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a b s t r a c t

fKenzo (= f riendly Kenzo) is a graphical user interface providing a
user-friendly front-end for the Kenzo system, a Common Lisp pro-
gram devoted to Algebraic Topology. The fKenzo system provides
the user interface itself, an XML intermediary generator-translator
and, finally the Kenzo kernel. We describe in this paper the main
points of fKenzo, and we explain also the advantages and limita-
tions of fKenzo with respect to Kenzo itself. The text is separated
into two parts, trying to cover both the user and the developer
perspectives.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Algebraic Topology studies the topological spaces by algebraic means, in particular through
algebraic invariants, such as homology and homotopy groups. For example two spaces having different
(non-isomorphic) homology groups certainly have different homotopy types.2 The modern evolution
of Algebraic Topology stresses the structural problems, somewhat giving up its initial computational
flavor. A possible reason of this evolution could be that calculating homology or homotopy groups of
arbitrary spaces in general is a difficult task, outside the scope of a topologist working ‘‘only’’ with pen
and paper.

The striking example of Commutative Algebra, where powerful computational tools such as
Macaulay, Cocoa or Singular are commonly used for a long time by the specialists to help their
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2 The converse is unfortunately (or fortunately, depending on the point of view) false.
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work, frequently leading to new fascinating mathematical problems, has no counterpart in Algebraic
Topology. Why? An interesting subject for historians of mathematics. A possible explanation is the
following: Algebraic Topology programs require a high level of functional programming, but it is not
the subject of this paper.

This paper is devoted to a presentation of the fKenzo program, a user-friendly front-end allowing
a topologist to use the Kenzo program for simple applications, without being disconcerted by the Lisp
technicalities which are unavoidable when using all the possibilities of Kenzo.

To illustrate the computing abilities of fKenzo, let us consider a hypothetical scenario where a
graduate course is devoted to fibrations, in particular introducing the functors loop space Ω and
classifying space B. In the simplicial framework, May (1967) is a good reference for these subjects. In
this framework, if X is a connected space, its loop space ΩX is a simplicial group, the structural group
of a universal fibration ΩX ↩→ PX → X . Conversely, if G is a simplicial group, the classifying space BG
is also the base space of a universal fibration G ↩→ EG → BG. The obvious symmetry between both
situations naturally leads to the question: in an appropriate context, are the functors Ω and B inverse
of each other? For the compositionBΩ , using fKenzo to compare for example the first homology groups
of S2, ΩS2 and BΩS2 gives some plausibility to the relation BΩ = id in the homotopy category. The
simplicial groupΩS2 can in turn be used to compare in the samewayΩS2 andΩBΩS2 with the same
conclusion.

A (good) student could wonder why the simpler case of S1 has not been considered. Using
again fKenzo this time fails; yet the result BΩS1 ∼ S1 is true. But the Eilenberg–Moore spectral
sequence cannot be used in this case to compute H∗ΩS1, for S1 is not simply connected, and fKenzo
checks this point. The symmetric comparison between S1 and ΩBS1 fails too, for another reason:
the ‘‘standard’’ S1 is a topological group, but the standard simplicial presentation of S1 cannot be
endowed with a structure of simplicial group. This is a good opportunity to introduce the Eilenberg–
MacLane space K(Z, 1), the ‘‘minimal’’ Kan model of the circle S1, a simplicial group; and the fKenzo
comparison between the first homology groups of K(Z, 1) and ΩBK(Z, 1) does give the expected
result.

We think that this illustrates how fKenzo can be used as a research tool, precisely a specialized
computer tool, for Algebraic Topology. It is worth noting that all the spaces in the examples (except
the spheres S1 and S2) are not simplicial sets of finite type. Thus computing their homology groups,
without the appropriate tool, is a challenging task, beyond the capabilities of beginners in Algebraic
Topology. Fortunately, the program Kenzo can quickly calculate these groups, giving to Algebraic
Topology an experimental feature, as Commutative Algebra inheritedmany years ago from Computer
Algebra systems.

The paper is organized in two parts. In the first one (Section 2), the user point of view is stressed. By
using the examples of this introduction about loop spaces and classifying spaces, the respective work
styles in Kenzo (Section 2.1) and fKenzo (2.2.1) are illustrated. A short overview on fKenzo capabilities
is the subject of Section 2.2.2. In the last section of this first part, we compare the advantages and
drawbacks of Kenzo vs fKenzo.

