;5 Clock -> 2@882-81-17, 19h 25m 36s.
Computing the boundary of the generator 19 {dimension 7} :
{TnPr <TnPr <{TnPr 33 <{<Abar[2 S1][2 S1]>>> <<Abar>>> <{<Abar>>>
End of computing.

Homology in dimension 6 :

Component 27122

---done---

;3 Clock -> 2882-81-17, 19h 27m 1
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Semantics of colours:

Blue
Red

Violet

Green

“Standard” Mathematics

Constructive, effective,

algorithm, machine object, ...

Problem, difficulty, obstacle, disadvantage, ...

Solution, essential point, mathematicians, ...



Main result:

Constructive Algebraic Topology

is Constructive (and simpler).



Important steps in Algebraic Topology:

Euclid, Euler, Riemann, Poincaré, Serre.

Serre: Every homology or homotopy group of

a “reasonable” simply connected space

= Could be output by a computer:

is of finite type.

Zys®ZLe®Z «— (2,2,2,2,6,0)

But can be

computed

by a computer?



Typical example

OF

ALGEBRAIC
extracted from TOPOLOGY

the encyclopedy:

(Ioan James editor).
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(i, The structure of second loop spaces

In Section 5 we showed that for a connected CW complex with no one cells one may
produce a CW complex, with cell complex given as the free monoid on generating
cells, each in one dimension less than the corresponding cell of X, which is homotopy
equivalent to £2X. To go further one should study similar models for double loop spaces,
and more generally for iterated loop spaces.

In principle this is direct. Assume X has no i-cells for 1 < 7 < n then we can iterate
the Adams—Hilton construction of Section 5 and obtain a cell complex which represents
(2" X . However, the question of determining the boundaries of the cells is very difficult
as we already saw with Adams’ solution of the problem in the special case that X is
a simplicial complex with sk;(X) collapsed to a point. It is possible to extend Adams’
analysis to 22X, but as we will see there will be severe difficulties with extending it to
higher loop spaces except in the case where X = 2"Y.




Translation: No known algorithm using these methods
computes H,(Q"X) for n > 3

except when X is an n-suspension X = >"Y.

Typical example: H,(Q3(P>*R/P3R)) = 777

Adams: There exists a finite-type CW-complex
with the homotopy type of Q?(P>*R/P>R).

Dimension|0|1(2(3/4 | 5|6 | 7 8 9 10
Cell-#41/1/2|/5|13|33|84 /214 545|1388 3535 |-

But what about the homological boundary matrices 777



Kenzo computing ds : [C5(2°%) = Z33] — [C4(Q3) = Z13] :

L1=[C1=-2]

L2=[C1=-1]

L3=[C1=-4][C2=1][C3=-1][C4=-2]

L4=[C2=1][C3=-1][C6=2]

L5=[C1=6][C4=1][C6=1]

L6=[C1=4][C4=4][C6=4][CT=3]

L7=[C1=4][C12=-2][C14=2]

L8=[C1=6][C4=1][C6=1]

L9=[C1=4][C4=4][C6=4][CT=3]
L10=[C8=4][C10=1][C11=-1][C14=-4][C15=-2][C20=-2]
L11=[C1=4][C8=4][C10=1][C11=-1][C16=-4][C18=-1][C19=1][C23=-2]
L12=[C12=4][C13=2][C16=-4][C18=-1][C19=1][C27=-2]
L13=[C1=-1][C20=4][C21=2][C23=-4][C24=-2][C27=4][C28=2]
———==——=——= END-MATRIX



Computing in the same way:
dg : [Cs(2°) = 7% — [C5(Q°%) = Z77] :
+ Elementary matrix Smith reductions
= H;(Q3(P>*R/P*R)) = 7Z5® Z¢ ® 7Z.
How it is possible?

Solution = Effective Homology.



Method

of Homological
Typical example Algebra

of erroneous statement

in a (very good)

classical book.

Springer Monographs in Mathematics




In the foreword:

ME L L L B[R T P A LAV MR Lapeaa ey STaaa s

mmmple'renm of thL ma,u.nal of course, many important developments do tior
not fit into our rigid scheme. in ¢
The hook by Cartan and Eilenberg contains essentially all the construe- Lef
/ { tions of homological algebra that constitute its computational tools, namely } by
standard resolutions and spectral sequences, No less important, it confains an dey
axiomatic definition of derived functors of additive functors on the category
of modules over a ring. put
It was this idea that determined the contours of the second period. The fun
logic of the internal development of analytic and algebraic geometry led to the der
formulation of the notion of a sheaf and to the realization of the idea that the wh

“The book by Cartan and Filenberg contains es-

sentially all the constructions of homological algebra

that constitute its computational tools, mnamely standard

resolutions and spectral sequences.”

