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Abstract

We present an algorithm for computing [X, Y], i.e., all homotopy classes of continuous
maps X — Y, where X,Y are topological spaces given as finite simplicial complexes, Y is
(d — 1)-connected for some d > 2 (for example, Y can be the d-dimensional sphere S%), and
dim X < 2d—2. These conditions on X, Y guarantee that [X, Y] has a natural structure of a
finitely generated Abelian group, and the algorithm finds generators and relations for it. We
combine several tools and ideas from homotopy theory (such as Postnikov systems, simplicial
sets, and obstruction theory) with algorithmic tools from effective algebraic topology (objects
with effective homology).

We hope that a further extension of the methods developed here will yield an algorithm
for computing, in some cases of interest, the Zs-indez, which is a quantity playing a promi-
nent role in Borsuk—Ulam style applications of topology in combinatorics and geometry,
e.g., in topological lower bounds for the chromatic number of a graph. In a certain range of
dimensions, deciding the embeddability of a simplicial complex into R? also amounts to a
Zio-index computation. This is the main motivation of our work.

We believe that investigating the computational complexity of questions in homotopy
theory and similar areas presents a fascinating research area, and we hope that our work may
help bridge the cultural gap between algebraic topology and theoretical computer science.
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1 Introduction

The problem. One of the central themes in algebraic topology is understanding the structure
of all continuous maps X — Y, for given topological spaces X and Y (all maps between
topological spaces in this paper are assumed to be continuous). For topological purposes, two
maps f,g: X — Y are usually considered equivalent if they are homotopic, i.e., if one can
be continuously deformed into the other!; thus, the object of interest is [X, Y], the set of all
homotopy classes of maps X — Y.

Many of the celebrated results throughout the history of topology can be cast as information
about [X,Y] for particular spaces X and Y. An early example is a famous theorem of Hopf
from the 1930s, asserting that the homotopy class of a map f: S™ — S™, between two spheres
of the same dimension, is in one-to-one correspondence with an integer parameter, the degree
of f. Another great discovery of Hopf, with ramifications in modern physics and elsewhere, was
amap S® — S2, now called by his name, that is not homotopic to a constant map.

These are early results in the theory of higher homotopy groups. For our purposes, the
kth homotopy group m(Y), k > 2, of a space Y can be thought of as the set [S*, Y] (which
is, moreover, equipped with a suitable group operation).? In particular, the homotopy groups
of spheres m,(S™) are among the most puzzling objects of mathematics, and many respected
papers have been devoted to computing them in special cases (see, e.g., the book [14]).

Related to the problem of determining [X,Y] is the extension problem: given A C X and
amap f: A — Y, can it be extended to a map X — Y? For example, the famous Brouwer
fized-point theorem can be re-stated as non-extendability of the identity map S™ — S™ to the
ball D"*1. A number of topological concepts, which may look quite advanced and esoteric to a
newcomer in algebraic topology, e.g. Steenrod squares, have a natural motivation in an attempt
at a stepwise solution of the extension problem.

Earlier developments around the extension problems are described in Steenrod’s paper [27],
which we can recommend, for readers with a moderate topological background, as an exception-
ally clear and accessible, albeit somewhat outdated, introduction to this area. In that paper,
Steenrod asks for an effective procedure for (some aspects of) the extension problem.

There has been an enormous amount of work in homotopy theory since the 1960s, with a
wealth of new concepts and results, some of them opening completely new areas or reaching to
distant branches of mathematics. However, as far as we could find out, the algorithmic part of
the program discussed in [27] has not been explicitly completed up until now.

The only algorithmic paper concerning the computation of [X, Y] we are aware of is that by
Brown [2] from 1957(!). Brown showed that [X, Y] is computable under the assumption that Y
is 1-connected® and all the higher homotopy groups 7(Y), 2 < k < dim X, are finite (this is
a rather strong assumption, not satisfied by spheres, for example). Then he went on to show
the computability of the higher homotopy groups m(Y'), k > 2, for every 1-connected Y. To do
this, he overcame the problem of infinite homotopy groups (which we will discuss below) by a
somewhat ad-hoc method, which does not seem to generalize to the [X, Y] setting.

On the negative side, it is well known that the problem of computing [X, Y], in full generality,
is algorithmically unsolvable. Indeed, for Y connected, [S!, Y] is nontrivial exactly if 71 (Y") # 0,
where 71 (Y) is the fundamental group of Y, and the undecidability of 7 (Y") # 0 is a celebrated
result of Adjan and of Rabin (see, e.g., the survey by Soare [24]). Actually, this is the only

"More precisely, f and g are defined to be homotopic, in symbols f ~ g, if there is a continuous F': X x [0, 1] —
Y such that F(-,0) = f and F(-,1) = g. With this notation, [X,Y] = {[f]: f: X — Y}, where [f]={g:9~ f}
is the homotopy class of f.

2Strictly speaking, the isomorphism 7y (V) = [Sk,Y] needs mild assumptions on Y; e.g., it holds if Y is a
path-connected CW-complex.