In the second part some explanations on the development of the fKenzo system are given.We hope
our experiences can be useful for other researchers undertaking similar tasks. Section 3.1 is devoted to
architectural and technological issues. The user interaction design is described in Section 3.2. Finally,
some challenges we faced and our proposed solutions are presented in Section 3.3.

The paper ends with a section dealing with conclusions and future work section, and the
bibliography.

2. Kenzo and fKenzo

2.1. Kenzo before fKenzo

The original Kenzo program is a Common Lisp package, to be used in a Common Lisp environment.
The Kenzo web page (Dousson et al., 1999) gives the relevant information allowing a topologist to
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install a Common Lisp environment on his laptop,3 and then to install Kenzo; this program is nothing
but a bunch of additional classes (chain complexes, simplicial sets, simplicial groups, . . . ) and a large
number of appropriate functions allowing the user to handle the traditional objects of Algebraic
Topology, in particular to compute many homology and homotopy groups.

A Kenzo session trying to compare the 2-sphere S2 and the classifying space BΩS2 could start as
follows:
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

> (setf S2 (sphere 2)) z
[K1 Simplicial-Set]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A Kenzo display must be read as follows. The initial ‘>’ is the Lisp prompt of this Common Lisp
implementation. The user types out a Lisp statement, here (setf S2 (sphere 2)) and the maltese
cross z (in fact not visible on the user screen) marks in this text the end of the Lisp statement,
just to help the reader: the right number of closing parentheses is reached. Here the 2-sphere S2
is constructed by the Kenzo function sphere, taking account of the argument 2, and this sphere
is assigned to the Lisp symbol S2 for later use. Also evaluating a Lisp statement returns an object,
the result of the evaluation, in this case the Lisp object implementing the 2-sphere, displayed as
[K1 Simplicial-Set], that is, the Kenzo object #1, a Simplicial-Set. The internal structure of this
object, made of a rich set of data, in particular many functional components, is not displayed. The
identification number printed by Kenzo allows the user to recover the whole object by means of a
function called simply k (for instance, the evaluation of (k 1) returns the 2-sphere, in our running
example). In addition, another function allows the user to obtain the origin of the object (i.e. from
which function and with which arguments it has been produced), and thus the printed information is
enough to get a complete control of the different objects built with Kenzo.

It is then possible to construct the loop space ΩS2, a simplicial group, and in turn the classifying
space of this group BΩS2, which is only a simplicial set, since the group ΩS2 is not abelian.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

> (setf OS2 (loop-space S2)) z
[K6 Simplicial-Group]
> (setf BOS2 (classifying-space OS2)) z
[K18 Simplicial-Set]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

It is well known that HpΩS2 = Z for every p ≥ 0, which can be directly computed by Kenzo. To
this aim, Kenzo, using a simple and powerful algorithm (see Rubio and Sergeraert, 1988; Sergeraert,
1994 or Berciano et al., 2010) can compute H∗Ω

kX if X is a k-connected simplicial set with effective
homology. For the particular case k = 1 it is nothing but theAdamsCobar construction. In our concrete
example:
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

> (homology OS2 6) z
Homology in dimension 6 :
Component Z
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

to be interpreted as stating H6ΩS2 = Z. We can therefore compare the homology groups of S2 and
BΩS2.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

> (homology S2 2) z
Homology in dimension 2 :
Component Z
> (homology BOS2 2) z
Homology in dimension 2 :
Component Z
> (homology S2 6) z
Homology in dimension 6 :

> (homology BOS2 6) z
Homology in dimension 6 :
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3 Some Common Lisp environments are free.
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No component displayed after a title as Homology in dimension 6 means the corresponding
homology group is null. Kenzo so informs the user HpS2 = HpBΩS2 for p = 2 and p = 6 and other
analogous experiences for other values of p give the same result, which implies the question of a

homotopy equivalence S2
?

∼ BΩS2 deserves to be studied.4

The symmetric question G
?
∼ ΩBG requires a group G, for example G = ΩS2. The reader can now

understand the goal of the next Kenzo statements.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

> (setf OBOS2 (loop-space BOS2)) z
[K252 Simplicial-Group]
> (homology OBOS2 6) z
Homology in dimension 6 :
Component Z
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

and again the user can check HpΩS2 = HpΩBΩS2 for small values of p. The same calculations can be
repeated with other initial spaces, clearly suggesting the general question of a homotopy equivalence

G
?
∼ ΩBG.

