
About the Kannan–Bachem algorithm

Francis Sergeraert

July 2022

The devil is in the details

Abstract

The Smith reduction is a basic tool when analyzing integer matrices up to
equivalence, and the Kannan-Bachem (KB) algorithm is the first polynomial
algorithm computing such a reduction. Using this algorithm in complicated
situations where the rank of the studied matrix is not maximal revealed an
unexpected obstacle in the algorithm. This difficulty is described, analyzed,
a simple solution is given to overcome it, finally leading to a general orga-
nization of the KB algorithm, simpler than the original one, efficient and
having a general scope.

An equivalent algorithm is used by the Magma program, without any
detailed explanation, without any reference. The present text could so be
useful.

1 Introduction.

The Smith reduction of an n×m integer matrix d : Zm → Zn is a diagonal
matrix s : Zm → Zn satisfying the following conditions:

� The matrices s and d are equivalent, that is, there exist two invertible
matrices u : Zm → Zm and v : Zn → Zn with s = vdu.

� The non-null entries d1, . . . , dk of the s-diagonal are positive and satisfy
the divisor condition: every entry di divides the next one di+1; in
particular the last one dk divides the possible 0 in position k + 1 on
the diagonal if the rank k is less than m and n.

The Smith reduction of integer matrices is used in many domains, in
particular intensively used in computational Algebraic Topology. Calculat-
ing a homology group often consists in determining two boundary integer
matrices d and d′ satisfying d′d = 0 and the looked-for homology group is
the quotient ker d′/ im d. Then the Smith reductions of the matrices d and d′

directly give the corresponding homology group.
In Constructive Algebraic Topology [12], sophisticated computations of-

ten needing several weeks or months of runtime on powerful computers fi-
nally produce such matrices d and d′, the corresponding homology group

1

ker d′/ im d being some homology or homotopy group unreachable by other
means.

Recently, such a calculation produced an integer matrix T8 of size 684×
1995 and a matrix T9 of size 1995× 5796 with T8T9 = 0, the final hoped-for
result being the homology group kerT8/ imT9. A careful implementation of
the KB algorithm was available in our environment, giving for example the
Smith reduction of T8 in 4 seconds. But the same algorithm used for T9
failed. After a few days of runtime without any output, it was obvious a
devil was hidden somewhere.

It is well known that the first naive algorithms computing the Smith
reductions very quickly generate huge intermediate integers with thousands
of digits, often making it impossible for the calculation to terminate in
reasonable time.

The Smith reduction consists in using elementary operations on the
studied matrix, without changing its equivalence class, to cancel the non-
diagonal entries of the matrix. Kannan and Bachem in their article [8]
showed how a careful and simple organization of the order of the entries
to be cancelled gives a polynomial algorithm, avoiding the combinatorial
explosion of the naive methods.

The Hermite and Smith reductions in [8] are obtained only for square
invertible matrices, but obvious adaptations extend the scope of the KB
algorithm to the most general situation, for rectangular matrices of arbitrary
rank.

A careful tracing of our implementation of the KB algorithm, detailed in
this text, revealed in fact the devil was hidden in these “obvious” adaptations
to extend the KB organisation of [8] from the square non-singular case to
arbitrary matrices, rectangular and arbitrary rank.

Once this point is identified, it is easy (obvious!) to add a small comple-
ment in the organization of the “generalized” KB algorithm to dramatically
improve our implementation in the general case. For example for our ma-
trix T9, then the result is obtained in a few minutes.

Two symmetric Hermite reductions are defined. For a square matrix, let
us call HNF-1 the column-style reduction giving a lower triangular matrix,
and HNF-2 the row-style reduction giving an upper triangular matrix. In
the original KB algorithm for the Smith reduction, the HNF-1 reduction
was privileged, with a sort of minimal potion of HNF-2. It happens the gap
in our first erroneous generalization of the KB algorithm was fixed thanks
to an extra dose of HNF-2.

This relatively complicated mixture of HNF-1 and HNF-2 gives another
idea. Starting with a rectangular matrix M0 of arbitrary rank, the HNF-1
reduction produces a first matrix M1, lower triangular above a rectangle.
Now let us simply apply the HNF-2 reduction to M1, this produces a ma-
trix M2, upper triangular. Experience shows it is in general much more
“reduced” than M1. Why not continue this game? We apply now HNF-1
to the last matrix M2, obtaining M3, and so on. We prove that this process
converges toward a diagonal matrix immediately giving the Smith reduction.
The same proof like in [8] establishes this version of the KB algorithm is also
polynomial, and experience shows after applying this method to numerous
examples that it is the fastest one. Furthermore programming this version

2

is very simple. Allowing easy extensions to other situations, for example for
matrices of polynomials.

