
Effective homology, a survey.∗

Francis Sergeraert

Institut Fourier, BP 74, 38402 St Martin d’Hères Cedex
Laboratoire de Modélisation et Calcul, 46, avenue Félix Viallet, 38031 Grenoble Cedex

1 Introduction.

Algebraic topology consists in associating to topological spaces algebraic invariants
in order to describe their essential properties. In some (exceptional) cases, it is
possible in this way to classify a particular topological space inside a more or less
large set of spaces or equivalence classes of spaces, for example up to homotopy
equivalence. In the most important cases, a functor is defined, capable of working
on some topological spaces to produce an algebraic object. And very frequently, if
this functor works on a “finite” topological space, then the result is also a “finite”
algebraic object. The meaning of the adjective “finite” is the following : an object
is finite if it can be “reasonably” coded on a theoretical or actual machine.

For example a finite simplicial complex can be easily implemented on a machine,
and such a topological space is therefore considered as finite. A Serre theorem
asserts that, if such a space is simply connected, then its homotopy groups are of
finite type, and therefore are “finite” with respect to our point of view. Consider
in this way the 4-sphere S4 and the functor π7 (seventh homotopy group); a table
of sphere homotopy groups shows that π7S

4 = Z12 ⊕ Z; if we decide to code by
the list (d1 d2 . . . dm) the group Zd1 ⊕ Zd2 ⊕ . . .⊕ Zdm , then the group π7S

4 is
coded by the list (12 0), a finite object.

The main problem solved by effective homology is to make available algorithms
capable of computing finite algebraic objects associated to finite topological spaces
according to the various functors of algebraic topology. The problem makes sense
because the initial datum (input) can be coded on a machine and also the final
datum (output) so that the challenge is, given some “reasonable” functor of alge-
braic topology, to prove the existence of a theoretical algorithm constructing the
output, starting from the input.

∗This is a writing of something like the GCD of several talks given in Summer 1992 in Japan
(Sapporo, Morioka, Urawa, Tokyo, Kyoto, Nara, Osaka, Hiroshima) during a JSPS (Japanese
Society for Promotion of Science) stay.

1



The problem makes sense but also is not trivial : it is easy, using Novikov’s
theorem about the word problem, to give examples where such a problem has a
negative answer. Let us consider for example the following problem : we define the
functor ISP (Is Simply Connected) on the topological space category as having the
value 0 on some topological space if this space is simply connected, and the value 1
otherwise. This functor is in particular defined for the finite simplicial complexes
and its value is also a finite object; the question of the existence of an algorithm
implementing the ISP functor (for finite simplicial complexes) makes sense but
has a negative answer. As a matter of fact, because any first homotopy group of
a finite simplicial complex has a finite presentation, and conversely any finitely
presented group is the first homotopy group of some finite simplicial complex, the
algorithmic problem for the ISP functor is equivalent to the problem of finding an
algorithm capable of working on any finitely presented group to determine whether
this group is null. But, using Novikov’s theorem about the word problem, Rabin
proved [15] this problem has no solution.

There are many examples of positive answers. The simplest one is the compu-
tation of the usual homology groups (Z-coefficients) of finite simplicial complexes;
it is quite elementary to write such an algorithm; a simplicial complex determines
a finite simplicial chain complex and the homology groups come from a simple
normalization process of the boundary operators. See [6] for an interesting study
of the related complexity problem. A more difficult problem is to compute the ho-
motopy groups of a finite simplicial complex. Firstly it is better to only consider
the simply connected case because of the Novikov obstacle. For the rational case,
in other words to determine the groups πn ⊗Q, Sullivan gave in the seventies his
famous solution [20] based on his minimal models theory. For the (Z)-homotopy
groups themselves, Edgar Brown published [3] a solution based on the Postnikov
tower (a tool used by Sullivan too) and finite approximations of infinite simplicial
sets.