3A k-connected space Y is one whose first k homotopy groups vanish; in other words, every map S° — Y can
be extended to D!, the ball bounded by the S%, 0 < i < k.
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hardness result known to us.* For undecidability results concerning numerous more loosely

related problems we refer to [24], [13], [12] and references therein.

Effective algebraic topology. In the 1990s, three independent collections of works appeared
with the goal of making various more advanced methods of algebraic topology effective (algo-
rithmic): by Schén [20], by Smith [23], and by Rubio, Sergeraert, Dousson, and Romero (e.g.,
[21, 16, 15, 17]; also see [19] for an exposition). These obtain general computability results, and
in the case of Rubio et al., a practical implementation as well, but none of them provides any
running time bounds.

Roughly speaking, Rubio et al. provide algorithms that can construct basic topological
spaces, such as finite simplicial complexes or Eilenberg—MacLane spaces (discussed below), and
then obtain new spaces from them by various operations, e.g., the Cartesian product, the
loop space and the bar construction, the total space of a fibration, etc. These objects and
constructions are often of infinitary nature, which means that the resulting spaces have to be
represented in a certain implicit manner. Yet one can compute homology and cohomology groups
(of given dimensions) of the resulting objects; one speaks of objects with effective homology.

The problem of computing [X,Y] and the extension problem were not addressed in those
papers, but we build on them to some extent, relying on objects with effective homology for
implementing certain operations in our algorithm.

Our work. We are generally interested in the computational complexity of the problem of
computing [X,Y]. We assume that X and Y are given as finite simplicial complexes (or, more
generally, simplicial sets with finitely many nondegenerate simplices, as discussed below).

We would like to find, on the one hand, sufficient conditions on X and Y, as weak as pos-
sible, making the problem decidable, or even polynomial-time solvable, and on the other hand,
interesting settings where the problem can be proved algorithmically intractable (undecidable
or NP-hard, say). We also believe that similar methods may bring results for the extension
problem and for other related questions.

Here we prove the following positive result:

Theorem 1.1. Letd > 2. Assuming thatY = S? or, more generally, thatY is (d—1)-connected,
and that dim X < 2d — 2, the set [X,Y] is computable, in the following sense: It is known that,
under the above conditions on X and Y, [X,Y] can be naturally endowed with a structure of
a (finitely generated) Abelian group, in an essentially unique way. The algorithm computes the
structure of this group (i.e., expresses it as a direct product of cyclic groups). Moreover, given
two simplicial maps f,g: X — Y, it can be decided whether they are homotopic.

We establish Theorem 1.1 mainly by combining ideas and tools that have been essentially
known. We see our main contribution as that of synthesis: identifying suitable methods, putting
them all together, and organizing the result in a hopefully accessible way, so that it can be
built on in the future. Some technical steps are apparently new; in this direction, our main
technical contribution is probably a suitable implementation of the group operation on [X,Y]
and recursive testing of nullhomotopy.

Applications, motivation. We consider the fundamental nature of the algorithmic problem
of computing [X, Y] a sufficient motivation of our research (e.g., because [X, Y] is indeed one of
the most basic objects of study in algebraic topology). However, we also believe that work in
this area will bring various connections and applications, also in other fields, possibly including
practically usable software, e.g., for aiding research in topology.

4There is a also result of Anick [1] on #P-hardness of computing the higher homotopy groups. However, the
way he presents it, it is not immediately relevant for spaces given as simplicial complexes, since his reduction uses
a very compact representation of the input space—roughly speaking, he needs to encode degrees of attaching
maps as binary integers. Perhaps with some more work one could also use his method to show hardness of
computing 7, (Y') for Y given as a simplicial complex, say.



A nice concrete application comes from the paper by Franek et al. [5]. They provide an
algorithm testing if a given system of equations involving analytic functions has a “robust
zero” , and in order to extend their result to more general situations, they ask for an algorithm
testing nullhomotopy (i.e., homotopy to a constant map) of a map into S%. Our Theorem 1.1
provides such an algorithm in a certain range of dimensions.

Our motivation for starting this project was the computation of the Zs-index (or genus)
ind(X) of a Zo-space® X, i.e., the smallest d such that X can be equivariantly mapped into S¢.
We hope that by extending the methods of the present paper, one can obtain an algorithm for
deciding whether ind(X) < d, provided that dim(X) < 2d — 2.

The problem of computing ind(X) arises, among others, in the problem of embeddability of
topological spaces, which is a classical and much studied area (see, e.g., the survey by Skopenkov
[22]). One of the basic questions here is, given a k-dimensional finite simplicial complex K, can
it be (topologically) embedded in R?? The celebrated Haefliger- Weber theorem from the 1960s
asserts that, in the metastable range of dimensions, i.e., for k < %d — 1, embeddability is
equivalent to ind(K%) < d— 1, where K3 is a certain Zg-space constructed from K (the deleted
product). Thus, in this range, the embedding problem is, computationally, a special case of
Zy-index computation; see [10] for a study of algorithmic aspects of the embedding problem,
where the metastable range was left as one of the main open problems.

