Algebraic Topology

(Castro-Urdiales tutorial)

IV. Implementation

```
Computing
<TnPr <TnPr
End of computing.

;; Clock -> 2002-01-17, 19h 25m 36s.
Computing the boundary of the generator 19 (dimension 7):
<TnPr <TnPr <S3 <<Abar[2 S1][2 S1]>>> <<Abar>>> End of computing.

Homology in dimension 6:

Component Z/12Z
---done---
```

;; Clock -> 2002-01-17, 19h 27m 15s

;; Cloc

Francis Sergeraert, Institut Fourier, Grenoble, France Castro-Urdiales, January 9-13, 2006

Various levels of Mathematics:

- 1. Philosophy: Interesting but what about "Truth"?
- 2. "Ordinary" Mathematics (= ZF or BvN):
 - \Rightarrow Truth but with respect to

a somewhat arbitrary axiomatic system.

3. Constructive Mathematics:

 \Rightarrow Truth with respect to

which can be handled by a theoretical computer.

4. Implemented Mathematics:

⇒ "Concrete" truth + Important feedback.

Main interesting problems

in Implemented Algebraic Topology:

- 1. Role of Functional Programming.
- 2. Sophisticated Data Types
 - ⇒ Sophisticated Object Oriented Programming.
- 3. Role of Zermelo's Theorem.
- 4. Functional programming and memory management.
- 5. Macro-generation.

Functional Programming.

Very important role when implementing

Eilenberg-MacLane-Steenrod Categories.

Ordinary work	Categorical work
Ordinary objects	Categorical objects
$3,1+X,\dots$	$\Omega^2(S^4), P^\infty \mathbb{R}, \dots$
Functions	$\overline{ ext{Functors}}$
$*\mapsto 3+3X$	$ imes \mapsto \Omega^2(S^4) imes P^\infty(\mathbb{R})$
Ø	Functions inside Objects
Ø	$\partial_i(\sigma)=??$

An object in a category \mathcal{C} is a set of coherent functions.

Ring =
$$(\in, =, +, -, *)$$
 Simplicial Set = $(\in, =, \{\partial_i^m\}, \{s_i^m\})$

Ring functor:

$$[X]: (\in_1, =_1, +_1, -_1, *_1) \longmapsto (\in_2, =_2, +_2, -_2, *_2)$$

Topological functor:

$$egin{array}{c} X & \Omega X \ \Omega : (\in_1,=_1,\{\partial_i^m\}_1,\{s_i^m\}_1) & \longmapsto (\in_2,=_2,\{\partial_i^m\}_2,\{s_i^m\}_2) \end{array}$$

Functor: $(\phi_1, \phi_2, \phi_3, \ldots) \longmapsto (\psi_1, \psi_2, \psi_3, \ldots)$

Important notion of lexical closure.

Local environments inside procedures

are classical and necessary.

Consider a functional procedure $F: \phi \mapsto \psi$ with ϕ and ψ procedures.

In general \pmb{F} , $\pmb{\phi}$ and $\pmb{\psi}$ must work with their own environments.

What about their respective status?

Lexical closure rule for dynamically created procedures:

A dynamically created procedure works in the environment which was the current environment at creation time.

This created procedure may, as a side effect,

modify this environment.

Other procedures (dynamic or not)
seeing (totally or partially) such an environment
will know the possible modifications of this environment.

Lexical closure rule \Rightarrow easy categorical programming.

Standard organization of categorical programming.

Example of loop-space functor.

$$egin{aligned} egin{aligned} oldsymbol{X} & oldsymbol{\Omega X} \ oldsymbol{\Omega} : \overbrace{(\in_1,=_1,\{\partial_i^m\}_1,\{s_i^m\}_1)}^m \longmapsto \overbrace{(\in_2,=_2,\{\partial_i^m\}_2,\{s_i^m\}_2)}^m \end{aligned}$$

Every functional component of the image is obtained from the functional components of the source object by standard functional programming.

$$\dots$$
 $\Omega_{\partial}: (=_1, \{\partial_i^m\}_1) \mapsto \{\partial_i^m\}_2 \dots$

+ Put together these "partial" functors.

$$\Omega: \overbrace{(\in_1,=_1,\{\partial_i^m\}_1,\{s_i^m\}_1)}^{X} \mapsto \overbrace{(\Omega_\in(\in_1),\Omega_=(=_1),\Omega_\partial(=_1,\{\partial_i^m\}_1),\ldots)}^{\Omega X}$$

Data Types
in
Categorical

Programming

A sophisticated OOP system is required.

