Algebraic Topology

(Castro-Urdiales tutorial)

II. Homological algebra

;; Clock -> 2002-01-17, 19h 27m 15s

;; Cloc

Francis Sergeraert, Institut Fourier, Grenoble, France Castro-Urdiales, January 9-13, 2006

General motivation of Algebraic Topology:

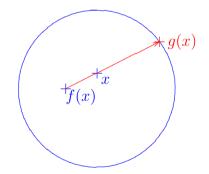
- 1. Topology is very complicated.
- 2. Algebra is easier.
- 3. Is it possible to transform a topological problem into an algebraic one?

Prototype example:

Theorem (Brouwer):
$$f:D^n \to D^n$$
 continuous
$$\Rightarrow \exists x \in D^n \text{ st } f(x) = x.$$

- 1. Otherwise $\exists g: D^n \to S^{n-1} \text{ st } g(x) = x \text{ if } x \in S^{n-1}$.
- $2. \Leftrightarrow \exists g: D^n \to S^{n-1} \underline{\operatorname{st}}:$

$$S^{n-1} \xrightarrow{i} D^n \xrightarrow{g} S^{n-1}$$



3. Translation through the H_{n-1} -functor:

$$H_{n-1}(S^{n-1})=\mathbb{Z}\overset{ extbf{0}}{\longrightarrow} H_{n-1}(D^n)=0\overset{ extbf{0}}{\longrightarrow} H_{n-1}(S^{n-1})=\mathbb{Z}$$

4. Impossible!

Main technique:

Chain complex:

- 1. "Algebraic" object associated to a combinatorial object.
- 2. Intermediate object to produce homology groups
 describing some fundamental properties
 of the initial topological object.
- 3. Many further structures can be installed on it.

<u>Definition</u>: A chain complex C_* is a sequence:

$$C_* = (\{C_m\}_{m \in \mathbb{N}}, \{d_m\}_{m \in \mathbb{N}})$$
 where:

- 1. C_m is an Abelian group (= \mathbb{Z} -module).
- 2. $d_m: C_m \to C_{m-1}$ is the differential (or boundary map), a \mathbb{Z} -linear operator.
- 3. $\forall m \in \mathbb{Z}$ the composition $d_m d_{m+1} : C_{m+1} \to C_{m-1}$ is null.

$$\cdots$$
 $\stackrel{d_{m-2}}{\longleftarrow} C_{m-2} \stackrel{d_{m-1}}{\longleftarrow} C_{m-1} \stackrel{d_m}{\longleftarrow} C_m \stackrel{d_{m+1}}{\longleftarrow} C_{m+1} \stackrel{d_{m+2}}{\longleftarrow} \cdots$

General organization of a chain complex.

where:
$$Z_m = \ker d_m = d_m^{-1}(0) \; (m ext{-cycles})$$
 and $B_m = \operatorname{im} d_{m+1} = d_{m+1}(C_{m+1}) \; (m ext{-boundaries}).$

Finally:
$$H_m(C_*) = rac{Z_m}{B_m} = rac{\ker d_m}{\operatorname{im} d_{m+1}} = rac{\{m ext{-cycles}\}}{\{m ext{-boundaries}\}}.$$

Remark: $B_m \subset \mathbb{Z}_m \Leftrightarrow d_m d_{m+1} = 0$.

Main example:

X = given simplicial set.

 $\Rightarrow C_*(X) = \text{chain complex canonically associated to } X.$

$$C_m(X) := \mathbb{Z}[X_m] \text{ and } d(\sigma) := \sum_{i=0}^m (-1)^m \partial_i^m(\sigma).$$

$$H_m(X) := H_m(C_*(X)).$$

Equivalent version: $C_*^{ND}(X)$ with:

$$C_m^{ND}(X) := \mathbb{Z}[X_m^{ND}] \text{ and } d(\sigma) := \sum_{i=0}^m (-1)^m \partial_i^m (\sigma \mod ND).$$

$$H_m^{ND}(X) := H_m(C_*^{ND}(X)) \stackrel{ ext{thr}}{=} H_m(X).$$

Extremal situations.

Pseudo-chain complex = Zero differential $\Leftrightarrow H_m = C_m$.

$$C_{m-1} = Z_{m-1}$$
 $C_m = Z_m$ $C_{m+1} = Z_{m+1}$ \cdots $0 = B_{m-1}$ $0 = B_m$ $0 = B_{m+1}$

Exact sequence = Chain complex with $Z_m = B_m \Leftrightarrow H_m = 0$.

$$C_{m-1}$$
 d_m C_m d_{m+1} C_{m+1} \cdots $d_{m-1} = B_{m-1}$ d_m $d_m = B_m$ $d_{m+1} = B_{m+1}$ $d_m = B_m$ $d_m = B_$

 H_m measures the lack of exactness.

Contractible chain complex (\sim exact but \neq exact).

