

Definition: A (Homological) reduction is a diagram:

$$ho: h \widehat{C}_* \stackrel{g}{\longleftrightarrow} C_*$$

with:

- 1. \widehat{C}_* and $C_* = (\text{free } \mathbb{Z}_-)$ chain complexes.
- 2. f and g = chain complex morphisms.
- 3. h = homotopy operator (degree +1).
- 4. $fg = \operatorname{id}_{C_*}$ and $d_{\widehat{C}}h + hd_{\widehat{C}} + gf = \operatorname{id}_{\widehat{C}_*}$.
- 5. fh = 0, hg = 0 and hh = 0.

$$egin{aligned} A_* &= \ker f \cap \ker h \ egin{aligned} B_* &= \ker f \cap \ker d \ egin{aligned} C'_* &= \operatorname{im} g \ \widehat{C}_* &= egin{aligned} A_* \oplus B_* \ \operatorname{exact} \oplus egin{aligned} C'_* &\cong C_* \ \end{array} \end{aligned}$$

Let
$$\rho: \bigcap_{h \longrightarrow \widehat{C}_*} \stackrel{g}{\underset{f}{\longleftarrow}} C_*$$
 be a reduction.

Frequently:

- 1. \hat{C}_* is a locally effective chain complex: its homology groups are unreachable.
- 2. C is an effective chain complex:

its homology groups are computable.

- 3. The reduction ρ is an entire description of the homological nature of \widehat{C}_* .
- 4. Any homological problem in \widehat{C}_* is solvable thanks to the information provided by ρ .

$$ho: h \widehat{C}_* \stackrel{g}{\longleftarrow} C_*$$

- 1. What is $H_n(\widehat{C}_*)$? Solution: Compute $H_n(C_*)$.
- 2. Let $x \in \widehat{C}_n$. Is x a cycle? Solution: Compute $d_{\widehat{C}_*}(x)$.
- 3. Let $x, x' \in \widehat{C}_n$ be cycles. Are they homologous? Solution: Look whether f(x) and f(x') are homologous.
- 4. Let $x, x' \in \widehat{C}_n$ be homologous cycles.

Find $y \in \widehat{C}_{n+1}$ satisfying dy = x - x'?

Solution:

- (a) Find $z \in C_{n+1}$ satisfying dz = f(x) f(x').
- (b) y = g(z) + h(x x').

<u>Definition</u>: $(C_*, d) =$ given chain complex. A perturbation $\delta: C_* \to C_{*-1}$ is an operator of degree -1

 $egin{aligned} ext{satisfying} & (d+\delta)^2 = 0 \ (\Leftrightarrow (d\delta+\delta d+\delta^2)=0) times \ & (C_*,d)+(\delta)\mapsto (C_*,d+\delta). \end{aligned}$

<u>Problem</u>: Let ρ : $h \subset (\widehat{C}_*, \widehat{d}) \xrightarrow{g} (C_*, d)$ be a given reduction and $\widehat{\delta}$ a perturbation of \widehat{d} . How to determine a new reduction:

?:
$$? : \widehat{C}_*, \widehat{d} + \widehat{\delta}) \stackrel{?}{\underset{?}{\longleftarrow}} (C_*, ?)$$

describing in the same way the homology of

the chain complex with the perturbed differential?

Basic Perturbation "Lemma":

1. $\hat{\delta}$ is a perturbation of the differential \hat{d} ;

2. The operator $h \circ \hat{\delta}$ is pointwise nilpotent.

Then a general algorithm BPL constructs:

 $\begin{array}{l} \underline{\text{Definition:}} \ \text{A (strong chain-) equivalence } \varepsilon: C_* \lll D_* \\ \text{is a pair of reductions } C_* \lll^{\ell\rho} E_* \stackrel{r\rho}{\Longrightarrow} D_* \text{:} \end{array}$

Normal form problem ??

More structure often necessary in C_* .

Definition:An object with effective homologyX is a 4-tuple:

$$X = ig X, C_*(X), EC_*, arepsilon$$

with:

- 1. X = an arbitrary object (simplicial set, simplicial group, differential graded algebra, ...)
- 2. $C_*(X)$ = the chain complex "traditionally" associated to X to define the homology groups $H_*(X)$.
- 3. $EC_* = \text{some effective chain complex.}$
- 4. $\varepsilon = \text{some equivalence } C_*(X) \iff EC_*.$

Main result of effective homology:

Meta-theorem: Let X_{1*}, \ldots, X_{n*} be a collection of objects with effective homology and ϕ be a reasonable construction process: $\phi : (X_{1*}, \ldots, X_{n*}) \mapsto X_*$. Then there exists a version with effective homology ϕ_{EH} :

 ϕ_{EH} : $(X_1, C_*(X_1), EC_{1*}, \varepsilon_1, \ldots, X_n, C_*(X_n), EC_{n*}, \varepsilon_n)$ $\mapsto X, C_*(X), EC_*, \varepsilon$

The process is perfectly stable

and can be again used with X for further calculations.

