = Z.
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CW-complex:
X = 1i_11n X, ={(D, f": st Xn-1)1<i<m,, }neN
Associated cellular chain complex:
v e glma1) 0 gima)

Coefficient o, of d,, in column 1 and row 1

obtained from g"f’lz
f{t . Sn—l N Xn—l
= 9?1 . Sn—l N Yln 1 Xn 1/[Xn 2 U (Uz;éan 1)] — Sn 1

= a1 = deg(gr,).



Example: X =

D;
X1
Xo —
D,
Cellular complex = {0 «+— Z e 0}

with dy = [0 0] and dy = H = H, = {Z,7 + 7,0}
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Theorem (Adams, 1956): Let X be a 1-reduced CW-complex

(one vertex, no 1-cell).

Then @ a CW-model for the loop space Q2.X,
where every sequence (o, ..., 0}) of cells of X
of respective dimensions (di, ..., d;) generate
a cell of dimension (dy + -+ + dy — k) in the
CW-model of 2X.

Examples:
S3 = (%,0,0,1) = Q83 =(%,0,1,0,1,0,1,...).
P2C = (%,0,1,0,1) =
QP?C = (%,1,1,2,3,4,6,9,13,19,28,...).
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Typical example
extracted from
the encyclopedy:

(Ioan James editor).

ALGEBRAIC
TOPOLOGY
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(i, The structure of second loop spaces

In Section 5 we showed that for a connected CW complex with no one cells one may
produce a CW complex, with cell complex given as the free monoid on generating
cells, each in one dimension less than the corresponding cell of X, which is homotopy
equivalent to £2X. To go further one should study similar models for double loop spaces,

and more generally for iterated loop spaces.

In principle this is direct. Assume X has no i-cells for 1 < 7 < n then we can iterate
the Adams—Hilton construction of Section 5 and obtain a cell complex which represents
(2" X . However, the question of determining the boundaries of the cells is very difficult

as we already saw with Adams’ solution of the problem in the special case that X is
a simplicial complex with sk;(X) collapsed to a point. It is possible to extend Adams’
analysis to 22X, but as we will see there will be severe difficulties with extending it to

higher loop spaces except in the case where X = 2"Y.

16
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Translation: No known algorithm using these methods

computes H,(Q"X) for n > 3

except when X is an n-suspension X = >"Y.

Typical example: H,(Q3(P>*R/P3R)) = 777

Adams: There |exists

a finite-type CW-complex

with the homotopy type of Q?(P>*R/P>R).

Dimension |0|1 |2

Cell-# 112

1313384214 54513883535 |-

But what about the homological boundary matrices 777



Kenzo computing ds : [C5(2°%) = Z33] — [C4(Q3) = Z13] :

L1=[C1=-2]

L2=[C1=-1]

L3=[C1=-4][C2=1][C3=-1][C4=-2]

L4=[C2=1][C3=-1][C6=2]

L5=[C1=6][C4=1][C6=1]

L6=[C1=4][C4=4][C6=4][CT=3]

L7=[C1=4][C12=-2][C14=2]

L8=[C1=6][C4=1][C6=1]

L9=[C1=4][C4=4][C6=4][CT=3]
L10=[C8=4][C10=1][C11=-1][C14=-4][C15=-2][C20=-2]
L11=[C1=4][C8=4][C10=1][C11=-1][C16=-4][C18=-1][C19=1][C23=-2]
L12=[C12=4][C13=2][C16=-4][C18=-1][C19=1][C27=-2]
L13=[C1=-1][C20=4][C21=2][C23=-4][C24=-2][C27=4][C28=2]
———==——=——= END-MATRIX
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Meaning:

oOD? =

19



Analysis of the problem:

“Standard” homological algebra is not constructive.

Typical statement:

8 C is exact.

The sequence A «—— B «

Common translation:

(Vb€ B) [(a(b) =0) = (Jdce C st b= p3(c))]

with Jc¢ € C most often non-constructive.




Constructive exactness:
A2 B L C constructively exact

if an algorithm p : ker a« — C' is given satisfying:

A
U
0

= Organizational algebraic problems:

0——Z/2Z " 7

p?

where p cannot be a group homomorphism.




Definition: A (homological) reduction is a diagram:

pP: hQC*éC*

with:
1. CAZ’* and C, = chain complexes.
2. f and g = chain complex morphisms.
3. h = homotopy operator (degree +1).
4. fg = idc, and dgh + hds + gf = idg, .

5. fh =0, hg = 0 and hh = 0.

22



Let p: nC=C,.~2-C,| be a reduction.

Frequently:

AN

1. C, is a locally effective chain complex:

its homology groups are unreachable.

2. C, is an effective chain complex:

its homology groups are computable.

3. The reduction p is an entire description of

the homological nature of C..

4. Any homological problem in C. is solvable

thanks to the information provided by p.

23



1. What is H,,(C.)? Solution: Compute H,(C.,).
2. Let x € C,. Is = a cycle? Solution: Compute dgs ().

3. Let =, 2’ € é’n be cycles. Are they homologous?

Solution: Look whether f(x) and f(x’) are homologous.

4. Let z, 2’ € é’n be homologous cycles.
Find y € CAZ’nH satisfying dy — « — 2’7
Solution:
(a) Find z € C,, . satisfying dz = f(x) — f(z').

(b) y = g(2) + h(x — x').

24



;5 Clock -> 2@882-81-17, 19h 25m 36s.
Computing the boundary of the generator 19 {dimension 7} :
{TnPr <TnPr <{TnPr 33 <{<Abar[2 S1][2 S1]>>> <<Abar>>> <{<Abar>>>
End of computing.

Homology in dimension 6 :

Component 27122

---done---

;3 Clock -> 2882-81-17, 19h 27m 1
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