By the way Edgar Brown’s solution has a larger scope than Sullivan’s one.
Why did the latter obtain so much success with his “weaker” solution ? Because
Sullivan’s solution is much more efficient. The theoretical existence of some al-
gorithm is of course important but the complexity of such an algorithm is not
less. From this point of view, the complexity of computing usual homology groups
is quite good (polynomial, see [6]); Sullivan’s algorithm is relatively efficient; it
has been concretely used in many situations, see for example [10]. However there
is also a negative result by David Anick about the problem of calculating ratio-
nal homotopy groups [1]; this problem is #P -hard, that is, if, as it is generally
thought, P 6= NP [8], no algorithm can be extensively used because the comput-
ing time will necessarily become unreasonably large. But the situation for Edgar
Brown’s algorithm is much worse : Edgar Brown himself quoted in his paper that
his algorithm has no practical use : even for very simple situations where human
beeings succeeded in computing homotopy groups by hand, the Brown algorithm
cannot be used because of enormous space and time complexity, even with the
most powerful computer it is possible to imagine !

2



We present in this paper the effective homology method to solve these prob-
lems. It is an adaptation of Hirsch’s method to construct finite chain complexes [11]
which compute homology groups of possibly complicated spaces. Using the mod-
ern sophisticated programming tools (functional programming), Hirsch’s method
becomes a real computing tool for homology and homotopy groups. For example a
simple and elegant solution has been found in this way by Julio Rubio for Adam’s
problem about the computation of homology groups of iterated loop spaces [17].
Among others ([2], [18], [21]), it is at this time the unique solution that has been
concretely implemented on computer, giving many interesting results, allowing us
in certain cases to compute homology groups for which there did not exist previ-
ously even theoretical algorithms [16].

2 Is a spectral sequence an algorithm ?

The simplest general methods to calculate homology and homotopy groups are the
various exact sequences and spectral sequences. For example the Serre spectral
sequence gives information about the homology groups of the total space of a
fibration, which can be considered as a twisted product. Conversely, the Eilenberg-
Moore spectral sequence gives information about the homology groups of the base
space (resp. the fiber space) when you know the homology of the total space and
of the fiber space (resp. the base space); this is a sort of twisted division.

But are these spectral sequences algorithms ? Are the various classical exact
sequences (that are in fact particular cases of spectral sequences) algorithms ? The
answer is negative for two main reasons.

The first reason is the computing problem for the differentials. Nothing is ex-
plained in spectral sequence theory about computing the differentials. We shall see
that in fact a good solution can be given using functional programming. Another
quite different problem is the extension problem at abutment. A spectral sequence
process gives you a filtration :

HnE = Hn,0E ⊃ Hn−1,1E ⊃ . . . ⊃ H0,nE ⊃ 0

and some groups traditionally denoted by E∞
p,q = Hp,qE/Hp−1,q+1E and the exten-

sion problem is to guess, knowing these groups, the group HnE you are looking for.
Nothing is said about this problem so that usually people prefer to wisely work
with coefficients in some field. We shall see that the perturbation lemma gives a
perfect solution for this problem.

Carefully combining functional programming methods and perturbation lemma
gives the effective homology theory.

To convince the reader that computing the differentials of a spectral sequence
is hard, we quote two paragraphs extracted from McCleary’s book User’s guide to
spectral sequences [13]:

3



(p. 6) “Theorem”. There is a spectral sequence with

E∗,∗2
∼= “something computable”

and converging to H∗, something desirable.
The important observation to make about the statement of the

theorem is that it gives an E2-term of the spectral sequence but says
nothing about the successive differentials dr. Though E∗,∗r may be
known, without dr or some further structure, it may be impossible to
proceed.
[. . . ]
(p. 28) It is worth repeating the caveat about differentials mentioned
in chapter 1: knowledge of E∗,∗r and dr determines E∗,∗r+1 but not dr+1.
If we think of a spectral sequence as a black box, then the input is a
differential bigraded module, usually E∗,∗1 , and, with each turn of the
handle, the machine computes a successive homology according to a
sequence of differentials. If some differential is unknown, then some
other (any other! ) principle is needed to proceed. From chapter 1,
the reader is acquainted with several algebraic tricks that allow further
calculations. In the non-trivial cases, it is often a deep geometric idea
that is caught up in the knowledge of a differential.

Computing the differentials of a spectral sequence consists in considering the
sequence :

Er
p−r,q+r−1

d←−
???