The Zo-index also appears as a fundamental quantity in combinatorial applications of topol-
ogy. For example, the celebrated result of Lovdsz on Kneser’s conjecture can nowadays be re-
stated as x(G) > ind(B(G))+2, where x(G) is the chromatic number of a graph G, and B(G) is
a certain simplicial complex constructed from G (see, e.g., [9]). We find it striking that nothing
seems to be known about the computability of such an interesting quantity as ind(B(G)).

Further work. Besides the problem of adapting the machinery behind Theorem 1.1 to the
equivariant setting, or to the setting of the extension problem, there are number of other open
questions related to our work.

Polynomiality. At present we do not state any bounds on the running time of the algorithm.
A critical part for the running time are subroutines for building a Postnikov system of Y and
evaluating Postnikov classes. For this, one can use algorithms sketched in [18, 17] (which we
intend to present in more detail in a companion paper), but these appear to be at least expo-
nential. More precisely, we believe that all of the steps in these algorithms are polynomial for
fized dimension, with the single exception of an effective homology reduction for the simplicial
Eilenberg-MacLane space K(Z,1) (see, e.g., [19] for these notions; some of them are also dis-
cussed later in the present paper). This is a very concrete algorithmic problem, although too
technical to be stated here explicitly. Of course, all of the remaining steps in the algorithm have
to be analyzed carefully as well, but the hoped-for outcome should be, in the setting of Theo-
rem 1.1, a running time polynomial in the size of X and Y for every fized d (on the other hand,
we consider polynomial dependence on d highly unlikely—for example, because Theorem 1.1
includes the computation of the stable homotopy groups mg,1(S%), k < d — 2; these are unlikely
to be easily computable, in view of their notorious mathematical difficulty).

Hardness? We suspect that once the assumptions in Theorem 1.1 are weakened, the problem
of deciding, say, nontriviality of [X,Y] may become intractable. This is, in our opinion, one of
the most interesting open problems related to our work.

General remarks.  Algorithmic or computational topology has been a blooming discipline
in recent years (see, e.g., [3, 28]). Our work addresses issues different from those investigated
in the current mainstream of this field. We study homotopic questions, generally regarded as
much less tractable than, e.g., homology computations.

5A Zs-space is a topological space X with an action of the group Zs; the action is described by a homeomor-
phism v: X — X with v ov = idx. A primary example is a sphere S¢ with the antipodal action = — —z. An
equivariant map between Za-spaces is a continuous map that commutes with the Zs actions.



Although such questions have been thoroughly studied from a topological perspective already
in the 1950s and 1960s, we are not aware of any work in this direction in theoretical computer
science, with the perspective of computational complexity. We believe that questions similar to
those studied here offer an exciting field for complexity-theoretic study.

Given the number of topological concepts and tools employed in our algorithm, we cannot
present much of the technical contents in a short talk or in a ten-page abstract, at least without
assuming a substantial topological background. We hope to convey the message that there is
an interesting area on the borderline of computer science and topology, and motivate readers
to reach for the full version of this paper (where we aim at general accessibility) and additional
sources.

An outline of the methods. In the rest of this section, we sketch the main ideas and tools
in the algorithm. Some topological notions are left undefined here; we will introduce them later.

Conceptually, the basis of the algorithm is classical obstruction theory [4]. For a first en-
counter, it is probably easier to consider a version of obstruction theory which proceeds by
constructing maps X — Y inductively on the i-dimensional skeleta® of X, extending them one
dimension at a time. (For the actual development, we use a different version of obstruction
theory, where we lift maps from X through stages of a Postnikov system of Y".)

In a nutshell, at each stage, the extendability of a map from the i-skeleton to the (i + 1)-
skeleton is characterized by vanishing of a certain obstruction, which can, more or less by known
techniques, be evaluated algorithmically.

Textbook expositions may give the impression that obstruction theory is a general algorith-
mic tool for testing the extendability of maps. However, the extension at each step is generally
not unique, and extendability at higher stages may depend, in a nontrivial way, on the choices
made earlier. Thus, in principle, one needs to search an infinitely branching tree of extensions.”
In our setting, we make essential use of the group structure on the sets [X,Y] (mentioned in
Theorem 1.1), as well as on some related ones, for a finite encoding of the set of all possible
extensions at a given stage.

The description of our algorithm has several levels. On the top level, we talk about oper-
ations on Abelian groups, whose elements are homotopy classes of maps (and we need to be
careful in distinguishing “how explicitly” the relevant groups are available to us). On a lower
level, the group operation and other primitives are implemented by computations with concrete
representatives of the homotopy classes; interestingly, on the level of the representatives, the
operations are generally non-associative.

The space Y enters the computation in the form of a Postnikov system. This is a topological
concept from the 1950s (usually considered unsuitable for concrete computations by topologists;
see, e.g., [8]); roughly speaking, it provides a way of building Y from “canonical pieces”, called
Eilenberg—MacLane spaces, whose homotopy structure is the simplest possible, although they
are not that simple combinatorially.