Let us do the same work for the multiplicative group S1 of the complex numbers of modulus 1. In
particular the classifying space BS1 is defined. The group S1 is also a 1-dimensional sphere, and Kenzo
can construct spheres:
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

> (setf S1 (sphere 1)) z
[K395 Simplicial-Set]
> (setf BS1 (classifying-space S1)) z
Error: No methods applicable for generic function

#<STANDARD-GENERIC-FUNCTION CLASSIFYING-SPACE>
with args ([K395 Simplicial-Set]) of classes (SIMPLICIAL-SET)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

But the default implementation of the circle S1 is the simplicial set with one vertex and one edge.
As clearly displayed, this object has a structure (class in computer jargon) of simplicial set, so that the
generic function classifying-space cannot be applied to such an object. Computational algebraic
topology must use combinatorial models and the simple simplicial model of the circle cannot be
endowed with a structure of a simplicial group: a simplicial group is necessarily a Kan simplicial
set, see May (1967), and the minimal Kan model of the circle is the standard simplicial model of the
Eilenberg–MacLane space K(Z, 1); it is a simplicial set not of finite type but which nevertheless can be
constructed and used under Kenzo.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

> (setf KZ1 (k-z 1)) z
[K513 Abelian-Simplicial-Group]
> (setf BKZ1 (classifying-space kz1)) z
[K525 Abelian-Simplicial-Group]
> (setf OBKZ1 (loop-space bkz1)) z
[K537 Simplicial-Group]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The homology groups HpΩBK(Z, 1) can then be computed and compared with the well-known
homology groups of the circle.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

> (homology OBKZ1 1) z
Homology in dimension 1 :
Component Z
> (homology OBKZ1 6) z
Homology in dimension 6 :
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4 Kenzo allows also the user for example to ask for every homology group HpBΩS2 with p ≤ 8, more conveniently, but leads
to verbose output to be avoided in this short note.
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Fig. 1. Initial screen of fKenzo.

2.2. fKenzo in action

2.2.1. The same example with fKenzo
To repeat the same computations with fKenzo, one can go to Heras (2009) and download the

installer. After the installation process (no Common Lisp independent installation is needed), you can
click on the fKenzo icon, accessing an initial, ‘‘empty’’ interface, shown in Fig. 1. This initial interface
contains only two menus: File and Help. In the Helpmenu the beginner can find some documentation
explaining how he can start working with fKenzo. In particular, a description of the first steps and the
functionality included in each module can be found there.

Sincewe are planning toworkwith simplicial sets and simplicial groups,we use File→AddModule,
and thenwe choose Simplicial-Groups.omdoc. The interface is updatedwith a newmenu called
Simplicial Sets and another one called Simplicial Groups.When deploying them,we find several options,
to construct in particular spheres, loop-spaces or classifying spaces. When selecting the ‘‘sphere’’
option in the Simplicial Set menu, fKenzo asks for a natural number limited, by default in Kenzo, to
14. Then (see Fig. 2) the space denoted by SS 1 appears in the left side of the screen; when selecting
it, the mathematical notation of the space appears in the bottom part of the right side of the panel.
The history of the constructed spaces is shown in the session tab, top part of the right side of the
panel.

If we try to construct a classifying space from the Simplicial Group menu, fKenzo informs us that it
needs a simplicial group (thus likely an error is avoided). We can then construct the space ΩS2. Since
ΩS2 is the only simplicial group in this session, when selecting the classifying space option, ΩS2 is
the only available space appearing in the list which fKenzo shows. In order to work with Eilenberg–
MacLane spaces, the Abelian Simplicial Groupmodule should also be loaded, in this way all the spaces
used in the previous section can be built, as can be seen in Fig. 2.

Loading the Computing.omdoc file, the menu Computing where we can select ‘‘homology’’
becomes available. In this manner, the computations performed in Section 2.1 can be reproduced,
as can be seen in Fig. 3.

If the user tries a calculation with is not supported by Kenzo, as in the case of H4(BΩ2S2), fKenzo
informs him thatH4(BΩ2S2) is not computable (see Fig. 4) due in this particular situation to a problem
with the connectivity of the space. Thus, fKenzo not only computes in a more friendly way than Kenzo,
but also leads the user, avoiding running errors (see the idea of intermediary layer in Section 3.1 and
a more detailed description in Heras et al. (2008)).
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Fig. 2. Example of session.

Fig. 3. Example of computations.