Er
p,q

and to find what is dx for some x ∈ Er
p,q. You must choose some representant

z of x in the chain group Cp+q, then compute its boundary dz ∈ Cp+q−1 and
finally determine its equivalence class y = dx ∈ Er

p−r,q+r−1; the plan is quite clear
but the chain groups such that Cp+q are in general highly infinite. Two main
solutions are possible; the first one consists in working in such a way that all
chain complexes are “finite”; this is frequently theoretically possible, but the finite
complexes will usually be so enormous that such a solution is not of practical use.
The other solution, in fact much more elegant is functional algorithmic. But what
is functional algorithmic? This is sketched in the following section.

3 Functional algorithmic, a survey.

Frequently a mathematical object is a (possibly) infinite set provided with algo-
rithms. For example a ring is a 4-tuple R = (S, A,O, M) where:

• the S component is a type, in other words the underlying set;
• the A component is the addition algorithm;
• the O component is the opposite algorithm;
• the M component is the multiplication algorithm.

4



The type component could be the integer type if the ring is the integer ring,
or some appropriate type for other situations such that polynomial rings, power
series rings, etc.

Producing and using such objects (a type and a set of algorithms defined on
this type) is functional algorithmic. Using such objects is not hard, but producing
them needs sophisticated tools that are not available in ordinary programming
languages (Pascal, C, etc.). If you intend to use functional methods, you must
use a functional programming language, the most efficient one being at this time
Common-Lisp.

To give an idea of what is possible using functional algorithmic, we give some
typical examples of functor implementations.

Theorem 1 — An algorithm can be implemented:

Poly : R1 = (S1, A1, O1, M1) 7−→ R2 = (S2, A2, O2, M2)

constructing from the ring R1 the polynomial ring R2 = R1[X].

Note that the “Poly” algorithm is a unique object able to work on any ring
to construct the corresponding polynomial ring. By a simple iterative use of such
an algorithm, starting from any ring R, it is possible to construct the ring of
polynomials with two variables R[X, Y ], and the ring of polynomials with any
number n of variables R[X1, . . . , Xn]. This is a classical work with a symbolic
computation system such as Axiom (ex-Scratchpad), and is usually the first step
of a functional programming course mathematically oriented.

Theorem 2 — An algorithm can be implemented:

IndLim : Φ = (R0
φ0→ R1

φ1→ R2
φ2→ . . .) 7−→ R = (S,A,O,M)

where the input Φ is an inductive ring system and the output R is the inductive
limit ring of this system.

Combining the algorithms of theorems 1 and 2, it is easy for example to con-
struct, starting from a ring R, the polynomial ring with an infinite number of
variables R[Xi]i∈N. The following algorithm of this type is more oriented homo-
logical algebra, but it is essentially analogous.

Theorem 3 — An algorithm can be implemented:

TensorAlgebra : C = (S, A,O, d) 7−→ C′ = (S ′, A′, O′, M ′, d′)

where C = (S, d) is a chain complex, and C′ = (S ′, d′) is the tensor algebra of C:
C′ = ⊕∞n=0C

⊗n with the usual grading, multiplication and differential.

5



The “TensorAlgebra” algorithm is one of the numerous algorithms constantly
used in the actual effective homology program.

Theorem 4 — An algorithm can be implemented:

LoopSpace : E = (S, ∂, η) 7−→ E′ = (S ′, ∂′, η′)

where E is a simplicial set (∂ is its face operator defined on N×S, η its degeneracy
operator), and E′ = ΩE is its loop space.

A simplicial set is a kind of algebraic object (S, ∂, η) where S is the underlying
simplex set, ∂ and η are the face and degeneracy operators, defined for every pair
(n, σ) such that n ≤ dim(σ). As previously, the “LoopSpace” algorithm is a unique
object able to work on any simplicial set, maybe a simplicial set which is already
a loop space, and so on. So that it is easy to build an algorithm (n,E) 7→ ΩnE.
And combining with a suspension algorithm and an inductive limit algorithm, a
new algorithm E 7→ Ω∞S∞E can be implemented, etc.

