
0

Algebraic Topology

(Castro-Urdiales tutorial)

IV. Implementation

Francis Sergeraert, Institut Fourier, Grenoble, France
Castro-Urdiales, January 9-13, 2006



1

Various levels of Mathematics:

1. Philosophy: Interesting but what about “Truth”?

2. “Ordinary” Mathematics (= ZF or BvN):

⇒ Truth but with respect to

a somewhat arbitrary axiomatic system.

3. Constructive Mathematics:

⇒ Truth with respect to

which can be handled by a theoretical computer.

4. Implemented Mathematics:

⇒ “Concrete” truth + Important feedback.



2

Main interesting problems

in Implemented Algebraic Topology:

1. Role of Functional Programming.

2. Sophisticated Data Types

⇒ Sophisticated Object Oriented Programming.

3. Role of Zermelo’s Theorem.

4. Functional programming and memory management.

5. Macro-generation.



3

Functional Programming.

Very important role when implementing

Eilenberg-MacLane-Steenrod Categories.

Ordinary work Categorical work

Ordinary objects Categorical objects

3, 1 +X, . . . Ω2(S4), P∞R, . . .

Functions Functors

∗ 7→ 3 + 3X × 7→ Ω2(S4) × P∞(R)

∅ Functions inside Objects

∅ ∂i(σ) = ??



4

An object in a category C is a set of coherent functions.

Ring = (∈,=,+,−, ∗) Simplicial Set = (∈,=, {∂mi }, {smi })

Ring functor:

[X] :

A︷ ︸︸ ︷
(∈1,=1,+1,−1, ∗1) 7−→

A[X]︷ ︸︸ ︷
(∈2,=2,+2,−2, ∗2)

Topological functor:

Ω :

X︷ ︸︸ ︷
(∈1,=1, {∂mi }1, {smi }1) 7−→

ΩX︷ ︸︸ ︷
(∈2,=2, {∂mi }2, {smi }2)

Functor: (φ1, φ2, φ3, . . .)7−→(ψ1, ψ2, ψ3, . . .)



5

Important notion of lexical closure .

Local environments inside procedures

are classical and necessary.

Consider a functional procedure F : φ 7→ ψ

with φ and ψ procedures.

In general F , φ and ψ must work

with their own environments.

What about their respective status?



6

Lexical closure rule for dynamically created procedures:

A dynamically created procedure works in the environment

which was the current environment at creation time.

This created procedure may, as a side effect,

modify this environment.

Other procedures (dynamic or not)

seeing (totally or partially) such an environment

will know the possible modifications of this environment.

Lexical closure rule ⇒ easy categorical programming.



7

Standard organization of categorical programming.

Example of loop-space functor.

Ω :

X︷ ︸︸ ︷
(∈1,=1, {∂mi }1, {smi }1) 7−→

ΩX︷ ︸︸ ︷
(∈2,=2, {∂mi }2, {smi }2)

Every functional component of the image is obtained

from the functional components of the source object

by standard functional programming.

. . . Ω∂ : (=1, {∂mi }1) 7→ {∂mi }2 . . .

+ Put together these “partial” functors.

Ω :

X︷ ︸︸ ︷
(∈1,=1, {∂mi }1, {smi }1) 7→

ΩX︷ ︸︸ ︷
(Ω∈(∈1),Ω=(=1),Ω∂(=1, {∂mi }1), . . .)



8

Data Types

in

Categorical

Programming

kenzo-object

chain-complex
�

�
�

��

reduction
@

@
@

@I

equivalence
A

A
A

A
A

A
A

A
A
AK

morphism
B

B
B

B
B

B
B

B
B

B
B

B
B

B
B
BM

coalgebra
�

�
�

��

algebra
@

@
@

@I

simplicial-set

6

hopf-algebra

6

HHH
HHH

HHY

simplicial-mrph

6

kan
A

A
A

AK

simplicial-group
A

A
A

AK

�
�
�
�
�
�
�
�
�
��

ab-simplicial-group

6



9

A sophisticated OOP system is required.