Our main data objects are simplicial sets, an ingenious generalization of simplicial complexes.
They are suitable for algorithmic representation of Eilenberg—Mac Lane spaces and other infinite
objects in the algorithm. The stages P; of the Postnikov system are built as simplicial sets in
such a way that every continuous map X — P; is homotopic to a simplicial map. The proof
of Theorem 1.1 will rely on two facts: that for dim X < 2d — 2, there is an isomorphism
[X,Y] = [X, Pyy_o], and that we can compute [X, P;] inductively for i < 2d — 2.

Then, due to the properties of the Eilenberg—MacLane spaces, simplicial maps into F; can
be compactly represented by certain sequences of cochains on X. Concretely, a map appears in
the algorithm as a labeling of the simplices of X by elements of various Abelian groups.

An important component of the algorithm are subroutines, not treated in detail in this

5The k-skeleton of a simplicial complex X consists of all simplices of X of dimension at most k.
"Brown’s result mentioned earlier, on computing [X,Y] with the 7 (Y")’s finite, is based on a complete search
of this tree, where the assumptions on Y guarantee the branching to be finite.



paper, for evaluating k;’s, the ith Postnikov classes of Y, d < i < 2d — 2. The input to k; is
represented as a simplex with faces labeled by elements of appropriate Abelian groups, and the
output lies in yet another Abelian group.

For Y fixed, these subroutines can be hard-wired once and for all. In some particular
cases, they are given by known explicit formulas. In particular, for Y = S%, ky corresponds
to the famous Steenrod square [26, 27], and kgy1 to Adem’s secondary cohomology operation.®
However, in the general case, the only way of evaluating the k; we are aware of is using objects

with effective homology mentioned earlier.

2 Operations with Abelian groups

On the top level, our algorithm works with finitely generated Abelian groups. In our setting,
an Abelian group A is represented by a set A, whose elements are called representatives; we
also assume that the representatives can be stored in a computer. For a € A, let [a] denote
the element of A represented by a. The representation is generally non-unique; we may have
o] = 8] for a # B.

We call A represented in this way semi-effective if algorithms for the following three tasks are
available: provide an element o € A with [0o] = 0 (the neutral element); given «, § € A, compute
v € Awith [y] = [a]+][5]; given a € A, compute § € A with [5] = —[a]. We call a semi-effective
Abelian group A fully effective if the following are explicitly available: a finite list of generators
ai,...,a of A (given by representatives) and their orders q1,...,q € {2,3,...} U{oo} (so that
each a; generates a cyclic subgroup of A of order ¢;, © = 1,2,...,k, and A is the direct sum
of these subgroups); and an algorithm that, given o € A, computes integers z1,. .., 25 so that
o] = 0, zia;.

Let X,Y be sets. We call a mapping ¢: X — Y locally effective if there is an algorithm
that, given an arbitrary x € X, computes p(x). For semi-effective Abelian groups A, B, with
sets A, B of representatives, respectively, we call a mapping f: A — B locally effective if there
is a locally effective mapping ¢: A — B such that [¢p(a)] = f([a]) for all a € A. In particular,
we speak of a locally effective homomorphism if f is a group homomorphism.

The proofs of the following three lemmas are not difficult (given an algorithm for computing
the Smith normal form of an integer matrix) and are omitted from this extended abstract.

Lemma 2.1 (Kernel). Let f: A — B be a locally effective homomorphism of fully effective
Abelian groups. Then ker(f) ={a € A: f(a) =0} can be represented as fully effective.

Lemma 2.2 (Cokernel). Let A, B be fully effective Abelian groups with sets of representatives
A, B, respectively, and let f: A — B be a locally effective homomorphism. Then we can obtain
a fully effective representation of the factor group C := coker(f) = B/im(f), again with the set
B of representatives. Moreover, there is an algorithm that, given a representative 8 € B, tests
whether 3 represents 0 in C, and if yes, returns a representative o € A such that [f(a)] = [0]
in B.

Lemma 2.3 (Short exact sequence). Let A, B,C be Abelian groups, with A,C fully effective
and B semi-effective, and let f: A — B and g: B — C be locally effective homomorphisms such
that f is injective, g is surjective, and im f = ker g (in other words, 0 — A 4, B4 C—0is
a short exact sequence). Assume, moreover, that the following locally effective maps are given:
r: im f = kerg — A such that f(r(b)) = b for every b € B with g(b) =0; and : C — B (where
B,C are the sets of representatives for B,C, respectively) that behaves like a section for g, i.e.,
such that g([£(7)]) = [7] for all v € C. Then we can obtain a fully effective representation of B.

8Tt is worth remarking that the k;’s represent a “nonlinear part” of the algorithm, which otherwise, on the
bottom level, deals mostly with solving systems of linear Diophantine equations. For example, a Steenrod square
can be thought of as a quadratic form.



3 Topological preliminaries

Here we briefly summarize the main topological notions and tools from the literature.