Fig. 4. Reduction degree error.

2.2.2. fKenzo: system overview
In its current distribution, fKenzo contains five modules: Chain Complexes, Simplicial Sets, Simplicial

Groups, Abelian Simplicial Groups and Computing. In addition, some other experimentalmodules can be
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downloaded, through the plug-in manager of the Help menu, such as a possibility of interfacing with
the GAP Computer Algebra system or the ACL2 Theorem Proving tool.5

The Simplicial Set module contains most of the functionality of Kenzo: options to construct spaces
from scratch (spheres, Moore spaces, finite simplicial sets, and so on) and from other spaces (cartesian
products, suspensions, wedges, and so on). Simplicial Groupsmodule contains the operations to build
loop spaces and classifying spaces, in addition to an automatic loading of the Simplicial Set module
which is needed to build loop spaces. Abelian Simplicial Groups module contains just one option
(Eilenberg–MacLane spaces). The Chain Complexesmodule includes a few operations that are defined
at the algebraic level but not at the simplicial one, as tensor products.

Besides these structural modules, there is a special module Computing,6 allowing the user to
calculate homology and homotopy groups of the constructed spaces. It is necessary to understand
that homology and homotopy algorithms are very different. From its very construction (as objects
with effective homology, see Rubio and Sergeraert (2002)), the (first) homology groups of each
space constructed with Kenzo/fKenzo are usually available. On the contrary, fKenzo cannot compute
homotopy groups of all the spaces which can be constructed with the system (see the documentation
of Kenzo or fKenzo to know more about this topic).

With respect to the visual aspect of the fKenzo panel, it has been briefly described in the previous
subsection. The ‘‘Main’’ tab contains, at its left side, a list of spaces constructed in the current session,
identified by its type (CC = Chain Complex, SS = Simplicial Set, SG = Simplicial Group, AG = Abelian
Simplicial Group) and its internal identification number (this identification number is also used
internally to keep track of the origin of spaces, allowing the program to reuse intermediate results,
getting a performance comparable to that of Kenzo, which also uses this technique. When selecting
one of the spaces in this list, its standard notation appears at the bottom part of the right side. At the
upper part, there are two tabs: ‘‘Session’’ (containing a textual description of the constructions made,
see Fig. 2; this can be saved, rendered in external browsers and recovered for further working, if it
is wanted by the user) and ‘‘Computing’’ (containing the homology and homotopy groups computed
in the session; these results can also be saved and rendered in external browsers, but they cannot be
reloaded into fKenzo, since they are not used in further computations).

2.3. Kenzo beyond fKenzo

Algebraic Topology is a vast and complex subject, in particular mixing Algebra and (combinatorial)
Topology. The program designers in Symbolic Computation always meet the same decision problem;
two possible organizations7:

(1) Provide a package of procedures in theprogramming language L, allowing auser of this language to
load this package in the standard L-environment, and to use the various functions and procedures
provided in this package. It is in particular the solution followed in Kenzo with respect to the
Common Lisp language. Advantage: the total freedom given by the language L remains available;
Disadvantage: the technicalities of the language L remain present as well!

(2) Provide a graphical interface with the usual tabs, menus and other widgets. It is the fKenzo style.
Advantage: to give to an inexperienced user a direct access to themost simple desired calculations,
without having to learn the language L; Disadvantage: some functionalities could be difficult to
fit in the Graphical User Interface, while easily programmable with the language L.

5 These experimental aspects are the main reason why we use the XML standard OpenMath (Buswell et al., 2004) as
specification language: it allows us to communicate with other Computer Algebra Systems, as GAP, and the axiomatic
information in OpenMath Content Dictionaries can be exploited to prove some properties of programs with ACL2. More details
on these technological issues are given in the second part of this paper (Section 3).
6 Even if fKenzo is always used for ‘‘computing’’,the process needs two very different steps. In Step 1 (Constructing), the

asked-for spaces and many auxiliary other objects are constructed, each one being essentially a small set of functional objects,
ready to answer various questions. In Step 2 (Computing), taking account of the demanded group, Kenzo does question most of
these functional objects and, combining in a rather sophisticated way the obtained answers, finally returns the wished answer.
7 These are, of course, two extreme positions: many other possibilities can be explored between them.
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Wegive two examples of results that are reachable in the originalKenzo environment,which on the
contrary are beyond the scope of fKenzo and seem difficult to introduce in any other sensible graphical
interface.