It is frequent that a coding for an infinite simplicial set does not allow the
user to reach global information about this object such that its homology groups.
In fact such a coding only allows you for example to find some face of a simplex
which is known to be in the simplicial set, but is quite unable to give you the
list of all simplices in some dimension, a list which is in general infinite! This
is well described by the following terminology: such a coding is called locally
effective, because it is able to give you only local informations; on the contrary, if
supplementary information is available giving global information, then the coding
is called effective; such an object is necessarily of finite type.

The history of computer science is fairly amazing. Hilbert stated the complete-
ness problem of formal mathematics and also the existence question for a universal
algorithm solving any mathematical problem. Gödel proved in 1934 his famous
incompleteness theorem, and, directly guided by Gödel’s proof, Church and Turing
also gave a negative answer to the second question of Hilbert (1936). The main
ingredient of Gödel’s proof was a mathematical statement capable of saying some-
thing about itself, and in the same way, Church and Turing used programs capable
of working on themselves. This is not obvious in ordinary programming, because
of the traditional splitting between programs and data. But Turing proved that
after all a program can be also considered as a datum, and in this way a program
may work on itself; Turing created his famous theoretical machine to define such
an organization, which is the source of classical computer science (universal ma-
chines with recorded programs): Von Neumann, Fortran, Algol, Pascal, C, Ada,
etc. Church’s proof has the symmetric organization: any “object” is a function
(program), even a datum! This is the functional organization of computer science.
It is only in the fifties that computer scientists, essentially McCarthy [14], under-
stood that Church’s ideas could also be at the origin of another organization of
practical computer science; it is the creation of the Lisp programming language,
which is not yet totally ended (see [22]). And because of the very functional na-
ture of Lisp, this language is particularly well designed to create and manipulate

6



function sets, such that the various objects considered in the theorems of this
section.

4 Objects with effective homology.

Definition 5 — A reduction is a 5-tuple (Ĉ, C, f, g, h):

Ĉ
h−→ sĈ

f ↓↑ g

C

where Ĉ and C are chain complexes, f and g are chain complex morphisms, h is
a homotopy operator; sĈ is Ĉ shifted, in other words h has degree 1; these data
must satisfy the following relations:

1) fg = 1C ;
2) fh = 0 ;
3) hg = 0 ;
4) 1Ĉ − gf = hd + dh.

The morphisms f and g and the homotopy operator h describe the (big) chain
complex Ĉ as a direct sum of the (small) chain complex C and an acyclic direct
summand.

Definition 6 — A homotopy equivalence between two chain complexes C and EC
is a pair of reductions:

Ĉ
ρ1 ↙ ↘ ρ2

C EC

If C and EC are free Z-chain complexes, a usual chain equivalence between
them can be organized in this way. Frequently the chain complexes C and Ĉ are
locally effective and on the contrary, the chain complex EC is effective. So that
EC can be understood as a description of the homology of C, more precisely as a
tool allowing one to compute the homology of C. The chain complex Ĉ is only an
intermediate object.

Definition 7 — An object with effective homology is a 4-tuple (X,C, EC, ε)
where:

1) X is an object ;
2) C is the chain complex canonically associated to X ;
3) EC is an effective chain complex ;
4) ε is a homotopy equivalence between C and EC.

7



For example X could be a simplicial set (and C = C∗X), or a group (and
C = C∗(BX)), or even a chain complex (and C = X).

Evidence 8 — An algorithm can be implemented, where the input is an object
with effective homology (X, C,EC, ε) and an integer n, the output being the group
Hn(X).

This algorithm takes the EC component from (X,C, EC, ε), computes the
boundary matrices dn+1 and dn and, normalizing these matrices, computes the
homology group which is looked for. Computing the boundary matrices is possible
because the chain complex EC is effective, in particular of finite type in every
dimension. So thOBat the complex EC simply describes the homology of X (of
C); the proof this description is correct is the homotopy equivalence ε. But, and
this is the case in the interesting situations, the complex C could be highly infinite.

Meta-theorem 9 — Let F be a “reasonable” functor. Then an algorithm FEH

can be implemented such that if OEH = (X,C, EC, ε) is an object with effective
homology where F (X) is defined, then FEH(OEH) = (X ′, C ′, EC ′, ε′) is an object
with effective homology where X ′ = F (X).