Simplicial sets. A simplicial set can be thought of as a generalization of simplicial complexes.
Similar to a simplicial complex, a simplicial set is a space built of vertices, edges, triangles,
and higher-dimensional simplices, but simplices are allowed to be glued to each other and to
themselves in more general ways. For example, one may have several 1-dimensional simplices
connecting the same pair of vertices, a 1l-simplex forming a loop, two edges of a 2-simplex
identified to create a cone, or the boundary of a 2-simplex all contracted to a single vertex,

forming an S2.

However, unlike for the still more general CW-complexes, a simplicial set can be described
purely combinatorially. Another new feature of a simplicial set, in comparison with a simplicial
complex, is the presence of degenerate simplices. For example, the edges of the triangle with
a contracted boundary (in the last example above) do not disappear—formally, each of them
keeps a phantom-like existence of a degenerate 1-simplex.

A simplicial set X is represented as a sequence (X, X1, Xo,...) of mutually disjoint sets,
where the elements of X, are called the m-simplices of X. Moreover, for every m, there
are maps Jg,...,0m: X;m — X1 (the face operators) and sg,...,sm: Xpm — X1 (the
degeneracy operators); they have to satisfy natural axioms, which we won’t need explicitly.

We let |X| denote the geometric realization of a simplicial set X (this is the topological
space described by X, generalizing the polyhedron of a simplicial complex). The cone CX is
obtained from X by adding a new vertex x and erecting a cone with apex * over every simplex
of X, and the suspension SX is constructed from C'X by contracting all of X into a single
vertex. The product X x 'Y of simplicial sets is a simplicial set with |X x Y| = |X| x |Y]; we
have (X X Y ) = X X Yo, m=0,1,2,. ...

A simplicial map s: X — Y of simplicial sets sends every m-simplex of X to an m-simplex
of Y, m=0,1,..., and respects the face and degeneracy operators. We let SMap(X,Y’) stand
for the set of all simplicial maps X — Y. A very important feature in our algorithm is that
the targets of maps are Kan simplicial sets, i.e., simplicial sets Y such that every continuous
map f: |X| — |Y| is homotopic to a simplicial map X — Y. Thus, maps into such a Y have a
discrete representation; the price to pay is that Y has to have infinitely many simplices in some
dimensions of interest, so its computer representation is not straightforward.

In the above, we have omitted many details; for precise definitions we refer to the very
friendly introduction by Friedman [6], or to May [11] as a standard reference.

Eilenberg—MacLane spaces. For an Abelian group 7 and an integer n > 1, an Eilenberg—
MacLane space K (m,n) is a space with 7, (K (7,n)) = m and m;(K(7,n)) = 0 for all i # n. The
circle S' is a K(Z, 1), but otherwise, the K (m,n) are typically infinite-dimensional. For us, it is
important that maps into Eilenberg—MaclLane spaces are simple to describe and to represent:
namely, for every CW-complex X, the set [X, K(m,n)] is in a bijective correspondence with the
cohomology group? H™(X ;7).

9Here are the basic definitions concerning cohomology, which we will need in the sequel: For a simplicial
complex (or set) X and an Abelian group 7, C™(X;7) denotes the group of all n-cochains on X, i.e., labelings
of n-simplices of X by elements of 7. The coboundary operator §: C™(X;m) — C"(X; ) is given by dc(r) =
S (1) ¢(8;7), where T is an (n + 1)-simplex of X. We also need the group Z"(X;n) := ker d of cocycles and
B" (X ;7) :=imé of coboundaries. The nth cohomology group is H™(X; =) := Z"(X;7)/B™(X;n).



We will use K (m,n) represented by a Kan simplicial set. The set of m-simplices is given
by the amazing formula K (7w, n),, := Z"(A™;r), where A™ is the standard m-simplex. Thus,
an m-simplex o can be regarded as a labeling of the n-dimensional faces of A™ by elements of
m; moreover, the labels (with appropriate signs) must add up to 0 on the boundary of every
(n + 1)-face. We also need a related simplicial set E(m,n) with E(m,n),, := C"(A™; ).

For every simplicial set X, SMap(X, K (7, n)) is in a bijective correspondence with Z™(X; ),
and SMap(X, E(m,n)) = C™(X;w). Two maps s1,s2 € SMap(X, K(m,n)) represented by
c1,c2 € Z"(X;m) are homotopic iff ¢; — ¢ € B"(X;m). All of this can be found in [11].

Simplicial Postnikov systems. A Postnikov system for a space Y consists of spaces Py, Py, ...
(the stages), maps p;: P; — P;_1, and maps ¢;: ¥ — P10 The P; can be thought of as
successive stages in a process of building Y (or rather, a space homotopy equivalent to Y)
“layer by layer” from the Eilenberg-MacLane spaces K (m;, 1), where m; := m;(Y).

A key fact for our use of Postnikov systems is that if X is a CW-complex with dim X < i,
then there is a bijection between [X,Y] and [X, P;] (induced by composition with ¢;). Thus,
for computing [X,Y] in Theorem 1.1, it suffices to compute [X, Pyy_o].

