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Semantics of colours:

Blue = “Standard” Mathematics

Red = Constructive, effective,

algorithm, machine object, . . .

Violet = Problem, difficulty, obstacle, disadvantage, . . .

Green = Solution, essential point, mathematicians, . . .
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Three solutions for Constructive Algebraic Topology:

1. Rolf Schön (Inductive methods).

2. Effective Homology.

3. Operadic Algebraic Topology.

Only the second one so far

led to concrete computer programs.

Plan of the talk: 1. Computer illustration

around CW-complexes.

2. Constructive statement of

the homological problem.

3. Other computer illustrations.
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Attaching a cell Dn to a topological space X

along the boundary Sn−1:

X = Topological space.

f : Sn−1 → X = continuous map.

⇒ X∪fDn := (X
∐
Dn)/(X 3 f(x) ∼ x ∈ Sn−1).

D1

• •

• •
f

f

S0X

X ∪f D1

D2

f

f

S1X

X ∪f D2
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Notion of CW-Complex X:

X = lim
−→
{X0 ⊂ X1 ⊂ X2 ⊂ X3 ⊂ · · · ⊂ Xn ⊂ · · ·}n∈N

with X0 = discrete space and

the n-skeleton Xn is obtained

from the (n− 1)-skeleton Xn−1

by attaching n-disks Dn
1 , D

n
2 , · · · to Xn−1

according to attaching maps fn1 , f
n
2 , · · ·

Every reasonable space can be presented

up to homotopy equivalence

as a CW-complex of finite type.
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Example 1. Presentation of X = P 2R as a CW-complex.

X0 = ∗
D1 ⊃ S0 f1

→ ∗
⇒ X1 = X0 ∪f1 D1 = X1 = S1 = {Z ∈ C st |z| = 1}

D2 ⊃ S1 f2

→ S1 : z 7→ z2

⇒ X = X2 = X1 ∪f2 D2 = P 2R

××

× ×

∗ ∗
ab

a′ b′

P 2R =
a ∼ a′

b ∼ b′
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Example 2. More generally:

Presentation of X = P∞R as a CW-complex.

1. X0 = P 0R = S0/∼ = ∗.

2. Let us assume Xn = P nR constructed.

3. Dn+1 ⊃ Sn fn+1

−→ P nR
with fn+1 = the canonical projection.

4. ⇒ Xn+1 = Dn+1 ∪fn+1 Xn = P n+1R.

(++ n) ; goto 2.

5. X = lim→Xn = P∞R.
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Example 3. Simplicial complexes and simplicial sets.

X = simplicial set.

Definition: The n-skeleton Xn of X is obtained from X by

keeping the non-degenerate simplices of dimen-

sion ≤ n (and their degeneracies), throwing away

the non-degenerate simplices of dimension > n

(and their degeneracies).

|Xn| obtained from |Xn−1|
by attaching n-simplices = n-disks.

⇒ X = CW-complex with |X| = lim→ |Xn|.
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Simplicial version of P∞R:

P∞R = X = K(Z2, 1)

⇒ XND
n = {σn}

∂iσn = σn−1 if i = 0, n;

= ηi−1σn−2 if 0 < i < n.

⇒ C∗X = {· · · ←−
0

Z
0←−

1

Z
×2←−

2

Z
0←−

3

Z
×2←−

4

Z
0←−

5

Z
×2←− · · ·}

⇒ Hi(P
∞R) = Z if i = 0;

Z2 if i > 0 odd;

0 if i > 0 even.
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The same for P∞C ?

Topological version ? Easy.

P∞C = X = lim→X2n where:

X2n = X2n−2 ∪f2n D2n

with: D2n ⊃ S2n−1 → P n−1C the canonical projection.

Simplicial version?

Much harder!
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Easy up to homotopy.

Easiest solution = K(Z, 2).

Justification = two principal fibrations:

S1 ↪→ S∞ −→ P∞C

K(Z, 1) ↪→ E(Z, 1) −→ K(Z, 2)

+ (K(Z, 1) ∼ S1)+(S∞ contractible) +(E(Z, 1) contractible)

⇒ P∞C ∼ K(Z, 2)

Remark: K(Z, 2) not of finite type!

Simplicial model of finite type for P 2C??



10

Cellular homology.

Sn = S1 ×Dn−1/ ∼ with (z, x) ∼ (z′, x′) if x = x′ ∈ ∂Dn−1.

S1

D1 = I
∗ × I

7−→

• ∗

S1 × 0

S1 × 1

•

•
•

Canonical self-map of degree k for Sn:

αk : Sn → Sn : (z, x) 7→ (zn, x).

Theorem (Hopf): C(Sn, Sn)/∼ ∼= Z.
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CW-complex:

X = lim
→
Xn = {(Dn

i , f
n
i : Sn−1 → Xn−1)1≤i≤mn}n∈N

Associated cellular chain complex:

· · · ←− Z(mn−1) dn←− Z(mn) ←− · · ·

Coefficient α1,1 of dn in column 1 and row 1

obtained from gn1,1:

fn1 : Sn−1 → Xn−1

⇒ gn1,1 : Sn−1 → Y n−1
1 = Xn−1/[Xn−2 ∪ (∪i6=1D

n−1
i )] = Sn−1

⇒ α1,1 = deg(gn1,1).
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Example: X =

• D2
1

X1

X0

D1
1

D1
2

f2
1

Cellular complex = {0←− Z d1←− Z2 d2←− Z←− 0}
with d1 = [0 0] and d2 =

[
2

2

]
⇒ H∗ = {Z,Z2 + Z, 0}
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Theorem (Adams, 1956): LetX be a 1-reduced CW-complex

(one vertex, no 1-cell).