In the paper Sergeraert (2010), the following game is tried, and rather amazingly succeeds. Let X
be the complex projective space PnC. It is a subset of the infinite complex projective space P∞C, and
the fundamental class of PnC is also the generator of H2nP∞C. It happens that P∞C has the homotopy
type of the Eilenberg–MacLane space K(Z, 2). This Eilenberg–MacLane space has a canonicalminimal
version as a simplicial set K2, an important object when computing homotopy groups in Kenzo. The
simplicial set K2 can be constructed in Kenzo, and in fKenzo as well. This simplicial set is ‘‘minimal’’
but not at all of finite type; yet the methods of effective homology allow us to compute the effective
homology of K2. In particular Kenzo can produce a representative c , a cycle, of a generator of H2n(K2).
The cycle c is a finiteZ-combination of 2n-simplices of K2. Then Kenzo can construct the sub-simplicial
set Sc ⊂ K2 generated by the components of c . It is not then very hard to prove that if the relative
homology H∗(K2, Sc) is null up to dimension 2n+ 1, then the simplicial set Sc has the homotopy type
of PnC.We can useKenzo to compute this relative homology, obtaining the desired vanishing property.
This proves that Sc is a triangulation as a simplicial set of (the homotopy type of) PnC. We thus obtain
in a few seconds a triangulation of (the homotopy type of) P5C with (1, 0, 5, 40, 271, 1197, 3381,
5985, 6405, 3780, 945) simplices, that is, 1 vertex, 5 triangles, 40 tetrahedrons, . . . , 945 10-simplices.
In particular, a compact triangulation of P2C as a simplicial set with (1, 0, 2, 3, 3) simplices is obtained,
to our knowledge not yet known.

The reader can understand that this set of calculations requires a complex user interaction, in
particular invoking explicit Z-cycles. In fKenzo, every object such as a chain complex, a simplicial set,
. . . , is implemented in a globalway as a finite set of functional objects; such a functional objectwill later
work on arguments most often quite complex, using all the technicalities of the underlying Common
Lisp language; it is difficult to find a way of giving the user of a Graphical User Interface access to such
arguments: working directly in a Common Lisp environment is much easier; so that if our user wants
to define and handle himself such arguments, using Kenzo itself seems then a good alternative.

Another example is the subject of the paper (Berciano et al., 2010). An A∞-structure on a chain
complex C∗ is a multiplication µ2 defined over C∗, compatible with the differential, but associative
only up to homotopy; such an explicit homotopy µ3 : C∗ ⊗ C∗ ⊗ C∗ → C∗ must be provided,
which in turn in a sense must verify some associativity property up to an explicit homotopy µ4
and so on. See Kadeishvili (2008) for a convenient description of this relatively complex structure,
discovered by Jim Stasheff in the sixties; see Stasheff (1963). Such an A∞-structure is complex
but can be easily constructed by Kenzo in some contexts, as a consequence of the powerful Basic
Perturbation Lemma. The paper Berciano et al. (2010) explains how highly non-trivial A∞-structures
can be constructed by Kenzo, when applying again themethods of effective homology to the homology
groups H∗(Ω

3(P∞R/P3R)). Some intermediate chain complexes which are necessary to compute
these homology groups are endowed with an A∞-structure (µn)n≥1, and a careful analysis of this
structure shows every µn is non-trivial. This requires a study of terms µn(g ⊗ · · · ⊗ g), and such a
meticulous study is difficult to integrate with the general fKenzo style, for the same reasons as in the
previous example.

3. fKenzo: system description

3.1. Methodological and technological issues

3.1.1. Architecture of the system
The general organization of fKenzo has been inspired by the Microkernel pattern (see Buschmann

et al. (1996)). The main component of this pattern, called mediator in our framework, is responsible
for managing all system resources, maintains information about resources and allows access to them
in a coordinated and systematic way. A high level perspective of the system as a whole is shown in
Fig. 5.
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Fig. 5. fKenzoMicrokernel architecture.

In fKenzo, the Microkernel pattern is specialized in two different ways. First, our mediator embeds
an Internal Memory, which acts as a working memory when running a process, handling objects by
means of identification numbers (visible at the Graphical User Interface, as explained in Section 2.2),
and improving the performance of the system. Second, the communications from and to themediator
are encoded by means of an XML language (called XML-Kenzo) that frees us from the implementation
languages occurring in the different components of the system. These issues are dealt with in the
following subsection. Remark in Fig. 5 that the main computing kernel is Kenzo itself, wrapped with
an XML processor. Other computing or deduction engines can be also integrated. In Fig. 5, these other
kernels have been linked by means of OpenMath processors (Phrasebooks in OpenMath terminology;
see Buswell et al. (2004)), because it is the technology used in our current experimental prototypes
(to GAP and ACL2, as invoked previously).