*—m
-

Essentially false



Typical problem not computationnally solved by exact sequences.
J.-P. Serre (1950) computing (?7) sphere homotopy groups.

Serre’s result: Exact sequence:

0 Zg «—— me(S%) —— Zo 0

= 76(S®) = Zis Zo @ Zg 777

“Solution”: “compute” the cohomology class
e € H?*(Zg, Zs) = 7y classifying the extension.

Needs a representant of the generator of Zg
in an esoteric chain group Cg(Xg)
with X the total space of a terrible fibration

+ a final terrible computation.



Solved one year later by Barrat and Paechter,

thanks to a very specific study:

A NOTEON x(V. w)
By M. G. BARRATT AND G. F. PAECHTER
MaGDALEN CoLLEGE, OXFORD
Communicated by S, Lefschetz, November 28, 1951

Introduction.—Letk 2 3. Weshall prove

THEOREM 1.1, 7,,3(S¥) has an element of order four.

Let Viim n be the Stiefel Manifold of all orthogonal m-frames in real
Euclidean (k 4 m)-space.

THeEOREM 1.2,  The groups wrie(Viem, m) are given by the following table,
in which Z,, Z ., are cyclic groups of order p, =, respectively.

=%, m m=1 m=2 m=3 mz 4
k=1 0 2w A 2w+z=u Znn
k=45 -2 Zg Z.+2, Z: 0
k=45 Zy 2y + 2y o+ 2y L+ 2y
k=ds -1 Zy Zi L+ ia Zy
b=ds+1 2 2 i+ Za Zy

Let ¥**! be the (n — 1)-fold suspension of the real projective plane, so
that ¥**! consists of an n-sphere 5" and an (n + 1)-cell e**! attached to
S"by amap of degree 2. We prove

THEOREM 1.3 mapa(V*HY) = Zyifn 2 3.

12



Now “stupidly” obtained by the Kenzo program:

;5 Clock -> 2862-81-17, 19h 25m 36s.
Computing the boundary of the generator 19 {dimension 7} :
{TnPr <TnPr {TnPr 33 <{<{Abar[2 S1][2 $1]>>> <{<{Abar>>> {<Abar>>>
End of computing.

Homology in dimension 6 :

Component 2/122

---done---

;3 Clock -> 2862-81-17, 19h 27m 1

13



Analysis of the problem:

“Standard” homological algebra is not constructive.

Typical statement:

8 C is exact.

The sequence A «—— B «

Common translation:

(Vb€ B) [(a(b) =0) = (Jdce C st b= p3(c))]

with Jc¢ € C most often non-constructive.




Constructive exactness:
A2 B L C constructively exact

if an algorithm p : ker a« — C' is given satisfying:

A
U
0

= Organizational algebraic problems:

0——Z/2Z " 7

p?

where p cannot be a group homomorphism.




Effective Homology

flow chart

Functional Programming

Reductions between

Chain Complexes

Basic Perturbation Lemma

“Locally” effective objects

Connections between
Eff. & Loc.Eff. objects

Constructive

Homological Algebra

16



Functional Programming:

The art of handling functional objects.

Examples of functional objects:

(Z’ Ty X) (Z[X]v Ty ><)

Other example:

Kan model for the loop space QS® := C(S1, S3):

(Sas3, {0 }n>1,0<i<ns {1 }n>0,0<i<n)

with Sgg¢3 = the simplex set of the Kan model.

= “Locally” effective objects.

17



Main problem:

Designing programs (fi,..., f,) — f.
Example:

(R, +m,y —oy X)) = (R[X], Forix)y —m[x7] X9a[x])

Topological example. X = topological space.

(Sx,{9(X)} }n>1,0<i<ns {7(X)} tn>0,0<i<n)
= (Sax, {9(2X)} bn>1,0<i<ny {1(Q2X)} bn>0,0<i<n)

Solution = A\-calculus, Lisp, ML, Axiom, Haskell. ..

18



Definition: A (homological) reduction is a diagram:

pP: hQC*éC*

with:
1. CAZ’* and C, = chain complexes.
2. f and g = chain complex morphisms.
3. h = homotopy operator (degree +1).
4. fg = idc, and dgh + hds + gf = idg, .

5. fh =0, hg = 0 and hh = 0.