An algorithm is “reasonable” if it does not meet the Novikov obstacle, in other
words if some connectivity hypothesis is satisfied. A typical example is Rubio’s
solution to Adam’s problem:

Theorem 10 — An algorithm can be implemented:

OmegaEH : (X,C, EC, h) 7−→ (X ′, C ′, EC ′, ε′)

where X ′ = ΩX is the loop space of X, a simply connected space.

It is important to understand in this statement that it is neither possible to
construct EC ′ from C ′, because C ′ is only locally effective and no global infor-
mation is available from it, nor it is possible to construct EC ′ from EC because
the information in EC is too poor; mainly EC does not contain the coalgebra
structure of C. But combining the whole information available in (X,C, EC, ε), it
is possible to construct EC ′ (and ε′).

Corollary 11 (Solution to Adam’s problem) — An algorithm can be imple-
mented:

IteratedOmegaEH : (n, (X, C,EC, ε)) 7−→ (Xn, Cn, ECn, εn)

where Xn = ΩnX is the n-th loop space of X, an n-connected space.

In fact previous theorem’s algorithm constructs an object with effective homol-
ogy, so that the process can be trivially iterated.

8



5 Perturbation lemma machinery.

The main tool to prove the various instances of the effective homology meta-
theorem is the so-called perturbation lemma which should be better called the
fundamental theorem of homological algebra.

Theorem 12 (Perturbation lemma [19] [5]) — Let ρ = (Ĉ, C, f, g, h) a re-
duction and δ̂ a perturbation of dĈ, that is an operator defined on Ĉ of degree -1

satisfying the relation (dĈ + δ̂)◦ (dĈ + δ̂) = 0. Furthermore, the composite function

h ◦ δ̂ is assumed locally nilpotent, that is, for every x ∈ Ĉ, (h ◦ δ̂)nx = 0 for n
sufficiently large. Then a new reduction ρ′ = (Ĉ ′, C ′, f ′, g′, h′) can be constructed
where:

1) Ĉ ′ is the complex obtained from C replacing the old differential dĈ

by (dĈ + δ̂) ;
2) the new complex C ′ is obtained from the complex C only by adding
to the old differential dC a perturbation δ ;
3) (analogous statements for f ′, g′ and h′).

It is essentially an implicit function theorem. A reduction is a fixed relation set
between several maps; if the differential perturbation is sufficiently small (nilpo-
tency condition), then there is a unique way to modify the other data to keep the
reduction hypotheses. It is important to note that the graded modules Ĉ and C
remain unchanged in the process, only the maps are modified.

6 Rubio’s solution to Adam’s problem.

As a typical example, we roughly describe Rubio’s solution to Adam’s problem
(theorem 10) [17]. It is a tricky assembly of three different applications of the
perturbation lemma. Two of them were already known, the third one, due to
Julio Rubio, completes the process giving the solution to Adam’s problem.

6.1 Step 1: Shih’s theorem.

If X is a simplicial set, Kan defined [12] a simplicial model for the loop space ΩX
of X. He defined too a twisted product X ×τ ΩX playing the role of the usual
contractible path space of X. Applying the Eilenberg-Zilber theorem to the trivial
product X × ΩX gives a reduction ρEZ : C∗(X × ΩX) =⇒ C∗(X) ⊗ C∗(ΩX).
Kan’s twisted product induces a differential perturbation in the top complex of
this reduction, and, applying the perturbation lemma, we get a new reduction
ρSH : C∗(X ×τ ΩX) =⇒ C∗(X) ⊗t C∗(ΩX) where the bottom chain complex is
now a twisted tensor product. This is Shih’s version [19] of Edgar Brown’s twisted
Eilenberg-Zilber theorem [4].

9



Furthermore the space X ×τ ΩX is contractible, and therefore a canonical
reduction ρKM : C∗(X ×τ ΩX) =⇒ Z (KM = Kan-Moore) is defined, and the
pair (ρSH , ρKM) can be considered as the effective homology of C∗(X)⊗t C∗(ΩX).

Theorem 13 — An algorithm can be implemented:

Shih : X 7−→ (C∗(X)⊗t C∗(ΩX), C∗(X)⊗t C∗(ΩX),Z, ε).

where the output is a chain complex with effective homology.