3.1.2. Modularity and OpenMath
Modularity has two aims in fKenzo. One of them is related to the separation of concerns in the user

interface. The second one allows us to design a dynamically extensible system, where modules are
plugged in. In both cases, OpenMath technology (OMDoc documents, concretely) is instrumental to
implement these ideas.

With respect to the first aspect, our inspiration comes from Hanus and Kluß (2009), where a
proposal for the declarative programming of user interfaces was presented. In Hanus and Kluß
(2009), the authors distinguished three constituents in any user interface: structure, functionality
and layout (this separation of concerns is very related to the well-known Model-View-Controller
pattern; see Buschmann et al. (1996) for details). These three parts are encoded for each module
of fKenzo in an OMDoc document (see Kohlhase (2006)). OMDoc is an open markup language for
mathematical documents, and the knowledge encapsulated in them. This format extends OpenMath
and hence provides some features not available in OpenMath, for example a theory level and a way
of incorporating executable code. These enhancements are used in fKenzo to integrate in a unique
OMDoc file for eachmodule the different declarative parts of the interface: structure (encoded in XUL,
theMozilla’s XML user interface language; seeHyatt et al. (2001)), functionality (Allegro Common Lisp
programs) and layout (style sheets).

This organization also allows us to deal with the second modularity aspect. Since each user
interface unit is encoded in a unique OMDoc file (with its inner modular organization: structure,
functionality, layout), our front-end becomes extensible. It is enough to produce an OMDoc file with
the suitable structure, and then it can be interpreted and plugged in our Graphical User Interface. It
is exactly what happened when in Section 2.2.1 we described the way of working with fKenzo: the
option Add Module with the Simplicial-Groups.omdoc file interprets indeed the OMDoc importing
new structure, functionality and layout into the GUI. This extensibility principle makes very easy to
us to incorporate experimental features to the system, without interfering with the already running
modules.
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Fig. 6. Hierarchical decomposition of the ‘‘Construct Fresh Space’’ user task.

For a more detailed account, we refer to Heras et al. (2009) where we reported on this kind of
interface organization.

3.2. Interaction design

3.2.1. Task model
The first idea guiding the construction of a user interface must be the objectives of the interaction.

In fKenzo there is only one higher-level objective: to compute homology groups of spaces. This main
objective is later on broken in several subobjectives, trying to emulate the way of thinking of a typical
Kenzo user. Once this first objective analysis is done, the next step is to design a task model. That is to
say, a hierarchical planning of the main actions the user should undertake to get his objectives. This
is a previous step before devising the navigation of the user, which will give the concrete guidelines
needed to implement the interface.

In our case, the two main tasks of the system are: (1) computing groups, and (2) constructing
spaces. Note that the second task is necessary to realize the first one. In turn, the task of constructing
spaces can be separated into: (1) constructing new fresh spaces and (2) loading spaces from a previous
session. Thus, the notion of session comes on the scene. With respect to the construction of fresh
spaces, once the user has decided to go for it, he should decide which type of space he wants to build:
simplicial set, simplicial group, and so on. This third layer of tasks gives us the module organization
of the interface, while computing produces a separated module, and the handling of sessions, being
conceptually different, does not give rise to a module.

The task design is organized hierarchically by diagrammatic means. See in Fig. 6 a first
decomposition layer. Each task (each frame) is linked to auxiliary tasks (giving a horizontal
dependency structure). Then, each frame is described in more detail (vertical structure) by making
explicit its subtasks graph.



J. Heras et al. / Journal of Symbolic Computation ( ) – 11

Fig. 7. Control graph for the construction of ΩnX .

Task modeling provides us with the high level modular structure and with the different steps
needed to reach a user’s subobjective. The concrete actions a user should perform to accomplish the
tasks are devised in control and navigation models.