In a simplicial Postnikov system, P; is a simplicial subset of the product P;_1 x E; C
Eg x E1 X -+ x E;, where Ej := E(nj,j). We remark that for a (d — 1)-connected Y the stages
Py, ..., Py_1 are trivial, since mg,...,mqy_1 are trivial. We will usually write an m-simplex of
P; as (o,0%), where o € P,_; and o' € C*(A™,7;) is a simplex of E;. The projection map
pi: P, — P;_1 is given by p;(o,0') = 0.

We will also need the Postnikov classes ki—1 € SMap(P;—1, K;+1) (with K; 41 := K(m;,i+1)),
which can also be represented by a cocycle in Z*!(P;_1,7;). They are used to “cut out” P;
from the product P,_1 x E;, as follows: P; := {(o,0') € Pi_1 x E; : ki_1(0) = o'}, where
0: E; — K,y is induced by the coboundary operator.

We also introduce the notation L; := K(m;,4), and \;: L; — P; is the insertion to the last
component, \;(¢?) := (0,0%) € P;. Here 0 = (0,...,0) denotes the zero m-simplex in P*~!,
made of a zero cochain in every component, where m = dim(c?).

A second key fact we need is that the stages P; of the simplicial Postnikov system of a
1-connected Y are Kan simplicial sets (see, e.g., [2]). Thus, for every simplicial set X, there is
a bijection between the set of simplicial maps X — P; modulo simplicial homotopy and the set
of homotopy classes of continuous maps between the geometric realizations. Slightly abusing
notation, we will denote both sets by [X, P;] from now on.

A simplicial Postnikov system as above is locally effective if the homotopy groups m;(Y)
are fully effective and algorithms are available for evaluating the simplicial maps ¢;: Y — PF;
and the cocycles k;_1 € Z" 1 (P;_1,7;). The methods of effective homology, as explained, e.g.,
in [19], combined with the construction of a Postnikov system as given, e.g., in Spanier [25,
Section 8.3] (in particular, Corollary 7 there), lead to the following result.

Theorem 3.1. Let Y be a 1-connected simplicial set that has finitely many nondegenerate
simplices (e.g., as obtained from a finite simplicial complex). Then, for every n, a locally
effective Postnikov system for Y with n stages can be constructed.

Induced maps and cochain representations. A simplicial map s: P — @ of arbitrary sim-
plicial sets induces a map s,: SMap(X, P) — SMap(X, Q) by composition, i.e., by s.(f)(o) =
(s o f)(o) for each simplex ¢ € P. If P and @ are Kan, we also get a well-defined map
[s«]: [X, P] — [X,Q]. Moreover, if X has finitely many nondegenerate simplices and s is locally
effective, then so is s,.

A simplicial map s: X — P, is, in particular, a simplicial map into the product Ey X - - - X E;.
So we have s = (sg, 51,...,5;), where s;: X — E;, and each s; can be represented by a cochain

"These should satisfy certain technical conditions; specifically, for every i, p; o @; = i1, 7;(P:;) = 0 for
j > 1, and ¢; induces isomorphisms 7;(Y) = 7;(P;) for ¢« < 5. However, these will not be explicitly used in this
extended abstract.



¢/ € C9 := CI(X;mj). Thus, s is represented by an (i + 1)-tuple ¢ = (%, ..., %) of cochains,
subject to the conditions k:(j_l)*(co, ..., 7Y = 4¢7, j < i. Our algorithm uses this cochain
representation of simplicial maps s € SMap(X, F;).

4 Defining and implementing the group operation on [X, P}]

We recall that the device that allows us to handle the generally infinite set [X, Y] of homotopy
classes of maps, under the dimension/connectedness assumption of Theorem 1.1, is an Abelian
group structure. We will actually use the group structure on the sets [X, P;], d < i < 2d — 2.
The existence of this group structure follows by standard topological considerations. However,
for algorithmic use, we need the group operations represented by explicit, and locally effective,
binary operations on the representatives, i.e., simplicial maps X — P;.

In the proof of the next proposition (omitted in this extended abstract) we construct such
operations (which, interestingly, are non-associative in general) by induction on i. A key idea,
which allows us to get the local effectivity, is to employ the Eilenberg—Zilber reduction as
presented in [7].

Proposition 4.1. Let Y be a (d—1)-connected simplicial set, d > 2, and let Py, Pyy1, ..., Pog_2
be stages of a locally effective Postnikov system with 2d — 2 stages for Y. Then each P; has an
Abelian H-group structure,' given by locally effective simplicial maps B;: P; x Py — P; and
H,: P, — P;.

In our subsequent use of this proposition, we also need several additional properties of H;,
B;; most notably, that the induced maps [k;]: [X, P;] — [X, Kito] and [pi]: [X, B;] — [X, P;—1]
are homormorphisms. We also omit a precise statement of these additional properties from this
extended abstract.

Once we have the operations H;, H; on P;, by the discussion at the end of Section 3, we
obtain the desired locally effective Abelian group structure on [X, P;] immediately. Specifically,
the group operations on [X, ;] are represented by locally effective maps H;.: SMap(X, P;) x
SMap(X, P;) — SMap(X, P;) and B;,: SMap(X, P;) — SMap(X, P;).