Then ∃ a CW-model for the loop space ΩX,

where every sequence (σ1, . . . , σk) of cells ofX

of respective dimensions (d1, . . . , dk) generate

a cell of dimension (d1 + · · · + dk − k) in the

CW-model of ΩX.

Examples:

S3 = (∗, 0, 0, 1) ⇒ ΩS3 = (∗, 0, 1, 0, 1, 0, 1, . . .).
P 2C = (∗, 0, 1, 0, 1)⇒

ΩP 2C = (∗, 1, 1, 2, 3, 4, 6, 9, 13, 19, 28, . . .).
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Typical example

extracted from

the encyclopedy:

(Ioan James editor).
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Chapter 13

Stable Homotopy

and Iterated Loop Spaces

Gunnar Carlsson

James Milgram
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Translation: No known algorithm using these methods

computes H∗(Ω
nX) for n ≥ 3

except when X is an n-suspension X = ΣnY .

Typical example: H∗(Ω
3(P∞R/P 3R)) = ???

Adams: There exists a finite-type CW-complex

with the homotopy type of Ω3(P∞R/P 3R).

Dimension 0 1 2 3 4 5 6 7 8 9 10 · · ·
Cell-# 1 1 2 5 13 33 84 214 545 1388 3535 · · ·

But what about the homological boundary matrices ???
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Kenzo computing d5 : [C5(Ω
3) = Z33]→ [C4(Ω

3) = Z13] :

========== MATRIX 13 lines + 33 columns =====

L1=[C1=-2]

L2=[C1=-1]

L3=[C1=-4][C2=1][C3=-1][C4=-2]

L4=[C2=1][C3=-1][C6=2]

L5=[C1=6][C4=1][C6=1]

L6=[C1=4][C4=4][C6=4][C7=3]

L7=[C1=4][C12=-2][C14=2]

L8=[C1=6][C4=1][C6=1]

L9=[C1=4][C4=4][C6=4][C7=3]

L10=[C8=4][C10=1][C11=-1][C14=-4][C15=-2][C20=-2]

L11=[C1=4][C8=4][C10=1][C11=-1][C16=-4][C18=-1][C19=1][C23=-2]

L12=[C12=4][C13=2][C16=-4][C18=-1][C19=1][C27=-2]

L13=[C1=-1][C20=4][C21=2][C23=-4][C24=-2][C27=4][C28=2]

========== END-MATRIX
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Meaning:

D4
1 D4

2 D4
3 · · ·· · ·X4

X3

D5
1

-2 -1 -4

∂D5
1 = S4

1

6

4

4

6

4

-1
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Analysis of the problem:

“Standard” homological algebra is not constructive .

Typical statement:

The sequence A
α←− B β←− C is exact.

Common translation:

(∀b ∈ B) [(α(b) = 0)⇒ ( ∃c ∈ C st b = β(c))]

with ∃c ∈ C most often non-constructive.
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Constructive exactness:

A
α←− B β←− C constructively exact

if an algorithm ρ : kerα→ C is given satisfying:

A B C

0 kerα

α β

ρ?

=

⇒ Organizational algebraic problems:

0 Z/2Z Z
pr

ρ?

where ρ cannot be a group homomorphism.
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Definition: A (homological) reduction is a diagram:

ρ: Ĉ∗ C∗
f

g
h

with:

1. Ĉ∗ and C∗ = chain complexes.

2. f and g = chain complex morphisms.

3. h = homotopy operator (degree +1).

4. fg = idC∗ and dĈh+ hdĈ + gf = idĈ∗.

5. fh = 0, hg = 0 and hh = 0.
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Let ρ: Ĉ∗ C∗
f

g
h be a reduction.

Frequently:

1. Ĉ∗ is a locally effective chain complex:

its homology groups are unreachable.

2. C∗ is an effective chain complex:

its homology groups are computable.

3. The reduction ρ is an entire description of

the homological nature of Ĉ∗.

4. Any homological problem in Ĉ∗ is solvable

thanks to the information provided by ρ.
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ρ: Ĉ∗ C∗
f

g
h

1. What is Hn(Ĉ∗)? Solution: Compute Hn(C∗).

2. Let x ∈ Ĉn. Is x a cycle? Solution: Compute dĈ∗(x).

3. Let x, x′ ∈ Ĉn be cycles. Are they homologous?

Solution: Look whether f(x) and f(x′) are homologous.

4. Let x, x′ ∈ Ĉn be homologous cycles.

Find y ∈ Ĉn+1 satisfying dy = x− x′?
Solution:

(a) Find z ∈ Cn+1 satisfying dz = f(x)− f(x′).

(b) y = g(z) + h(x− x′).
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