Detailed study of a particular case.

Constructive version of Serre spectral sequence.

<u>Theorem</u>: There exists an algorithm:

$$\mathbf{TwPr}_{EH}:\begin{bmatrix}F, C_*(F), EC_*^F, \varepsilon_F\\ \tau: B_* \to F_{*-1}\\ B, C_*(B), EC_*^B, \varepsilon_B\end{bmatrix} \mapsto \begin{bmatrix}E, C_*(E), EC_*^E, \varepsilon_E\\ \end{bmatrix}$$

with:

- 1. B, F =simplicial sets with effective homology.
- 2. $au: B_* o F_{*-1} = ext{twisting function.}$

3. $F \hookrightarrow \overline{E = B \times_{\tau} F} \to B$ = fibration = twisted product.

Composition of equivalences:

$$egin{array}{cccc} A_* &
otin & B_*
otin & C_* &
otin & D_*
otin & E_* \end{array} &
otin & A_* &
otin & E_*
otin &$$

with F_* an appropriate by-product of the diagram:

$$B_*
ightarrow C_*
onumber of C_*$$

Tensor product of equivalences:

Particular case of the trivial product: $E = B \times H$.

<u>Theorem</u> (Eilenberg-Zilber): A and B given simplicial sets. There exists a canonical reduction:

 $ho_{EZ}: C_*(A imes B)
ightarrow C_*(A)\otimes C_*(B).$

Dimensions in the particular case: $A = B = \Delta^7$.

\boldsymbol{n}	×₩⊗		\boldsymbol{n}	×⇒≫⊗		$\mid n$	×⇒≫⊗	
0	64	64	5	759,752	$11,\!424$	10	$1,\!475,\!208$	1,820
1	$1,\!232$	448	6	1,549,936	12,868	11	$673,\!134$	560
2	$11,\!872$	1,680	7	2,360,501	11,440	12	$208,\!824$	120
3	$69,\!524$	4,256	8	2,703,512	8,008	13	39,468	16
4	272,944	9,527	9	2,322,180	4,368	14	3,432	1

Corollary: A and B = given simplicial sets

with effective homology.

Then the trivial product $A \times B$ is a simplicial set

with effective homology.

Proof:

 $C_*(A \times B) \stackrel{\mathrm{id}}{\ll} C_*(A \times B) \stackrel{\rho_{EZ}}{\Longrightarrow} C_*(A) \otimes C_*(B) \stackrel{\varepsilon_A \otimes \varepsilon_B}{\ll} EC^A_* \otimes EC^B_*$ with $EC^A_* \otimes EC^B_*$ effective.

Composition of equivalences \Rightarrow

$$C_*(A imes B) \stackrel{arepsilon_{A imes B}}{
minimized matrix} EC^A_* \otimes EC^B_*$$

 \mathbf{QED}

General case: $F \hookrightarrow B \times_{\tau} F \to B$.

$$|B, C_*(B), \boldsymbol{EC^B_*}, \varepsilon_B| + |F, C_*(F), \boldsymbol{EC^F_*}, \varepsilon_F| + |\tau: B_* \to F_{*-1}|$$

<u>Theorem</u> (Easy Basic Perturbation Lemma):

$$ho: (\widehat{C}_*, \widehat{d})
ightarrow (C_*, d) + \delta: C_*
ightarrow C_{*-1} = ext{perturbation of } d$$

$$\mapsto \left|
ho': (\widehat{C}_*, \widehat{d} + \widehat{\delta})
ightrightarrow (C_*, d + \delta).$$

 $\underline{\text{Proof:}} \ (\widehat{C}_*, \widehat{d}) = (A_*, \widehat{d}) \oplus (C'_*, d') \text{ with } (C'_*, d') \cong (C, d).$

Copy into (C'_*, d') the perturbation $\delta \mapsto (C'_*, d' + \delta')$.

Solution $= \rho : ((A_*, \widehat{d}) \oplus (C'_*, d' + \delta')) \Longrightarrow (C_*, d + \delta).$

Constructing the effective homology of $C_*(B \times_{\tau} F)$.

Initial diagram.

