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Semantics of colours:

Blue = “Standard” Mathematics

Red = Constructive, effective,

algorithm, machine object, . . .

Violet = Problem, difficulty, obstacle, disadvantage, . . .

Green = Solution, essential point, mathematicians, . . .
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Talk theme = Quotation (from Encyclopedic Dictionary of Mathematics):

As yet we are ignorant of an effective method of computing

the cohomology of a Postnikov complex from πn and kn+1.

Rough plan of the talk:

1. What does classification means?

2. Classification Problem in Algebraic Topology.

3. “Solution” based on Postnikov Towers.

4. Which is not constructive in standard Algebraic Topology.

5. Making Algebraic Topology constructive.

6. ⇒ A fundamental new Computability Problem in Arithmetic.
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What is a classification?

Let E be a large set (class).

Classifying the elements of E consists in constructing:

E //

χ

''

χ′
""EEEEEEEEE E/R oo

∼=
//

��

I

I ′

where:

• R = classifying equivalence relation between E-elements;

• E/R = associated quotient set;

• I (resp. I ′) = appropriate complete (resp. partial) invariants;

• χ (resp. χ′) = classification process.

• I (I ′) and χ (χ′) satisfy some recursiveness properties.
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Typical successful example.

• E = set of square K-matrices (K some commutative field).

• R = similarity relation (A
R∼ B ⇔ A = SBS−1).

• χ : E → I = invariant factors process.

Then a correct classification of matrices modulo similarity is:

χ : E −→ I ∼= E/R

χ(M) = (p1, p2, . . . , pk)

where p1, . . . , pk ∈ 1K[X], satisfying p1|p2|. . .|pk,

are the invariant factors of M.
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Properties of χ : E → I ∼= E/R:

1. The classification map χ is surjective.

2. The invariant set I is not too large (id : E → I = E = (E/ =) ?!?!).

3. The invariant set I is not too small (∗ : E → {∗} = E/E ?!?!).

4. The equivalence relation R on E is worthwhile (R = similarity).

5. The invariant set I is recursive (π : E → I := E/R ?!?!).

6. The invariant map χ is recursive.

7. A recursive section of χ can be given.
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Classification in Algebraic Topology?

Classification of spaces up to homeomorphism = Topology.

Much too difficult!

Defining a rougher equivalence relation ⇒ Homotopy type.

Two maps f0, f1 : A→ B are homotopic

if there exists a continuous deformation f0 ∼ f1.

Two spaces A and B have the same homotopy type (A ∼ B) if:

A
f

// B
goo

with gf ∼ idA and fg ∼ idB.

Typically: Hollow circle ∼ Hollow cylinder ∼ Solid torus.
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Known invariants of the homotopy type:

Homotopy Groups (Poincaré + Hurewicz).

Poincaré group = π1A = {γ : (S1, ∗) −→ (A, ∗)}/ ∼

More generally:

Hurewicz groups = πnA = {γ : (Sn, ∗) −→ (A, ∗)}/ ∼

Abelian groups for n ≥ 2.

The isomorphism class of πnA

depends only on the homotopy type of A.
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First definitive obstacle for effective Algebraic Topology:

Spaces with π1 6= 0 too close to Novikov’s word problem.

Theorem (Rabin): There exists a finitely triangulated com-

plex K of dimension 2 such that:

• π1K 6= 0;

• There exists no proof of this fact;

• Such a triangulated complex K

cannot be identified as such.

⇒ Most common Algebraic Topology limited to π1 = 0.
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From now on, all spaces K are assumed satisfying π1(K) = 0.

Question: Is (π2(K), π3(K), . . . , πn(K), . . .)n≥2

a complete set of invariants for the homotopy type?

Answer: In particular cases, yes, in general no.

Simplest case: only one n ≥ 2 with πn(K) 6= 0.

Then the homotopy type of K is

entirely determined by the isomorphism class of πn(K).

Example: The homotopy type of P∞(C)

is entirely determined by

its sequence of homotopy groups (π2 = Z, 0, 0, . . .).
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Eilenberg-MacLane space K(π, n).