19



d d A d _d — C
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A, =ker fNnkerh| |B,=kerfNkerd C/=img

6’* = ||A. @ B, exact| @ |C! = C,

20



Let p: nC=C,.~2-C,| be a reduction.

Frequently:

AN

1. C, is a locally effective chain complex:

its homology groups are unreachable.

2. C, is an effective chain complex:

its homology groups are computable.

3. The reduction p is an entire description of

the homological nature of C..

4. Any homological problem in C. is solvable

thanks to the information provided by p.

21



1. What is H,,(C.)? Solution: Compute H,(C.,).
2. Let x € C,. Is = a cycle? Solution: Compute dgs ().

3. Let =, 2’ € é’n be cycles. Are they homologous?

Solution: Look whether f(x) and f(x’) are homologous.

4. Let z, 2’ € é’n be homologous cycles.
Find y € CAZ’nH satisfying dy — « — 2’7
Solution:
(a) Find z € C,, . satisfying dz = f(x) — f(z').

(b) y = g(2) + h(x — x').

22



Definition: (C,,d) = given chain complex.

23

A perturbation ¢ : C, — C,_; is an operator of degree -1

satisfying (d + 6)? = 0 (< (dd + dd + §%) = 0):

(Cs, d) + (0) = (Cs, d+0).

Problem: Let p: h@((i,c?)%(c*,d) be a given reduc-

tion and ¢ a perturbation of d.

How to determine a new reduction:

777: | b1 S(Ch, d+5) (C*, d+7)

describing in the same way the homology of

the chain complex with the perturbed

differential?



Basic Perturbation “Lemma” (BPL):

Given:

hC,— 6

il

C.

satisfying:

1.5 is a perturbation of the differential d of 6’*;

2. The operator h o 5 is pointwise nilpotent.

Then a general algorithm BPL constructs:

htonSC. A+ 6
——— BPL
C*Oé —> f+5f”g—|-5g
C, Dd+da

24



25
Serre: “Everything” in Algebraic Topology

can be reduced to Fibration problems.

Examples: Loop spaces, Classifying spaces, Homogeneous

spaces, Whitehead tower, Postnikov tower, ...

Remark: Fibration = Twisted Product
= Perturbation of Trivial Product.

Corollary: BPL is effective
+ Fibration = Perturbation of Trivial Product

+ Everything is Fibration

= Alg. Topology becomes Constructive.




Definition: A (strong chain-) equivalence € : C, &> D,

Lp )
is a pair of reductions C, &= FE, = D,:

i S

AX

Normal form problem 77

42
/ 30\
21 14
15. 10
5}

More structure often necessary in C,.

Most often: no possible choice for C,.

26



Definition:

tuple:

with:

An

object with effective homology

X = X,C.,(X),EC,,¢

X 1s a 4-

1. X = an arbitrary object (simplicial set, simplicial group,

differential graded algebra, ...)

2. C.(X) = “the” chain complex “traditionally” associated

with X to define the homology groups H,(X).

3. EC, = some effective chain complex.

4. ¢ = some equivalence C,(X) @ EC..

27
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Main result of effective homology:

Meta-theorem: Let X,,..., X,, be a collection of objects with
effective homology and ¢ be a reasonable con-
struction process:

¢ (Xy...,Xp) — X.
Then there exists a version with effective ho-

mology ¢rm:

¢EH: (Xlac*(Xl)aECI*a €1 X?’w C*(Xn)aECn*aen)

-
°
.

-

— | X,Cy(X), EC,, e

The process is perfectly stable

and can be again used with X for further calculations.



Example:

Julio Rubio’s solution of Adams’ problem.

X = (X, C.(X), ECX, &%)

NN

Eil.-Mooregg

QX = (2X, C.(QX), ECHX, £9X)

—> Trivial iteration now available.

29



= Very simple solution of | Adam’s problem| :

Indefinite

iteration

>
|

Qpm

=

99,4

=

Qo
02X

Qpm

=

QX

=

Qro

QX

of the Cobar construction 777

(X,C.(X), ECX, X)

*

(QX,C.(0X), EC®*X, 9X)
(02X, C,(Q22X), ECYX, c2°X)

(BX, C, (X)), ECTX, 2°X)

“Cobar” " (ECX)

30



Example: Effective homology version of

the Serre spectral sequence.