 $C_*(B \times F) \Longrightarrow C_*(B) \otimes C_*(F) \iff \widehat{C}^B_* \otimes \widehat{C}^F_* \Longrightarrow EC^B_* \otimes EC^F_*$ Difficult BPL (= Ed. Brown Theorem) \Rightarrow $C_*(B imes_{ au} F) \Longrightarrow C_*(B) \otimes_t C_*(F) \iff \widehat{C}^B_* \otimes \widehat{C}^F_* \Longrightarrow EC^B_* \otimes EC^F_*$ Easy BPL \Rightarrow $C_*(B \times_{\tau} F) \Longrightarrow C_*(B) \otimes_t C_*(F) \iff \widehat{C}^B_* \otimes_t \widehat{C}^F_* \Longrightarrow EC^B_* \otimes EC^F_*$ Difficult BPL \Rightarrow $C_*(B imes_{ au} F)
ightarrow C_*(B) \otimes_t C_*(F)
ightarrow \widehat{C}^B_* \otimes_t \widehat{C}^F_*
ightarrow EC^B_* \otimes_t EC^F_*$

QED

Important hypothesis missing in the previous slides!!

<u>Definition</u>: A connected space X is simply connected if two arbitrary continuous maps $f_0, f_1 : S^1 \to X$ are homotopic.

Examples: \mathbb{R}^2 is simply connected, $\mathbb{R}^2 - \{(0,0)\}$ is not. S^2 is simply connected, $P^2(\mathbb{R}) = S^2/\mathbb{Z}_2$ is not.

<u>Theorem</u>: There exists an algorithm:

$$\mathbf{TwPr}_{EH}: \begin{bmatrix} F, C_*(F), EC_*^F, \varepsilon_F \\ \tau : B_* \to F_{*-1} \\ B, C_*(B), EC_*^B, \varepsilon_B \end{bmatrix} \mapsto \begin{bmatrix} E, C_*(E), EC_*^E, \varepsilon_E \end{bmatrix}$$

with $E = B \times_{\tau} F$

on condition that the base space B is simply connected.

Poincaré group = $\pi_1(X)$:

measures the lack of simple connectivity of X.

<u>Theorem</u> (Novikov-Rabin) : There does not exist any decision algorithm for the problem:

G =finitely presented group; G = 0 ???

K =finite simplicial complex $\Rightarrow \pi_1(X)$ finitely presented.

 $G = ext{arbitrary finitely presented group}; \ \exists K \ \underline{ ext{st}} \ \pi_1(K) = G.$

Corollary: No decision algorithm for the problem:

K =finite simplicial complex; is K simply connected ???

<u>Theorem</u> (+ Gödel-Turing): Let $(K_n)_{n \in \mathbb{N}}$ be the sequence of finite simplicial complexes. There exists n_0 such that:

- 1. $\forall n < n_0$ the problem $<\pi_1(K_n) \stackrel{???}{=} 0>$ is decidable.
- 2. $\pi_1(K_{n_0}) \neq 0$, but there does not exist a proof.
- 3. The knowledge of this n_0 is unreachable.

Strong differences between "Simply Connected Topology" and "General Topology". <u>Definition</u>: A homotopy equivalence $X \xleftarrow{g}{f} Y$ is a pair of continuous maps such that fg and gf are homotopic to the identity.

<u>Definition</u>: A contractible space is equivalent to a point.

<u>Definition</u>: A right inverse of a topological space X is some topological group R_X and a twisting function $\tau : X \to R_X$ such that $X \times_{\tau_X} R_X$ is contractible.

<u>Definition</u>: A left inverse of a topological group G is some topological space L_G and some twisting function $\tau : L_G \rightarrow$ such that $L_G \times_{\tau_G} G$ is contractible. <u>Theorem</u>: These inverses are well defined up to homotopy.

<u>"Theorem"</u>: Some spectral sequences (Eilenberg-Moore) "compute" the homology groups of these inverses.

<u>Theorem</u>: There exist algorithms:

 $R_{EH}: X_{EH} \mapsto (R_X)_{EH} \qquad \qquad L_{EH}: G_{EH} \mapsto (L_G)_{EH}$

working when X is simply connected and G connected.

When inversion is available, division is available as well...

The END

;; Cloc Computing <TnPr <TnP End of computing. ;; Clock -> 2002-01-17, 19h 25m 36s. Computing the boundary of the generator 19 (dimension 7) : <TnPr <TnPr <TnPr S3 <<Abar[2 S1][2 S1]>>> <<Abar>>> <<Abar>>> End of computing. Homology in dimension 6 : Component Z/12Z ---done---;; Clock -> 2002-01-17, 19h 27m 15s

Francis Sergeraert, Institut Fourier, Grenoble, France Castro-Urdiales, January 9-13, 2006