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Fundamental flaw of “classical” Algebraic Topology:

1. Topology is difficult.

2. Algebraic topology consists in reducing

topological problems to algebraic ones.

3. That is, to problems having

an “automatic” (computable) solution.

4. But classical algebraic topology

does not reach this point.
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Typical example:

“Theorem”. There exists an exact sequence:

0→ A
f→ X

g→ C → 0

allowing you to “ “compute” ” the unknown group X

when the groups A and C are known.
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0→ A
f→ X

g→ C → 0

But such a statement is non-sense!

The pair (A,C) is clearly non-sufficient to determine the

unknown group because of the extension problem .

The missing information to determine the right group X is

a cohomology class τ ∈ H2(C,A), but which needs, to be

defined, the X group itself and the maps f and g!
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Example:

J.-P. Serre “ “computing” ” π6(S
3) in 1950.

Serre spectral sequence ⇒ there exists an exact sequence:

0→ Z2 → π6(S
3)→ Z6 → 0

But two different extensions are possible (Z2⊕ Z6 or Z12?);

the right one is determined by τ ∈ H2(Z6,Z2) = Z2 where:

1. The class τ is mathematically well defined;

2. The class τ is computationally unreachable

in the framework of the Serre spectral sequence.
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Corollary: The group π6(S
3) remained unknown in Serre’s

work in 1950.

Finally determined by Barratt and Paechter in 1952

thanks to new specific methods (= Z12).

Now “stupidly” computed by the Kenzo program in one

minute.
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Typical example of confusion among algebraic topologists:

In the book “Methods of Homological Algebra” (Gelfand +

Manin), it is explained in the preface:

The book by Cartan and Eilenberg [Homologi-

cal Algebra] contains essentially all the construc-

tions of homological algebra that constitute its

computational tools , namely standard resolutions

and spectral sequences.
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Serre’s problem is a good counterexample

to Gelfand-Manin’s claim:

The Serre spectral sequence does not allow its user to com-

pute π6(S
3); it gives only a partial information: the unknown

object is between Z2 and Z6 in a short exact sequence, so that

π6(S
3) = Z12 or Z2 ⊕ Z6.

To terminate the computation,

please invent a new method. . .



8

From the point of view of proof theory,

the situation is there quite terrible.

The traditional style of the texts in algebraic topology makes

the naive reader believe the exact or spectral sequence which

is described is a computation tool.

But the reader which is aware of what an algorithm actually

is immediately sees these claimed computational tools are

erroneously qualified.

And experience shows most algebraic topologists are,

from this point of view, naive readers. . .
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Main ingredient for the Rubio-S. solution

for Constructive Algebraic Topology.

Topology ⇐⇒ Algebra

Loc. effective objects ⇐⇒ Effective objects

Loc. computable world ⇐⇒ Computable world
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Roughly speaking:

An effective object is an object

which is essentially entirely known.

In particular the standard global information

concerning this object is reachable (= computable).

A locally effective object is most often a quite infinite object.

For any “local” ingredient of this object,

any necessary information is reachable.

But in general no global information

for the underlying object is reachable.
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Typical example:

Loc. eff. chain complexes ⇔ Eff. chain complexes.

Standard notion of chain complex in Algebraic Topology:

C∗ = . . .← Cn−1
dn← Cn

dn+1← Cn+1 ← . . .

where:

1. Cn = free Z-module with distinguished basis;

2. dn ◦ dn+1 = 0;

3. Hn(C∗) := ker(dn)/im(dn+1).
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Notion of effective chain complex :

C∗ = . . .← Cn−1
dn← Cn

dn+1← Cn+1 ← . . .

C∗ = (β, d)

where:

1. β: Z→ List : n 7→ [gn1 , . . . , g
n
kn

] = distinguished basis of Cn.

2. d: Z×̃N∗ → U : (n, i) 7→ dn(gni )∈ Cn−1 when gni makes sense.

In particular every Cn is a free Z-module with a finite distinguished basis.

⇒ Every dn : Cn → Cn−1 is computable.

⇒ Every homology group Hn(C∗) is computable

(every global information is reachable).
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Notion of locally effective chain complex:

C∗ = . . .← Cn−1
dn← Cn

dn+1← Cn+1 ← . . .

C∗ = (χ, d)

where:

1. χ: U × Z→ Bool = {>,⊥} : (ω, n) 7→ >
if and only if ω is a generator of Cn;

2. d: U×̃Z→ U : (ω, n) 7→ dn(ω)∈ Cn−1

when ω is a generator of Cn (⇔χ(ω, n) = >).