6.2 Step 2: Hirsch’s complex.

If A is a differential graded coalgebra (DGC), B a differential graded left comodule
over A (DGLCM) and C a differential graded right comodule over A (DGRCM),
then the CobarA(B, C) differential bigraded module can be defined, which is the
heart of the Eilenberg-Moore spectral sequence. We will assume A simply con-
nected, that is A0 = Z and A1 = 0. The augmentation ideal A of A is the quotient
A/A0. The (p, q)-component of CobarA(B, C) is (B ⊗ A

p ⊗ C)q. This Cobar has
two differentials, a vertical one dv, which is simply the tensor product of the differ-
entials of the components, and a horizontal one dh coming from the coalgebra and
comodule structures. If we remove the horizontal differential dh, we get a poorer
object which we call PreCobarA(B, C), and the usual CobarA(B, C) is obtained
from the Precobar by perturbation of the differential.

Theorem 14 — An algorithm can be implemented, where the input is a triple
(A, B, C), A a DGCEH (with effective homology), B a DGLCMEH , C a
DGRCMEH , and the output is a differential graded module with effective homology
CobarA(B, C).

Simply stated, the effective homology of A, B and C allows this algorithm to
determine the effective homology of CobarA(B, C). The proof is a simple applica-
tion of the perturbation lemma from Precobar to Cobar. Ronnie Brown observed
[5] that Hirsch’s method to process the Serre spectral sequence [11] is nicely pre-
sented with the help of the perturbation lemma. This organization can be applied
also to the Eilenberg-Moore spectral sequence (see for example [9]) but the situ-
ation is much more intricate, and functional programming theory is necessary to
obtain the statement of the previous theorem.

6.3 Step 3: the missing link.

If A is a differential graded coalgebra, and Z the trivial A-comodule, then it is well
known that CobarA(Z, A) is acyclic. More precisely a reduction

CobarA(Z, A) =⇒ Z

10



is canonically defined. In particular, if X is a simplicial set, and C∗(X) the
canonical DGC associated, we have a reduction:

CobarC∗(X)(Z, C∗(X)) =⇒ Z

Applying the “⊗C∗(ΩX)” functor to this reduction, we obtain a new reduction:

CobarC∗(X)(Z, C∗(X)⊗ C∗(ΩX)) =⇒ C∗(ΩX)

The tensor product in this formula is not twisted. Applying for the third
time the perturbation lemma, we can perturb the differential of the top complex
to replace the non-twisted tensor product by C∗(X) ⊗t C∗(ΩX). In this case, a
careful examination proves the differential of the bottom complex C∗(ΩX) remains
unchanged.

Theorem 15 (Rubio) — An algorithm can be implemented where the input is a
simplicial set X and the output is a reduction:

CobarC∗(X)(Z, C∗(X)⊗t C∗(ΩX)) =⇒ C∗(ΩX)

In the classical treatment of the Eilenberg-Moore spectral sequence [7], filtering
carefully both complexes allows to prove they have the same homology. Here we
(effectively) construct a homotopy equivalence between them.

6.4 Step 4: assembling the puzzle.

Let X be a simply connected simplicial set with effective homology. In other words,
C∗(X) is a chain complex with effective homology. The step 1 has constructed
the effective homology of C∗(X) ⊗t C∗(ΩX). Using the step 2, we can construct
the effective homology of CobarC∗(X)(Z, C∗(X)⊗t C∗(ΩX)). This is essentially a
pair of reductions:

ρ1 : Ĉ =⇒ CobarC∗(X)(Z, C∗(X)⊗t C∗(ΩX))

and
ρ2 : Ĉ =⇒ EC

where Ĉ is some locally effective chain complex and EC is an effective one.

The step 3 gives another reduction:

ρ3 : CobarC∗(X)(Z, C∗(X)⊗t C∗(ΩX)) =⇒ C∗(ΩX).

There is a natural way to compose ρ1 and ρ3 to obtain an other reduction:

ρ4 : Ĉ =⇒ C∗(ΩX).

The pair (ρ4, ρ2) is a homotopy equivalence between C∗(ΩX) and the effective
chain complex EC. This proves the theorem 10.