3.2.2. Control and navigation model
The design of the interaction between a user and a computer program involves well-known

challenges (use of convenient metaphors, consistency of the control through the whole application,
and so on). In order to avoid some frequent drawbacks we have followed the guidelines of the Noesis
method (see Domínguez and Zapata (2007) for the general theory, and Cordero et al., 2006 for the
design of reactive systems). In particular, our development has been supported by the Noesis models
for control and navigation in user interfaces (as we reported in Heras et al. (2008)). These graph-
supported models enable an exhaustive traversal of the interfaces, allowing the analyst to detect
errors, disconnected areas, lack of uniformity, etc. before the programming phase. Fig. 7 shows the
control and navigation submodel describing the construction of a loop space ΩnX . Different kinds of
interactions are graphically represented in Fig. 7 by different icons. For instance, selecting from a list
is depictedwith a form icon; directly writing an input is depictedwith a pen, and so on. These pictures
help the programmer to get a quick overall view of the different controls to be implemented.

Let us observe that this diagrammatic control model is abstract, in the sense that nothing is said
about the concrete way the transitions should be translated into the user interface. In fact, in fKenzo
this model is implemented in two different manners: one bymeans of the ‘‘menu &mouse’’ style, and
the other one through control-keys. The second style has been included thinking of advanced users,
who want to use shortcuts to access the facilities of the interface. The adaptation to different kinds of
users is one of the principles for design usability in Schneiderman (1998), and has been considered,
as the rest of principles, in our development.

3.3. Challenges and design decisions

When starting the project of developing a user interface for Kenzo, several requirements were
determined. Some of them were simply natural specifications, others were of a more problematic
style. Those difficult issues are presented here as challenges to be fulfilled. These challenges
largely determined the design decisions presented previously in this section. The links among ones
(challenges) and others (design decisions) are explained in this subsection.

The most important challenges we faced were:

(1) Extensibility. The system design should be capable of evolving at the same time as the kernel
Kenzo system. In addition, the system should be designed in such a way that it could support
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both other ways of interaction (web services, for example) and the connection to other symbolic
manipulation systems (GAP in computational algebra, for instance, or ACL2 from the theorem
proving side).

(2) Efficiency. The user interface should be roughly equivalent to Kenzo in time and space efficiency.
(3) Error handling. fKenzo should forbid the user some manipulations raising errors, both from

structural and from semantical points of view.
(4) Consistentmetaphors.Anadvanceduser ofKenzo should feel comfortablewith fKenzo; in particular,

the typical two step process (first constructing a space, then computing groups associated to it)
should be explicitly and graphically captured in fKenzo.8

(5) Support to long term computations. An important calculation in Algebraic Topology sometimes
needs several days of processing; fKenzo should give the user the possibility of keeping a copy of
his current session, that could be re-taken later on. Additionally, the session specifications should
not be internal to the system, but it should be possible to export them and to communicate them
to other users or computers.

Let us observe that, as it is frequent in system design, some decisions aimed to fulfill a concrete
requirement could compromise other requirements. Themost important trade-off in our previous list
is between requirements (1) and (2). A layered architecture with complex mediators could produce
poorer performance. A careless treatment of intermediary documents and files could also imply a great
memory waste. Error handling (item (3)) could be in a conflict with efficiency, too, because dealing
with semantical information at the external layers of an architecture can slow down the system as a
whole. We have tried to deal with all these constraints while respecting the requirements.

To solve the first problem (extensibility) we use two well-known tools: design patterns to find an
architectural solution and XML to manage the mathematical and systemic knowledge. As explained
in Section 3.1.1, the Microkernel architectural pattern (see Buschmann et al. (1996)) was chosen
to organize the system. The pattern was enhanced with XML processing capabilities both for the
mathematical knowledge (XML-Kenzo and OpenMath) and for the very graphical user interface
structure (through OMDocs files). We obtained a system that can incorporate new computing and
deduction engines (due to the Microkernel platform organization) and whose user interface can be
extended by simply loading OMDoc documents.

The second aspect (efficiency) is solved throughmemoization, a strategy also used by F. Sergeraert
in Kenzo. The intermediary layer is in charge of keeping an enriched copy of the objects created, in
such a way that re-calculations are avoided. To implement memoization, we needed to improve the
Microkernel pattern with an ‘‘internal memory’’. As a result, the waiting time is to a great extent
similar to that of the original Kenzo system.

The most important design decision related to point (3), error handling, is the addition of an
‘‘intelligent’’ processing in themediator. To bemore concrete, some structural constraints are directly
wired in the graphical user interface; for instance, arguments for the constructor ‘‘classifying space’’
can only be selected among the spaces which are simplicial groups. This is accomplished because the
OpenMath specification of spaces gives us a kind of (semantical) type system for spaces and objects in
our working memory.