 $\text{Contractible} := \exists \{h_m: C_m \to C_{m+1}\}_{m \in \mathbb{Z}} \text{ with } dh + hd = \text{id.}$

1. Contractible \Rightarrow Exact.

$$c \in C_m \Rightarrow c = (dh + hd)c = dhc + hdc.$$
 $c \in Z_m \Rightarrow dc = 0 \Rightarrow c = dhc \in B_m \Rightarrow c \in B_m.$
 $\Rightarrow Z_m = B_m \Leftrightarrow H_m = 0.$

Example:
$$\cdots \leftarrow 0 \leftarrow \mathbb{Z}_2 \xleftarrow{\operatorname{pr}} \mathbb{Z} \xleftarrow{\times 2} \mathbb{Z} \leftarrow 0 \cdots$$

But 'pr' has no section \Rightarrow Chain complex non-contractible.

Computation of homology groups?

Elementary when the chain complexes are of finite type.

But very frequently, chain complexes are not $(S^1 \sim K(\mathbb{Z}, 1))$.

 \Rightarrow Homological Algebra

"Methods of Homological Algebra" (Gelfand + Manin)
Preface extract:

The book by Cartan and Eilenberg [Homological Algebra] contains essentially all the constructions of homological algebra that constitute its computational tools, namely standard resolutions and spectral sequences.

Typical "computational tool" of homological algebra:

<u>Theorem</u>: Let $0 \to A_* \xrightarrow{\{f_m\}} B_* \xrightarrow{\{g_m\}} C_* \to 0$ be a short exact sequence of chain complexes. Then there is a canonical exact sequence:

$$\cdots
ightarrow H_{m+1}(C_*)
ightarrow H_m(A_*)
ightarrow H_m(B_*)
ightarrow H_m(C_*)
ightarrow H_{m-1}(A_*)
ightarrow \cdots$$

"Application": $H_m(A_*)$ and $H_m(C_*)$ known $\forall m$.

In particular
$$H_2(C_*) = H_0(A_*) = 0, \ H_1(A_*) = H_1(C_*) = \mathbb{Z}_2.$$

Then
$$H_1(B_*) = ???$$

$$\cdots
ightarrow 0
ightarrow \mathbb{Z}_2
ightarrow H_1(B_*)
ightarrow \mathbb{Z}_2
ightarrow 0
ightarrow \cdots$$

$$\Rightarrow H_1(B_*) = \mathbb{Z}_2 \oplus \mathbb{Z}_2 \text{ or } \mathbb{Z}_4 ????$$

Find something else!!

Example:

Jean-Pierre Serre "computing" " $\pi_6(S^3)$ in 1950.

Serre spectral sequence \Rightarrow there exists an exact sequence:

$$0 o \mathbb{Z}_2 o \pi_6(S^3) o \mathbb{Z}_6 o 0$$

Two different extensions are possible $(\mathbb{Z}_2 \oplus \mathbb{Z}_6 \text{ or } \mathbb{Z}_{12} ?)$. The right one is determined by $\tau \in H^2(\mathbb{Z}_6, \mathbb{Z}_2) = \mathbb{Z}_2$ where:

- 1. The class τ is mathematically well defined;
- 2. The class τ is computationally unreachable in the framework of the Serre spectral sequence.

Corollary: The group $\pi_6(S^3)$ remained *unknown* in Serre's work in 1950.

Finally determined by Barratt and Paechter in 1952 thanks to new specific methods (= \mathbb{Z}_{12}).

Now "stupidly" computed by the Kenzo program in one minute.

The simplest example

to understand the nature of the problem.

Chain complex:

$$\Leftrightarrow \qquad \cdots \longleftarrow 0 \longleftarrow \mathbb{Z}^2 \stackrel{\left[egin{array}{cc} 2 & 0 \ {m{lpha} & 2} \end{array}
ight]}{\longleftarrow} \mathbb{Z}^2 \longleftarrow 0 \longleftarrow \cdots$$

⇒ Short exact sequence of chain complexes:

$$0 \longrightarrow A_* \longrightarrow B_* \longrightarrow C_* (= B_*/A_*) \longrightarrow 0$$

Challenge:
$$H_*(A_*)$$
 and $H_*(C_*)$ known $\Rightarrow H_*(B_*) = ???$ $H_0(A_*) = H_0(C_*) = \mathbb{Z}_2, \ H_m(A_*) = H_m(C_*) = 0 \ \ \forall m \neq 0.$

Long exact sequence of homology \Rightarrow

$$\cdots \leftarrow 0 \leftarrow \mathbb{Z}_2 \leftarrow H_0(B_*) \leftarrow \mathbb{Z}_2 \leftarrow 0 \leftarrow \cdots$$

 \Rightarrow Two possible $H_0(B_*)$: $\mathbb{Z}_2 \oplus \mathbb{Z}_2$ or \mathbb{Z}_4 .