Experience shows CLOS = Common Lisp Object System

is quite good.

Main ingredients:

1. Common Lisp itself defined with respect to CLOS

(= specific instance of MOP = Meta-Object-Protocol).

2. OOP = Classes + Instances + Generic Functions

+ Methods + Method Combinations.

3. Powerful initialization system for instances.

4. Powerful method combination system.



10

CLOS very powerful and flexible ⇒
not so easy to design the right strategy!

General principles according to experience:

1. Never destructively modify an instance component:

much too dangerous!

2. Extending an instance or an instance component

is frequently necessary.

3. Changing an instance class to a weaker one is forbidden,

to a stronger one is frequently necessary.

4. Lazy management of induced components

frequently necessary.



11

Example of infinite loop

generated by a naive OOP management.

Let A be an algebra.

In particular A = [. . . , µ : A×A → A, . . .].

It is frequent to use A algebra ⇒ A×A = algebra.

If this naively implemented:

A=[. . . , µ : A×A → A, . . .]

⇒ A×A = [. . . , µ2 : A4 → A2, . . .]

⇒ A4 = [. . . , µ4 : A8 → A4, . . .] ⇒ infinite loop!!

Solution = lazy management of the A×A component.



12

Functional Programming and Memory Management.

Every run is split in two successive steps:

1. “Automatic” writing of

a large oriented graph of functional objects.

Short runtime.

2. Use of these functional objects for a specific computation.

Possible very long runtime.

Many functional objects called and called again

for the same arguments.

What about memory management?



13Extreme possible strategies:

1. Lazy strategy.

Needs minimal memory and maximal time.

2. Remember strategy.

Needs maximal memory

and not necessarily minimal time.

Where is the happy medium ?

Only simple heuristics are used in the Kenzo program:

1. If a computation is trivial, do not save it in memory!

2. If a computation has needed much time,

it is probably a good idea to save it!



14

Consider a situation where f(a) := g(h(b(a)), k(c(a))).

Main ingredients:

1. Computing times of b(a) and c(a).

2. Computing times of h(b(a)) and k(c(a))

(b(a) and c(a) given).

3. Computing time of g(h(b(a)), k(c(a)))

(h(b(a)) and k(c(a)) given).

Problem: What results do you save ?



15

Role of Zermelo theorem.

Zermelo theorem: For every set E,

a well-ordering can be defined over E.

Role of this non-constructive theorem

in constructive mathematics?

“Zermelo remark” in implemented mathematics:

Any implemented set can be provided

with a constructive well-ordering.

Proof obvious. Use not at all obvious!!



16

What is an implemented set?

Definition: An implemented set is an algorithm U → B.

Cantor-Russell theorem:

The “collection” of implemented sets

cannot be organized as an implemented set.

Is Zermelo remark really a remark?

Obvious proof: machine address.

Non-compatible with garbage collector!

Other proof ???



17

Two very different practical uses of Zermelo remark.

1. Hash coding =

= hashing function + sequential collision management.

Concrete efficiency ???

2. For every sensible implemented set,

a simple efficient well-ordering can be defined.

Combined with dichotomic retrieving:

Allows significantly efficient store-and-retrieve process

for remember strategy in functional programming.

Best method ?? Problem still widely open!!



18

Auxiliary natural question:

Let E be an implemented set.

Does there exist an effective well-ordering for E ?



19

Macro-Generation.

Macro-Generation = Macro-Assembly =

= Intermediary tool between

High-Level language and Machine (Assembly) language.

Runtime is critical in Implemented Algebraic Topology,

because of unavoidable exponential complexity.

Macro-generation is very useful to make compatible:

1. Sensible readability.

2. Efficient compiled code.



0

The END

Francis Sergeraert, Institut Fourier, Grenoble, France
Castro-Urdiales, January 9-13, 2006