F = (F, C.(F), ECY, &F)
+ B = (B, C.(B), ECB, £P)
+ 7:B—- F

$ 44U Serregny
E=F x,.B=(E, C.(E), ECE, ¢F)

(Serre + G. Hirsch + H. Cartan + Shih W.
+ Szczarba + Ronnie Brown + J. Rubio + FS)

31



Proof.

id EZ
C.(F x B) 4= C,(F x B) = C.F ® C.B

X ~ ~ 0%
C.,FRC.B«=CFCPF= ECF ECE

W Serrepn

EPL
CF®CB & CFr®

tl

Shih

BPL
CB = ECF®

t//

ECB

+ Composition of equivalences —> O.K.

32
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Combining these ingredients =-

Homological Algebra becomes constructive.

Corollary: The “standard” exact and spectral sequences

of Homological Algebra

really become computational tools.

= Concrete computer programs (EAT, Kenzo).



Warning about the right chronology. Example, let:

$: F— E— B

be a fibration with B simply connected.

1. The ordinary Serre Spectral Sequence is not constructive.

2. Methods of Effective Homology give an algorithm:
[EH.(F)+ EH,.(B) + ¢| — EH,.(E).

3. Methods of Effective Homology can then compute:
|[EH.(F)+ EFH,.(B) + ¢ + EH,.(FE) — SSS(¢)].

That is, the SSS is a byproduct of Effective Homology.

(Ana Romero)

34
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Are your computer programs efficient?
What about benchmarks?
Do you compute new sphere homotopy groups?
Non-relevant question!
To be compared with prime number chasing.
Two different activities:
1. Searching for very big prime numbers.

2. Designing methods applicable to arbitrary numbers.



Most efficient current methods for big prime numbers:

Specific| tests (Lucas-Lehmer):

= (232:982.657 _ 1) prime (2006).

Most “efficient” general method:

Agrawal-Kayal-Saxena n'2-algorithm.

Both methods have totally different scopes.
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Analogous situation in Algebraic Topology.

In case of spheres (~ Mersenne numbers),

specific methods go very far.
But these methods are inapplicable in general situations.

Typical situation:

Modifying a loop space by “pre-attaching” a cell.

What influence about

the homology groups of the new loop space?



38

Attaching a cell D" to a topological space
along the boundary S"!:
X = Topological space.
f: 8" 1 - X = continuous map.
= XU;D":= (X [ D")/(X > f(z) ~x € S™1).

f - - =

X

foo
* B
P
XufD10> X Uy D?




Given:

e X = Topological space.
e H,(X) = Homology of X.
e H,(Q2X) = Homology of the loop space Q2X.

e f:S" 1 — X continue.

Problem:

® Determine H,.(Q2(X Uy D")) = 777

39
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Example:

H,(22S?) computed by J.-P. Serre (1950).
H,(9%S? := Q(05”)) computed by W. Browder (1958).
Modifying Q.52 — Q83 Uy, D3,

= Problem:
H,(2(QS° UyD?)) = 777

Remark: H,(Q2S® U; D?) direct consequence of Serre’s result.

“Standard” Algebraic Topology = 777



In Effective Homology:

S3 = Finite simplicial set = S*> = OEH V.
EMSSEH? = QS% = OEHY.
MVESEH?% = QS°% U,D? = OEHDV.
EMSSEH? = Q(Q8°% U,D?) = OEH Y.

Q(QS% U,D?) = OEHY = H,(Q2(28? U, D?))

1) OEH = Object with Effective Homology.

computable|.

= OK.

2) EMSSEH = Eilenberg-Moore Spectral Sequence with Effective Homology.
3) MVESEH = Mayer-Vietoris Exact Sequence with Effective Homology

41



A more complicated analogous computation:
X = Q(QQ(P>*R/P3R) Uy D*) Uy D?)) H. X =777

Hy(X) = 7.

H,(X) = 7/27.

Hy(X) = (Z/27)? + 7.

H3(X) = (Z/27)* + 7./87Z.

Hy(X) = (Z/27)'° + 7./4Z + 72.

Hs(X) = (Z/27)* + 7./87 + 7./ 167Z.

Hg(X) = (Z/27)%2 + (Z/A7)® + 73.

H;(X) = (2/2Z2)'*® + Z/AZ + (Z/8Z)> + Z/16Z + 7./ 327 + 7.

The longest Kenzo computation (2 months).

42



Two main steps in a Kenzo calculation H(d) = 777

1) “Automatic” writing of a sophisticated highly functional program P.

2) Using program P to compute P(d) = H(d).

1) = Always very fast (< 1 sec.).

2) = Can be very long (hours, days, months, years, centuries, ...)

High efficiency in functional programming with Common-Lisp

=> No technical difficulty in 1).