Any finite set of pointwise computations may be done.

Gödel + Church + Turing + Post ⇒ no global information is reachable;

in particular, the homology groups of C∗ are not computable .



14

A typical example of locally effective object

is the set Z in a pocket computer:

1. If a computation like (a+ b)× (c+ d)

concerning only four (arbitrary) integers is asked for,

the pocket computer may do it.

2. But no global information is available for the set Z.

Quite infinite objects so can be handled. Such an object

will be a (finite) set of functional objects implementing the

various computations which possibly could be asked for some

arbitrary finite collection of elements of the object.
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Example of locally effective topological spaces.

The standard simplicial techniques allow to model reasonable

topological spaces as set of simplices (points, edges, triangles,

tetrahedrons, . . . ) + incidence relations.

E = ({S0, S1, S2, . . .} , {∂ni : Sn → Sn−1})

where the ∂ni must satisfy compatibility relations.

Most often, it is mandatory to consider simplicial objects

where the Si’s are highly infinite .
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So that in this case, a locally effective simplicial set is:

S = (χ, ∂)

where:

1. χ : U × N→ {>,⊥} : (σ, n) 7→ >
if and only if σ is an n-simplex of S;

2. ∂ : U×̃N∗×̃N→ U : (σ, n, i) 7→ ∂ni (σ) ∈ Sn−1.

Allows to implement

all the classical topological spaces of algebraic topology

in a locally effective way.
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Ingredients used by R. & S. to transform

the pseudo-computational tools of traditional Alg. Topology

into actual computational tools:

1) Functional Programming.

From a theoretical point of view,

something similar to lambda-calculus is necessary.

For concrete applications,

an efficient functional programming language

must be used.

2) Homological perturbation theory (Shih, Ronnie Brown).
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Definition: An object with effective homology is a 4-tuple:

(X,C∗(X), ECX
∗ , ε

X)

where:

1. X = the underlying object is locally effective ;

2. C∗(X) = the chain complex defining its homology

is locally effective;

3. ECX
∗ = an effective chain complex ;

4. εX : C∗(X)⇐⇒ ECX
∗ is a chain equivalence.
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Fundamental result of Effective Homology Theory:

If (X,C∗(X), ECX
∗ , ε

X)

is an object with effective homology,

then this object is an algebraic model

for the underlying mathematical object X.

In particular if some “reasonable” construction

starting from such mathematical objects is done,

then a version of this construction “with effective homology”

can be produced.
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Meta-theorem: Let X1∗, . . . , Xn∗ be a collection of objects with

effective homology and φ be a reasonable con-

struction process:

φ : (X1∗, . . . , Xn∗) 7→ X∗.

Then there exists a version with effective ho-

mology φEH:

φEH: (X1, C∗(X1), EC1∗, ε1 , . . . , Xn, C∗(Xn), ECn∗, εn )

7→ X,C∗(X), EC∗, ε

The process is perfectly stable

and can be again used with X for further calculations.
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Typical application.

Problem: Given X, computing H∗(Ω
nX) = H∗(C(Sn, X))) ?

Frank Adams (1956) : Solution for n = 1.

Hans Baues (1980) : Solution for n = 2.

Solution for n > 2 ?? Known as Adams’ problem.

Effective homology produces

a very easy solution for Adam’s problem.

With a much wider scope.

So easy that concrete computer implementation is not hard.
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If (X,C∗(X), ECX
∗ , ε

X) is a simplicial set with effective homol-

ogy which is n-connected, if k ≤ n, then an algorithm produces

the appropriate iterated Cobar construction:

(X,C∗(X), ECX
∗ , ε

X) 7−→ ΩX,C∗(ΩX), ECΩX
∗ , εΩX

ΩX,C∗(ΩX), ECΩX
∗ , εΩX 7−→ Ω2X,C∗(Ω

2X), ECΩ2X
∗ , εΩ2X

Ω2X,C∗(Ω
2X), ECΩ2X

∗ , εΩ2X 7−→ Ω3X,C∗(Ω
3X), ECΩ3X

∗ , εΩ3X

· · ·

· · · 7−→ ΩnX,C∗(Ω
nX), ECΩnX

∗ , εΩnX

??? Cobarn(EC∗X) oo

??
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Exemple

X K18

K251

K247

K254

K253
K257

K256

K255 K258

P4 = P∞R/P 3R
X = O2P4 = Ω2(P4) = C(S2, P4)

C∗X = K18
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