5 The main algorithm

Our main result, Theorem 1.1, is an immediate consequence of the following statement.

Theorem 5.1. Let X be a simplicial set with finitely many nondegenerate simplices, and let Y
be a (d — 1)-connected simplicial set, d > 2, for which a locally effective Postnikov system with
2d — 2 stages Py, ..., Pog_o is available. Then, for everyi=d,d+1,...,2d—2, a fully effective
representation of [X, P;] can be computed, with the cochain representations of simplicial maps
X — P; as representatives.

Unlike in Theorem 1.1, there is no restriction on dim X (the assumption dim X < 2d — 2
in Theorem 1.1 is needed only for the isomorphism [X,Y] = [X, Pog_2]). Also, even if we want
Theorem 1.1 only for a simplicial complex X, we need Theorem 5.1 with simplicial sets X,
because of recursion.

Theorem 5.1 is proved by induction on i. The base case is i = d (since Py,...,P;_1 are
trivial for a (d — 1)-connected Y'), which presents no problem: we have P; = Lg = K(mg,d),
and so [X, P;] = H*(X;m,). This group is fully effective, since it is the cohomology group of

1 An Abelian H-group structure on a CW-complex P with basepoint o is given by continuous maps p: P X
P — P and v: P — P (representing the binary group operation and the group inverse, respectively) such
that u(p,0) = p(o,p) = p, p is homotopy associative (meaning that the maps (p,q,7) — u(p,pu(q,r)) and
(p,q,7) — p(u(p,q),r) are homotopic), homotopy commutative (p is homotopic to (p,q) — wu(q,p)), and v is a
homotopy inverse (p — p(p,v(p)) is nullhomotopic). We have H; in the role of y and H; in the role of v.



a simplicial set with finitely many nondegenerate simplices, with coefficients in a fully effective
group.

So now we consider i > d, and we assume that a fully effective representation of [X, P;_]
is available, where the representatives of the homotopy classes [f] € [X, P,_1] are (cochain
representations of) simplicial maps f: X — P;,_;. We want to obtain a similar representation
for [ X, P;]. We describe this on an intuitive level, and then we formulate the algorithm, leaving
several pages of a correctness proof for the full version.

Every map g € SMap(X, P;) yields a map f = pix(g9) = piog € SMap(X,P,_1) by
projection (forgetting the last coordinate in P;). We first ask the question of which maps
f € SMap(X, P,_1) are obtained as such projections; this is traditionally called the lifting prob-
lem (and g is called a lift of f). Here the answer follows easily from the properties of the
Postnikov system: the liftable maps in [X, P;_;]| are obtained as the kernel of the homomor-
phism [k(i—l)*] induced by the Postnikov class. This is very similar to the one-step extension in
the setting of obstruction theory, as was mentioned in the introduction.

Next, a single map f € SMap(X, P,_1) may in general have many lifts g, and we need to
describe their structure. This is reasonably straightforward to do on the level of simplicial
maps. Namely, if ¢ = (c,...,¢"!) is the cochain representation of f and g is a fixed lift of
f, with cochain representation (c,c), then it turns out that all possible lifts g of f are of the
form (again in the cochain representation) (c,c} + 2%), 2* € Z/(X, ;) = SMap(X, L;). Thus, all
of these lifts have a simple “coset structure”.

This allows us to compute a list of generators of [ X, P;]. We also need to find all relations of
these generators, and for this, we need to be able to test whether two maps g1, g2 € SMap(X, P;)
are homotopic. Using the group structure, it suffices to test whether a given g € SMap(X, P;)
is nullhomotopic. An obvious necessary condition for this is nullhomotopy of the projection
f = p; o g, which we test recursively. Then, if f ~ 0, we H;.-add a suitable nullhomotopic map
to g, and this reduces the nullhomotopy test to the case where g has a cochain representation
of the form (0, 2°), 2; € Z4(X, m;) = SMap(X, L;).

Now (0,2%) can be nullhomotopic, as a map X — P;, by an “obvious” nullhomotopy,
namely, one “moving” only the last coordinate, or in other words, induced by a nullhomo-
topy in SMap(X, L;). But there may also be “less obvious” nullhomotopies, and it turns out
that these correspond to maps SX — P;_1. Thus, in order to be able to test homotopy of maps
X — P;, we also need to compute [SX, P;_1] recursively.

The exact sequence. We will organize the computation of [X, P;] using an ezact sequence,
a basic tool in algebraic topology and many other branches of mathematics. It goes as follows:

[Nis] [Pix]

‘ k i—1)%
5, Py) 2 (x pg el x gy el (x g e,

(X, Kit1]. (1)

This is a sequence of Abelian groups and homomorphisms of these groups, and exactness means
that the image of each of the homomorphisms equals the kernel of the successive one.!?