Definition: K(π, n) is the unique space K

satisfying πm(K) = 0 for every m except πn(K) = π.

NB: Unique up to homotopy equivalence.

Examples:

• K(Z, 1) = S1.

• K(Z2, 1) = P∞R = R∞∗ /∼proj.

• K(<a, b, c, d; [a, b][c, d]>, 1) = S2 =

• K(Z, 2) = P∞C = C∞∗ /∼proj.
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Eilenberg-MacLane spaces =

elementary components of the homotopy world.

In fact K(π, n) = topological group .

Spaces with two non-null homotopy groups?

Theorem: Let E be a space with two non-null homotopy groups:

πm(E) = πm, πn(E) = πn, πk(E) = 0 otherwise, 2 ≤ m < n.

Then there exists a version E’ of E (same homotopy type):

E′ = twisted product = E′ = K(πm, m)× τ K(πn, n).
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Simplest examples of twisted products:

Non-twisted S1 × Z = stack of circles.

1-twisted S1 × 1 Z = R.

The canonical projection R = S1 × 1 Z→ S1

is the complex exponential map t 7→ e2πit.

Twist ⇒
Problems with multiple “branches” in complex logarithms.

Hopf fibration: S3 = S2 × 1 S1

⇔ P 1(C) = S2 = S3/∼proj with S3 ⊂ C2.
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General fibration theory ⇒

Theorem: A fibration:

K(π, n) ↪→ E = B ×τ K(π, n) → B

is classified by an element kτ ∈ Hn+1(B, π).

Examples:

π = Z, n = 1, K(Z, 1) = S1, B = S2 ⇒ H2(S2, Z) = Z

k = 0⇒ S2 ×0 S1 = S1 × S2.

k = 1⇒ S2 ×1 S1 = S3 = Hopf fibration.

k = 2⇒ S2 ×2 S1 = P 3R = “semi-Hopf fibration”

. . . . . .
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Generalization = Fundamental Postnikov’s result:

E = arbitrary space with π1 = 0.

Then E
∼
= lim←En with (En)n≥1 defined by a sequence:

(π2, k2 = 0, π3, k3, π4, k4, . . . , πn, kn, . . .)

by the recursive formula:

E1 = ∗ and En = En−1 ×kn
K(πn, n) if n ≥ 2.

with kn ∈ Hn+1(En−1).

E = K(π2, 2)︸ ︷︷ ︸
E2

×k3
K(π3, 3)

︸ ︷︷ ︸
E3

×k4
K(π4, 4)

︸ ︷︷ ︸
E4

×k5
· · ·

︸ ︷︷ ︸
···

· · ·

︸ ︷︷ ︸
E

Postnikov System
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Now two essential problems:

As yet we are ignorant of an effective method of computing

the cohomology of a Postnikov system from πn and kn.

k5 ∈ H6(K(π2, 2) ×k3
K(π3, 3) ×k4

K(π4, 4)) = ?????

Now three theoretical solutions, one machine-implemented.

• Rolf Schön, Effective Algebraic Topology, AMS Memoir #451, 1991.

• Operadic Solutions (Justin Smith, Michael Mandell, Clemens Berger

+ Benoit Fresse, . . . ).

• Effective Homology (FS, Julio Rubio, Ana Romero, . . . )
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Example: the beginning of the simplest

non-trivial Postnikov tower with homotopy groups = Z2.

E2 = K(Z2, 2)⇒ H4(E2, Z2) = Z2 ⇒ k3.

E3 = E2 ×k3 K(Z2, 3)⇒ H5(E3, Z2) = Z2
2 ⇒ k4.

E4 = E3 ×k4 K(Z2, 4)⇒ H6(E4, Z2) = Z4
2 ⇒ k5.

E5 = E4 ×k5 K(Z2, 5)⇒ H7(E5, Z2) = Z5
2 ⇒ k6.

E6 = E5 ×k6 K(Z2, 6)⇒ · · ·
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Standard terminology:

The cohomology class kn is usually called

Postnikov invariant or k-invariant.