On the other hand, other information about the correct input requirements for computing
homology groups (such as the reduction degree) is more dynamical in nature, and cannot be wired
in the user’s interface. This is dealt with in the mediator layer, symbolically manipulating the (XML)
representation of spaces. The organization is as a small rule-based system (seeHeras et al. (2008)), and
the computational price is negligible with respect to ordinary computations in Algebraic Topology.

These ‘‘intelligent’’ enhancements have been got by using a Decorator pattern (see Buschmann
et al. (1996)): every underlying Kenzo object is ‘‘decorated’’ in the intermediate fKenzo layer with
an annotation of its reduction degree and other typing information. Then, when a computation

8 This could be considered as an over-constraint to the design of the system; nevertheless, since the fKenzo designers were
previously Kenzo users, it was natural for us to fix such a requirement.
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(of a homology group, for instance) is demanded by a user, the intermediary layer monitors if the
annotation allows the transferring of the command to the Kenzo kernel, or if a warning must be sent
to the user.

It is still controversial when some of these processes must be located at the external layer, in
the intermediary layer or nearer to the Kenzo kernel. Up to now, we have followed the guideline of
isolating Kenzo as much as possible. Since the performance overheads are reasonable this seems a
good choice in the current state of fKenzo. In any case, our architecture is flexible enough to change
the location of components (if scalability issues recommend it) with little impact on the rest of the
system.

Requirement number (4), coherence with the Kenzoway of interaction, is themost influential with
respect to the visual aspect of our interface. In addition to the menu bar, there are three main parts
in the screen: a left part, with a listing of the objects already constructed in the current session, a
right panel with several tabs, and a bottom part with the standard mathematical representation of
the object selected (see Figs. 2 and 3). Thus, focus concentrates on the object (space) of interest, as in
Common Lisp/Kenzo. The central panel takes up most of the place in the interface, because it is the
most growing part of it (in particular, with respect to computing results). It is separated by means of
tabs not only because on the division among spaces (Fig. 2) and (Fig. 3) computing results (the system
moves from one to the other dynamically, putting the focus on the last user action), but also due to
requirement number (1): since our interface should be capable of evolving to integrate other systems
(computational algebra or theorem proving tools), playing with tabs in the central panel allows us to
produce a user sensation of indefinite space and separation of concerns.

Finally, the fifth item has been the easiest to meet: once the XML infrastructure has been devised
to fulfill requirements (1) and (3), it is easy to design a way of storing in a file the information about
the spaces built during a session. This text files can be replayed by fKenzo, transmitted through nets
or even displayed through a browser.

In summary, a good balance among requirements and design decisions seems to be achieved. There
is much room for improvement, but a solid and stable first step has been given toward a usable
interface for the Kenzo system.

4. Conclusions and further work

fKenzo is a user interface for the Kenzo system, a Common Lisp program to compute in Algebraic
Topology. In its current state, fKenzo fulfills two objectives: it provides a friendly front-end to
Kenzo, and it guides the user to avoid running errors, depending both on design decisions in Kenzo
and on topological features. This second objective is got by means of a mediator program called
intermediary layer. We hope these are right steps to reach our final aim of increasing the interest of
algebraic topologists inKenzo, or,more generally, in effective and constructive approaches toAlgebraic
Topology.

Three big lines of future work are open.
The first one is related to include more Kenzo functionalities in fKenzo. One of the aspects of

this enhancement could be to find a suitable way (free from the Common Lisp syntax) of editing
and handling elements of each constructed space. Thus we could approach the difficult question of
introducing in fKenzo computations as the ones presented in Section 2.3.

The second line of work is related to the extensibility of fKenzo. Since the computational kernel,
Kenzo itself, continues covering more aspects of Algebraic Topology (see for instance in Romero
et al. (2006) an extension for spectral sequences), it is necessary that fKenzo evolves accordingly.
The modular structure of fKenzo, based on OpenMath mechanisms, will be instrumental to this
aim.

Finally, we would like fKenzo to become a comprehensive assistant for Algebraic Topology,
including computation (the only aspect considered up to now), communication (with other systems)
and deduction (bymeans of proof assistants). As evoked in the paper some preliminary developments
on the connection with GAP and with the theorem prover ACL2 are already available through the
current distribution of fKenzo.
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