Here, for example, k(;_1), is the mapping SMap(X, P;—1) — SMap(X, K;1) induced by the
Postnikov class k; 1, and [k(;_1)] is its (simplicial) homotopy class. The only symbol we haven’t
yet encountered is the map p;: SMap(SX, P;,_1) — SMap(X, L;), which works as follows: given
an F' € SMap(SX, P;_1), we compose it with k;_1, which yields k;—1 o FF € SMap(SX, K;11)
represented by a cocycle in Z¢*1(SX; ;). We then re-interpret this cocycle!? as a cocycle in
Z4(X; ;) representing a map in SMap(X, L;), which we declare to be y;(F).

The algorithm for computing [X, P;] goes as follows.

12WWe remark that the exact sequence (1) can be obtained from the so-called fibration sequence in topology.
However, since we need all the maps locally effective and also “effective inverses” for some of them, we actually
provide (in the full version) a direct, elementary proof of the exactness.

13Here we use the fact that there is an obvious bijective correspondence between C***(SX; ;) and C*(X; ),
which is compatible with the coboundary operators (up to signs).



1. Compute [X, P;_;] fully effective, recursively.

2. Compute N;—1 := ker [k;_1)«] € [X, Pi—1] (so N;_1 consists of all homotopy classes of
liftable maps), fully effective, using Lemma 2.1 and Theorem 3.1.

3. Compute [SX, P,_1] fully effective, recursively.

4. Compute the factor group M; := coker [u;] = [X,L;]/im [y;] using Lemma 2.2, fully
effective and including the possibility of computing “witnesses for 0” as in the lemma.

5. The exact sequence (1) can now be transformed to 0 — M; &, (X, P;] Ipidd, -1 — 0

(where ¢; is induced by exactly the same mapping A;. of representatives as [\;] in the
original exact sequence (1)). Let Nj_; := {f € SMap(X, Pi_1) : [ku_1)«(f)] = 0} be
the set of representatives of elements in N;_;. Implement a locally effective “section”
& Ni—1 — SMap(X, P;) with [p;x 0&;] = id and a locally effective “inverse” r;: im [A] —
M; with £;0r; = id, as in Lemma 2.3, and compute [X, P;] fully effective using that lemma.

The maps &; and r; and recursive nullhomotopy testing. We now outline the imple-
mentation of the maps & and 7;, omitting the details and proofs.

The map & is easy to define. A map ¢ € SMap(X, P,_1) (from now on, we don’t distinguish
between simplicial maps and their cochain representatives) has a lift iff [k;_1).(c)] = 0, or in
other words, iff there is a “witness” cochain ¢ with k;_;),(c) = dc¢'. If this holds, we can
compute'? such a ¢ and set &;(c) := (c,c!) This involves some arbitrary choice, but if we fix
some (arbitrary) rule for choosing ¢, we obtain a locally effective &; as needed.

As for r;, we need an algorithm that evaluates a map p; representing r; on the level of
simplicial maps. The input is a map (c, ¢') € SMap(X, P;) with a guarantee that (c,c’) ~ (0, z°)
for some 2* € SMap(X, L;), and the goal is to compute some such 2.

We use the (easy) fact that each nullhomotopy of a map f: X — Y, for an arbitrary
space Y, can equivalently be regarded as a map CX — Y extending f (and, if Y is a Kan
simplicial set, this also works on the simplicial level). In our case, the assumption (c,c!) ~
(0, z%) implies ¢ ~ 0, and the main step in evaluating p; is the computation of a simplicial
nullhomotopy b € SMap(CX, P;_1) for c. Having such a b, we compute an arbitrary lifting
(b,b;) € SMap(CX, P;) of b (since CX is contractible, all maps in SMap(CX, P;_1) are liftable),
and return 2% := ¢’ — (b’|x) as the desired value of p;(c,c).

It remains to provide an algorithm NullHom, which takes as input a ¢ € SMap(X, P;) with
¢ ~ 0 and returns a nullhomotopy b € SMap(CX, P;) for it. In the above computation of p;,
NullHom is invoked with ¢ — 1 instead of i.

NullHom works as follows: It recursively computes a nullhomotopy by € SMap(CX, P;_)
for pi«(c) € SMap(X, P,_1), obtains an arbitrary lifting (b, b)) € SMap(C X, ;) for it, and sets
2t = ¢* — (bh|x). Then it uses the representation of M; (coming from Lemma 2.2) to find a
“witness for [2!] = 0 in M;”. Concretely, it obtains a map F' € SMap(SX, P;_1) with [2/] = [#],
where 2* = y;(F). Finally, NullHom computes a nullhomotopy for 2! — ¢ in SMap(CX, L;), and
combines it with (b, b§) and with the map CX — P,_; corresponding to F. This yields the
desired nullhomotopy for c. We refer to the full version for the details.

Having made p; locally effective, we can implement Step 5 of the main algorithm. This
completes the outline of the proof of Theorem 5.1.

Acknowledgments. We would like to thank Martin Tancer for useful conversations at early
stages of this research, and Peter Landweber for numerous useful comments concerning an
earlier version of this paper.

14Here we use that the cochain groups and coboundary operators of X with coefficients in 7; are fully effective.
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