11



7 A program.

Theorem 10 is not only a theoretical theorem. The algorithm the existence of
which is proved has been actually written and used. It is a 5000 lines Common-
Lisp program which has already given numerous results. As a typical example,
no algorithm was previously known to compute the homology groups of X =
Ω(ΩS3 ∪2 D3) where the 3-disk D3 is glued to the loop-space ΩS3 by a degree 2
map S2 → ΩS3. But using Rubio’s theorem, ΩS3 is a simplicial set with effective
homology; it is very easy to prove ΩS3 ∪2 D3 is also with effective homology
(cone construction) and applying again Rubio’s theorem, a version with effective
homology of X can be constructed. Our program does that and computes in less
than one hour HiX for i ≤ 7. For example:

H5X = Z⊕ Z6
2

H6X = Z13
2 ⊕ Z3

H7X = Z20
2 .

References

[1] David J. Anick. The computation of rational homotopy groups is #P -hard. In
Computers in geometry and topology, Martin Tangora ed., Lecture Notes in
Pure and Applied mathematics, vol. 114; Decker, New-York, 1989.

[2] Billera, Kapranov, Sturmfels. Convex geometry and a conjecture of Baues in
the theory of loop spaces. Preprint.

[3] Edgar H. Brown Jr.. Finite computability of Postnikov complexes. Annals of
Mathematics, 1957, vol. 65, pp 1-20.

[4] Edgar H. Brown Jr.. Twisted tensor products, I. Annals of Mathematics, 1959,
vol. 69, pp 223-246.

[5] Ronnie Brown. The twisted Eilenberg-Zilber theorem. Celebrazioni Arch. Sec-
olo XX, Simp. Top., 1967, pp 34-37.

[6] Bruce R. Donald, David R. Chang. On computing the homology type of a
triangulation. Preprint, Computer Science Department, Cornell University.

[7] Samuel Eilenberg, John C. Moore. Homology and fibrations, I. Coalgebras,
cotensor product and its derived functors. Commentarii Mathematici Hel-
vetici, 1966, vol. 40, pp 199-236.

[8] Michael R. Garey, David S. Johnson. Computers and intractability, a guide
to the theory of NP -completeness. W. H. Freeman and Company, New-York,
1979.

12



[9] V.K.A.M. Gugenheim. On a perturbation theory for the homology of the loop
space. Journal of Pure and Applied Algebra, 1982, vol. 25, pp 197-205.

[10] Stephen Halperin, Bernie Macchiusi. Bigrade program. Toronto University.

[11] G. Hirsch. Sur les groupes d’homologie des espaces fibrés. Bulletin de la Société
Mathématique de Belgique, 1954, vol. 6, pp 79-96.

[12] Daniel M. Kan. A combinatorial definition of homotopy groups. Commentarii
Mathematici Helvetici, 1958, vol. 67, pp 282-312.

[13] John McCleary. User’s guide to spectral sequences. Publish or Perish, Wilm-
ington DE, 1985.

[14] J. McCarthy. A basis for a mathematical theory of computation. In Computer
programming and formal systems, North Holland, 1963.

[15] Michael O. Rabin. Recursive unsolvability of group theoretic problems. Annals
of Mathematics, 1957, vol. 67, pp 172-194.

[16] Julio Rubio, Francis Sergeraert. A program computing the homology groups of
loop spaces. SIGSAM Bulletin, 1991, vol. 25, pp 20-24.

[17] Julio Rubio Garcia. Un algorithme de calcul de l’homologie des espaces de
lacets itérés. A parâıtre.

[18] Rolf Schön. Effective algebraic topology. Memoirs of the American Mathemat-
ical Society, 1991, vol. 451.

[19] Weishu Shih. Homologie des espaces fibrés. Publications Mathématiques de
l’Institut des Hautes Etudes Scientifiques, 1962, vol. 13.

[20] Dennis Sullivan. Infinitesimal calculations in topology. Publi-
cations Mathématiques de l’Institut des Hautes Etudes Scientifiques, 1977,
vol. 47, pp 269-331.

[21] V.A. Smirnov. On the chain complex of an iterated loop space. Mathematics
of the USSR, Izvestiya,1990, vol. 35, pp 445-455.

[22] Guy L. Steele Jr.. Common Lisp, the language. Digital Press, 1990.

13