Terrible problem of memory management in 2).

43



Functional Problem

Jos

f72 (aﬁl) = ?

'f98(a48) =7

f39 (a73) =7

0..~"":f69(09é) =7 "

777777777 o ‘®

f 72 Jeo - f 39

,,,,,,,,, ] - Q J
Jor(as) = r’f27(a35) =7 ;
777777777 o ° ° e
Jor

flg(aﬁo) = ? flS(UzGO) =7
777777777 ® ® ® ®

Jis

44
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Only heuristic methods available:
EAT-1: No result stored = poor time computing efficiency.

EAT-2: “Non-trivial” results stored
= Computing time divided by ~10.

Kenzo-1: Strong improvement in storing-searching methods.

= Computing time divided by ~10.

Kenzo-2: For overcoming space complexity:
Periodic cleaning of stored results.

= Computing time divided by ~10.

Theoretical framework for a rational study 777 Open !!!



“Vertical” vs “Horizontal” time complexity.

Computing H,(X), 7,(X)...

Two parameters: n and X.

“Horizontal” complexity := wrt X.

“Vertical” complexity := wrt n.

Effective homology = Horizontal complexity = P.

David Annick (1986) =
Vertical complexity > N P-complete.

46



Back to “standard” Mathematics.

Traditional main problem of Algebraic Topology:

Classifying the homotopy types.

1. Only “reasonable” spaces: CW-complexes = Simp. sets.

2. Non-simply connected topology excluded (word problem).

3. Classification “up to homeomorphism” out of scope =

Only classification “up to homotopy equivalence”.

4. “Standard” solution = Postnikov “invariants”.

47
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Main problem of Algebraic Topology:
Algebraic Models for Topological Spaces 7

Main idea: Topology is difficult, Algebra is easy (17).

Subquestion: what does the word “Algebra” means?

Answer: No meaning at all, only a “cultural” tradition.

Correct question:

Computable Models for Topological Spaces ?



Three solutions:

1. Rolf Schon.
2. Effective Homology.

3. Operads.

Schon’s solution =
Intensive use of inductive limits

to approximate infinite objects.

Only one computer application:

Alain Clément, Lausanne, Haskell program.

49



Comparison: Effective Homology < Operads 777
Object with effective homology = Triple: (X, HX,¢) with:

X = locally effective version of the object.

H X = Effective chain complex

describing the ordinary homology of X.

¢ = Strong connection X «—— HX.

Theorem: The triple (X, HX,¢s) is a computable model

of the homotopy type of X.

20



Operadic model for a topological space X:
(HX, M)

with:

H X = Effective chain complex

describing the ordinary homology of X.

M = FE_.-operadic structure over H X.

Theorem (Mandell): The pair (HX, M) is

an “algebraic” model

of the homotopy type of X.

51
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Connection between (X, HX,e) and (HX, M)?

Theorem: There exists a canonical correspondance:

(X,HX,e) — (HX, M)

1. “—” = Berger-Fresse.
2. “«—” = S.-Mandell.

Far from concrete implementations ! !



Main open problems in Effective Homology:

1. Eilenberg-Zilber = « [ ] «— ] 7,

Problem: General formula

of unavoidable exponential complexity.
How to design an efficient algorithm

for concrete particular cases?

2. Twisted Eilenberg-Zilber.
New important results experimentally discovered in 98.

Not yet proved!

93



o4

3. Spectral sequences.
Filtrated chain complexes vs Exact Couples.
Particular cases of Bousfield-Kan, Adams,
May, Adams-Novikov... spectral sequences.

Cf recent thesis by Ana Romero.

4. Commutative Algebra.
Recent result:
Canonical correspondance between:

Effective resolution of K[x4,...,x;|-modules

Ig

Effective homology of Koszul complex.

= New algorithms producing effective resolutions.
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. Concrete implementation of the canonical correspondance:

(X,HX,e) «— (HX, M)

. Efficient memory management

for high level functional programming 777

. Program proof, theorem proving.

Recent result (Jesus Aransay):

Isabelle-certified proof of the Basic-Perturbation-Lemma.

Competing work by Coq people.



;5 Clock -> 2@882-81-17, 19h 25m 36s.
Computing the boundary of the generator 19 {dimension 7} :
{TnPr <TnPr <{TnPr 33 <{<Abar[2 S1][2 S1]>>> <<Abar>>> <{<Abar>>>
End of computing.

Homology in dimension 6 :

Component 27122

---done---

;3 Clock -> 2882-81-17, 19h 27m 1

The END
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