Which implicitly implies (π2, 0, π3, k3, π4, k4, . . .)

classifies a homotopy type?

False. Key observation:

S1 ×0 Z = stack of circles.

S1 ×
1

Z = R.

S1 ×
-1

Z = R as well!!

The “invariant” k of S1 ×k Z is an invariant of the fibration structure,

not an invariant of the homotopy type of the total space of the fibration.
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Actual result about Postnikov “invariants”:

Wished:

Top //

(πn,kn)
,,

""DD
DD

DD
DD

DD
DD

DD

(πn)

**UUUUUUUUUUUUUUUUUUUUUUUUUUUUUU Top/∼ ∼=
//

��

{Post. Inv.}

I ′
∼= // {Hom. groups}

Obtained:

{Post. “Inv.”}

6∼=
��

6∼=

**VVVVVVVVVVVVVVVVVVVVVVVVVVVV

Top //

(πn,kn)

99rrrrrrrrrrrrrrrrr

%%LLLLLLLLLLLLLLLLLLL

(πn)

,,YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Top/∼

��

∼= // {Post. Inv.}/ {Post-Tower-iso}

I ′
∼= // {Hom. groups}
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Definition:

Given two Postnikov towers:

P = (πn, kn)n≥2 , P ′ = (π′n, k′n)n≥2.

A Postnikov tower morphism f : P → P ′

is a collection {fn : πn → π′n}
compatible with the kn’s and k′n’s.

⇒ Natural definition of isomorphism

between Postnikov towers.
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Example 1:

Isomorphisms: ((Z, 0), (Z, k3))
∼=−→ ((Z, 0), (Z, k′3)) ??

k3, k′3 ∈ H4(K(Z, 2), Z) = Zc1
2

π2 = Z f2=±1 // Z = π′2

π3 = Z f3=±1 // Z = π′3

⇒ k3, k′3, f2, f3 compatible ⇐⇒ k′3 = f3k3.

Remark: k3 ∈ Z[c1]
[2].
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Example 2:

Isomorphisms: ((Zn, 0), (Z, k3))
∼=−→ ((Zn, 0), (Z, k′3)) ??

k3, k′3 ∈ H4(K(Zn, 2), Z) = Z[c1, c2, . . . , cn]
[2] = QZ(c1, . . . , cn)

π2 = Z[c1, . . . , cn]
[1] f2∈GLn(Z)

// Z[c1, . . . , cn]
[1] = π′2

π3 = Z f3=±1 // Z = π′3

⇒ k3, k′3, f2, f3 compatible ⇐⇒ f3∗(k3) = f2
∗(k′3).

⇔ classification of Z-quadratic forms

up to Z-linear equivalence.

Solution = Gauss + Serre.
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Example 3:

((Zn, 0), (0, 0), (0, 0), (Z, k5))

??∼=−→ ((Zn, 0), (0, 0), (0, 0), (Z, k′5))

k5, k′5 ∈ H6(K(Zn, 2), Z) = Z[c1, c2, . . . , cn]
[3] = CZ(c1, . . . , cn)

π2 = Z[c1, . . . , cn]
[1] f2∈GLn(Z)

// Z[c1, . . . , cn]
[1] = π′2

π5 = Z f5=±1 // Z = π′5

⇒ k5, k′5, f2, f5 compatible ⇐⇒ f5∗(k5) = f2
∗(k′5).

⇔ classification of Z- cubic forms

up to Z-linear equivalence.

Solution = ?????
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Conclusion:

The general decision problem of isomorphism

between Postnikov towers

is a terrible arithmetical problem !!

Transforming Postnikov “invariants” into actual invariants

is harder in the simplest cases than solving

the classification problem

of homogeneous Z-forms of degree n

up to Z-linear equivalence.
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Tempting:

Use negative Robinson-Matiyasevich answer

to 10th Hilbert problem to prove:

The general isomorphism problem between Postnikov towers

is undecidable .

Gauss
Serre

Decidableoo Undecidable // Robinson
Matiyasevich

??????

???

Postnikov
Iso-Problem
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