Experience shows CLOS = Common Lisp Object System is quite good.

Main ingredients:

- Common Lisp itself defined with respect to CLOS
 (= specific instance of MOP = Meta-Object-Protocol).
- 2. OOP = Classes + Instances + Generic Functions
 + Methods + Method Combinations.
- 3. Powerful initialization system for instances.
- 4. Powerful method combination system.

CLOS very powerful and flexible ⇒

not so easy to design the right strategy!

General principles according to experience:

- 1. Never destructively modify an instance component:

 much too dangerous!
- 2. Extending an instance or an instance component is frequently necessary.
- 3. Changing an instance class to a weaker one is forbidden, to a stronger one is frequently necessary.
- 4. Lazy management of induced components frequently necessary.

Example of infinite loop

generated by a naive OOP management.

Let A be an algebra.

In particular $A = [\dots, \mu : A \times A \to A, \dots]$.

It is frequent to use A algebra $\Rightarrow A \times A =$ algebra.

If this naively implemented:

$$A = [\dots, \mu : A \times A \to A, \dots]$$

 $\Rightarrow A \times A = [\dots, \mu_2 : A^4 \to A^2, \dots]$
 $\Rightarrow A^4 = [\dots, \mu_4 : A^8 \to A^4, \dots] \Rightarrow \text{ infinite loop!!}$

Solution = lazy management of the $A \times A$ component.

Functional Programming and Memory Management.

Every run is split in two successive steps:

1. "Automatic" writing of

a large oriented graph of functional objects.

Short runtime.

2. Use of these functional objects for a specific computation.

Possible very long runtime.

Many functional objects called and called again for the same arguments.

What about memory management?

Extreme possible strategies:

1. Lazy strategy.

Needs minimal memory and maximal time.

2. Remember strategy.

Needs maximal memory and not necessarily minimal time.

Where is the happy medium ?

Only simple heuristics are used in the Kenzo program:

- 1. If a computation is trivial, do not save it in memory!
- 2. If a computation has needed much time,

it is probably a good idea to save it!

Consider a situation where f(a) := g(h(b(a)), k(c(a))).

Main ingredients:

- 1. Computing times of b(a) and c(a).
- 2. Computing times of h(b(a)) and k(c(a)) (b(a) and c(a) given).
- 3. Computing time of g(h(b(a)), k(c(a))) (h(b(a)) and k(c(a)) given).

Problem: What results do you save?

Role of Zermelo theorem.

Zermelo theorem: For every set E,

a well-ordering can be defined over E.

Role of this non-constructive theorem

in constructive mathematics?

"Zermelo remark" in implemented mathematics:

Any implemented set can be provided

with a constructive well-ordering.

Proof obvious.

Use not at all obvious!!

What is an implemented set?

<u>Definition</u>: An implemented set is an algorithm $\mathcal{U} \to \mathbb{B}$.

<u>Cantor-Russell theorem</u>:

The "collection" of implemented sets

cannot be organized as an implemented set.

Is Zermelo remark really a remark?

Obvious proof: machine address.

Non-compatible with garbage collector!

Other proof???

Two very different practical uses of Zermelo remark.

1. Hash coding =

= hashing function + sequential collision management.

Concrete efficiency ???

2. For every sensible implemented set, a simple efficient well-ordering can be defined.

Combined with dichotomic retrieving:

Allows significantly efficient store-and-retrieve process for remember strategy in functional programming.

Best method ??

Problem still widely open!!

Auxiliary natural question:

Let E be an implemented set.

Does there exist an effective well-ordering for E?

Macro-Generation.

Macro-Generation = Macro-Assembly =
= Intermediary tool between
High-Level language and Machine (Assembly) language.

Runtime is critical in Implemented Algebraic Topology, because of unavoidable exponential complexity.

Macro-generation is very useful to make compatible:

- 1. Sensible readability.
- 2. Efficient compiled code.

The END

```
;; Cloc
Computing
<TnPr <Tn
End of computing.

;; Clock -> 2002-01-17, 19h 25m 36s.
Computing the boundary of the generator 19 (dimension 7):
<TnPr <TnPr <TnPr S3 <<Abar[2 S1][2 S1]>>> <<Abar>>> End of computing.

Homology in dimension 6:

Component Z/12Z
```

---done---

;; Clock -> 2002-01-17, 19h 27m 15s

Francis Sergeraert, Institut Fourier, Grenoble, France Castro-Urdiales, January 9-13, 2006