Algebraic Topology

(Castro-Urdiales tutorial)

IV. Implementation

l;; Clock -> 2882-81-17, 19h 25m 36s.
Computing the boundary of the generator 19 {dimension 7) :
<TnPr <TnPr <TnPr 53 <<Abar[2 51][2 51]>>> <<Abar>>> <{<{Abar>>>
End of computing.
.Hnmnlngy in dimension 6 :

'Bnmpnnent 2/122

——-done---

55 Clock -> 2882-81-17, 19h 27m 1

Francis Sergeraert, Institut Fourier, Grenoble, France
Castro-Urdiales, January 9-18, 2006

Various levels of Mathematics:

1. Philosophy: Interesting but what about “Truth”?

2. “Ordinary” Mathematics (= ZF or BvN):
= Truth but with respect to

a somewhat arbitrary axiomatic system.

3. Constructive Mathematics:
= Truth with respect to

which can be handled by a theoretical computer.

4. Implemented Mathematics:

= “Concrete” truth 4+ Important feedback.

Main interesting problems

in Implemented Algebraic Topology:

1. Role of Functional Programming,.

2. Sophisticated Data Types
= Sophisticated Object Oriented Programming.

3. Role of Zermelo’s Theorem.
4. Functional programming and memory management.

5. Macro-generation.

Functional Programming.

Very important role when implementing

Eilenberg-MacLane-Steenrod Categories.

Ordinary work Categorical work

Ordinary objects Categorical objects

3,1+X,... 02(S%), PR, ...
Functions Functors
* — 3+ 3X X — Q2(S%) x P> (R)
0 Functions inside Objects

@ 81(0') = 77

An object in a category C is a set of coherent functions.
Ring = (€,=,+, —,*) Simplicial Set = (&,=, {90}, {s"})

Ring functor:

A A[X]

7\

[X] 1161, =1, +15 —1, *1? > z€2, =2, +25 —2, *23

Topological functor:

X X
Q (€1, =1,{0"}1, {s7}1) — (€2, =2, {0™}2, {s7"}2)

Functor: (¢17 ¢27 ¢37 oo °)'_)("1b17 17b27 ¢39 o)

Important notion of |lexical closure.

Local environments inside procedures

are classical and necessary.

Consider a functional procedure F': ¢ — 1

with ¢ and v procedures.

In general F', ¢ and 1 must work

with their own environments.

What about their respective status?

Lexical closure| rule for dynamically created procedures:

A dynamically created procedure works in the environment

which [was| the current environment at creation time.

This created procedure may, as a side effect,

modify this environment.

Other procedures (dynamic or not)

seeing (totally or partially) such an environment

will know| the possible modifications of this environment.

Lexical closure rule = easy categorical programming.

Standard organization of categorical programming.

Example of loop-space functor.

X 0x
Q :zel, =1, {azm}ly {SZ”}J = 1629 —29 {8?1}29 {ST}Zy

Every functional component of the image is obtained

from the functional components of the source object

by standard functional programming.

Qs : (=1,{9;"}1) — {9 }2

+ Put together these “partial” functors.
X QX

Q1 (€ =0 10031, (o7 1) > (e (€10, (=), Do (=1, 107 F1), - -

N—")

‘kenzo-object

Data TypeS ‘ chain-complex‘

in
Categorical

¥
Programming

‘simplicial-set ‘ ‘hopf—algebra‘

/ ‘ simplicial—mrph‘

simplicial-group
| |

‘ ab-simplicial-group ‘

A sophisticated OOP system is required.

Experience shows CLOS = Common Lisp Object System

is quite good.

Main ingredients:

1. Common Lisp itself defined with respect to CLOS
(= specific instance of MOP = Meta-Object-Protocol).

2. OOP = Classes + Instances + Generic Functions
+ Methods + Method Combinations.

3. Powerful initialization system for instances.

4. Powerful method combination system.

10
CLOS very powerful and flexible =-
not so easy to design the right strategy!

General principles according to experience:

1. Never destructively modify an instance component:

much too dangerous!

2. Extending an instance or an instance component

is frequently necessary.

3. Changing an instance class to a weaker one is forbidden,

to a stronger one is frequently necessary.

4. Lazy management of induced components

frequently necessary.

11

Example of infinite loop

generated by a naive OOP management.
Let A be an algebra.
In particular A =[...,u: AX A — A,...J.
It is frequent to use A algebra = A X A = algebra.

If this naively implemented:

A=[...,p: A X A — A,...]
= AXA=1[..,uy: A* — A% ..]
= A*=[...,uy: A®> — A%, ...] = infinite loop!!

Solution = lazy management of the A X A component.

Functional Programming and Memory Management.

Every run is split in two successive steps:

1. “Automatic” writing of

a large oriented graph of functional objects.

Short runtime.

2. Use of these functional objects for a specific computation.

Possible very long runtime.

Many functional objects called and called again

for the same arguments.

What about memory management?

12

Extreme possible strategies:

1. Lazy strategy.

Needs minimal memory and maximal time.

2. Remember strategy.

Where is the

Needs maximal memory

and not necessarily minimal time.

happy medium| ?

Only simple heuristics are used in the Kenzo program:

1. If a computation is trivial, do not save it in memory!

2. If a computation has needed much time,

it is probably a good idea to save it!

13

Consider a situation where f(a) := g(h(b(a)), k(c(a))).

Main ingredients:

1. Computing times of b(a) and c(a).

2. Computing times of h(b(a)) and k(c(a))

(b(a) and c(a) given).

3. Computing time of g(h(b(a)), k(c(a)))

(h(b(a)) and k(c(a)) given).

Problem: What results do you save 7

14

Role of Zermelo theorem.

Zermelo theorem: For every set E,

a well-ordering can be defined over E.

Role of this non-constructive theorem

in constructive mathematics?

“Zermelo remark” in implemented mathematics:
Any implemented set can be provided

with a constructive well-ordering.

Proof obvious. Use not at all obvious!!

15

What is an implemented set?

Definition: An implemented set is an algorithm U — B.

Cantor-Russell theorem:

The “collection” of implemented sets

cannot be organized as an implemented set.
Is Zermelo remark really a remark?
Obvious proof: machine address.
Non-compatible with garbage collector!

Other proof 777

16

Two very different practical uses of Zermelo remark.

1. Hash coding =

— hashing function 4+ sequential collision management.
Concrete efficiency 777

2. For every sensible implemented set,

a simple efficient well-ordering can be defined.
Combined with dichotomic retrieving:

Allows significantly efficient store-and-retrieve process

for remember strategy in functional programming.

Best method 77 Problem still widely open!!

17

Auxiliary natural question:

Let EF be an implemented set.

Does there exist an effective well-ordering for E ?

18

Macro-Generation.

Macro-Generation = Macro-Assembly =

= Intermediary tool between

High-Level language and Machine (Assembly) language.

Runtime is critical in Implemented Algebraic Topology,

because of unavoidable exponential complexity.

Macro-generation is very useful to make compatible:

1. Sensible readability.

2. Efficient compiled code.

19

The END

55 Clock -> 2882-81-17, 19h 25m 36s.
Computing the boundary of the generator 19 {dimension 7) :

<TnPr <TnPr <TnPr 53 <<Abar[2 51][2 51]>>> <<Abar>>> <{<{Abar>>>
End of computing.

Homology in dimension 6 :

Component 2/122

rmoness Francis Sergeraert, Institut Fourier, Grenoble, France

Castro-Urdiales, January 9-18, 2006

55 Clock -> 2882-81-17, 19h 27m 1