How to determine the right choice ???

Standard extension group theory:

$$0 \leftarrow \mathbb{Z}_2 \leftarrow E \leftarrow \mathbb{Z}_2 \leftarrow 0$$

The extension is determined by

a cohomology class
$$au \in H^2(\mathbb{Z}_2,\mathbb{Z}_2) = \mathbb{Z}_2$$
.

$$0 \longleftarrow 1 \longleftarrow a$$

$$0 \longleftarrow 2a \longleftarrow b$$

Rule: Consider $1 \in \mathbb{Z}_2$, then an arbitrary preimage $a \in E$;

Certainly the image of 2a is 0;

Exactness $\Rightarrow 2a$ is the image of a unique $b \in \mathbb{Z}_2$.

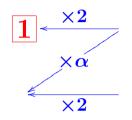
If b = 0, then $E = \mathbb{Z}_2 \oplus \mathbb{Z}_2$;

If b=1, then $E=\mathbb{Z}_4$.

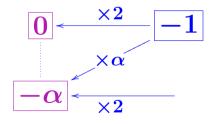
But E is unknown!

Solution: Instead of working with homology classes,

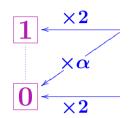
work with cycles representing them.



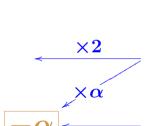
$$1 \in H_0(C_*)$$



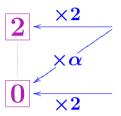
$$2a \in H_0(B_*)$$
?



$$a \in H_0(B_*)$$
?



$$b\in H_0(A_*)$$



$$2a\in H_0(B_*)$$
?

Conclusion:

 $\alpha \text{ even} \Rightarrow$

$$H_0(B_*)=\mathbb{Z}_2\oplus\mathbb{Z}_2$$

 $\alpha \text{ odd} \Rightarrow$

$$H_0(B_*)=\mathbb{Z}_4$$

Lifting homology classes to explicit cycles gives a solution.

A little more general situation:

$$H_0A_* = H_0(C_*) = \mathbb{Z}_2 \Rightarrow H_0(B_*) = ???$$

Same solution if it is possible to work in A_* , B_* and C_* .

Notion of effective (free \mathbb{Z} -) chain complex :

$$C_* = egin{bmatrix} \ldots \leftarrow C_{n-1} \stackrel{d_n}{\leftarrow} C_n \stackrel{d_{n+1}}{\leftarrow} C_{n+1} \leftarrow \ldots \end{bmatrix}$$
 $C_* = (eta, d)$

where:

- 1. β : $\mathbb{Z} \to \mathcal{L}$ ist : $n \mapsto [g_1^n, \dots, g_{k_n}^n] = \text{distinguished basis of } C_n$.
- $2. \ d \colon \ \mathbb{Z} \overset{\sim}{\times} \mathbb{N}_* \to \mathcal{U} \ : (n,i) \mapsto d_n(g_i^n) \in C_{n-1} \ \text{when} \ g_i^n \ \text{makes sense}.$

In particular every C_n is a free \mathbb{Z} -module with a finite distinguished basis.

- \Rightarrow Every $d_n: C_n \to C_{n-1}$ is entirely computable.
- \Rightarrow Every homology group $H_n(C_*)$ is computable (every global information is reachable).

Notion of locally effective chain complex:

$$C_* = egin{bmatrix} \ldots \leftarrow C_{n-1} \stackrel{d_n}{\leftarrow} C_n \stackrel{d_{n+1}}{\leftarrow} C_{n+1} \leftarrow \ldots \end{bmatrix}$$

$$C_* = (\chi,d)$$

where:

1. $\chi \colon \ \mathcal{U} \times \mathbb{Z} \to \operatorname{Bool} = \{\top, \bot\} : (\omega, n) \mapsto \top$ if and only if ω is a generator of C_n ;

Any finite set of "generator-wise" computations may be done.

Gödel + Church + Turing + Post \Rightarrow no global information is reachable. In particular, the homology groups of C_* are $\boxed{not\ computable}$.

Main ingredients of the solution Effective Homology for Constructive Algebraic Topology:

- ✓ Simplicial Topology.
- ✓ Effective chain complexes.
- ✓ Locally effective chain complexes.

Functional Programming.

Homological reductions.

Homological perturbation theory.

The END

```
Computing
<TnPr <Tn
End of computing.

;; Clock -> 2002-01-17, 19h 25m 36s.
Computing the boundary of the generator 19 (dimension 7) :
<TnPr <TnPr <TnPr S3 <<Abar[2 S1][2 S1]>>> <<Abar>>> End of computing.

Homology in dimension 6 :
Component Z/12Z
```

;; Clock -> 2002-01-17, 19h 27m 15s

;; Cloc

Francis Sergeraert, Institut Fourier, Grenoble, France Castro-Urdiales, January 9-13, 2006