This organization of the KB algorithm does not use any modular tech-
nology, it uses only left and right multiplications by unimodular matrices,
mainly some appropriate Bézout matrices, so that if the matrices u and v
satisfying s = vdu are desired, they can be easily determined along this ver-
sion of the KB algorithm, like in the original KB algorithm. Cf in [5, Section
IV-2] the complementary calculations which are necessary if the Smith form
has been obtained via modular reduction. Along the same lines, see the
article [7] how the research of the right modulus can be sophisticated, even
in favorable situations, in case of small valence, which cannot be applied
here. See also the comments of the author after [4, Algorithm 2.4.8].

This point is important in constructive homology, when an explicit Z-
cycle is required for some homology class, the very basis of constructive
Algebraic Topology, see Section 4.4.

About our “numerous” examples, an error would consist in testing the
various versions of the algorithm with banal random matrices. Such ma-
trices are generally too simple with respect to the possible difficulties. The
same for the matrices coming from elementary contexts in algebraic topol-
ogy, typically the homology groups of simplicial complexes; even when these
matrices are geant, the Smith reduction of these matrices is easy. Our diffi-
cult matrix T9 was the result of a sophisticated work in Algebraic Topology,
explained in the text, and was not at all arbitrary, allowing us to iden-
tify a severe drawback if the KB algorithm is too lazily extended for the
rectangular matrices of arbitrary rank.

But how it is possible to generate “interesting” difficult matrices with
respect to the Smith reduction? A section of this text is devoted to this
question, allowing us to easily generate “difficult” matrices and to present
a statistical study of the results of the various versions of the KB algorithm
with respect to these matrices. This generation process could be used to
obtain good benchmarks for other Smith reduction algorithms.

As explained in the abstract, an equivalent algorithm is in fact used
by the program Magma, see[9]. Just a few lines are given in this program
handbook, so that the present text, including detailed explanations, could
be useful.

Plan:

Section 2 recalls the key tool of the reduction, known as the Bézout
matrices.

Section 3 explains the original KB algorithm, defined only for the non-
singular square matrices.

Section 4 gives the obvious complements extending the KB algorithm to
the general case of a rectangular matrix of arbitrary rank.

Section 5 describes the problem of Algebraic Topology producing, via our
constructive methods, boundary matrices giving the homology group H8 of
a relatively complicated topological space.

Section 6 explains the observed “accident” when we tried to apply our

3

extended KB algorithm to the matrix T9, a matrix 1995× 5796. The reason
of this accident is described and a simple solution to overcome it is given, a
successful one.

Section 7 observes the solution so obtained is nothing but a mixture a
little complicated of the two classical Hermite reductions HNF-1 and HNF-2.
This gives the idea of a direct iterative combination of HNF-1 and HNF-2.
The algorithm then obtained is quite simple.

The last Section 8 relates various tests illustrating that this last version
of the KB algorithm is the fastest one. Designing interesting benchmark
matrices is not simple, we explain how to obtain such matrices.

2 Bézout matrices.

The Hermite and Smith reductions consist in applying the classical Euclid’s
algorithm. If a and b are non-null integers, then the so called extended
Euclidean algorithm returns three integers p, q and r satisfying ap+ bq = r
with r the GCD of a and b; we may also require |p| ≤ |b|/r and |q| < |a|/r
minimal [4, Algorithm 2.4.5], important to master the size of the future
integers. Dividing the Bézout relation by r gives the relation p(a/r) +
q(b/r) = 1, so that the matrix: (

p −b/r
q a/r

)
(1)

is unimodular, producing the equivalence:(
a b
∗ ∗

)
∼=
(
a b
∗ ∗

)(
p −b/r
q a/r

)
=

(
r 0
∗ ∗

)
(2)

and we are happy because the entries a and b of the initial matrix are
replaced in an equivalent matrix by r and 0, so we have cancelled the non-
diagonal entry b and are closer to a diagonal equivalent matrix. In the same
way: a ∗ b

∗ ∗ ∗
∗ ∗ ∗

 ∼=
a ∗ b
∗ ∗ ∗
∗ ∗ ∗

p 0 −b/r
0 1 0
q 0 a/r

 =

r ∗ 0
∗ ∗ ∗
∗ ∗ ∗

 (3)

with the same sort of result.
We will denote in general by ei,j the entry at position (i, j) of the “cur-

rent” matrix.
If 1 ≤ i 6= j ≤ m, we call the column Bézout matrix B =

CB(n, i, j, p,−b/r, q, a/r) the square m×m identity matrix except the en-
tries ei,i = p, ei,j = −b/r, ej,i = q and ej,j = a/r where a, b, p, q and r
are the integers of a Bézout relation ap + bq = r. For example the 3 × 3
Bézout matrix above would be denoted by CB(3, 1, 3, p,−b/r, q, a/r). Right
multiplying a matrix having a on the diagonal and b on the same row by the
appropriate Bézout matrix produces an equivalent matrix where the entry b
is cancelled.

In the same way, with the same Bézout relation, the multiplication of
matrices: (

p q
−b/r a/r

)(
a ∗
b ∗

)
=

(
r ∗
0 ∗

)
(4)

4

cancels the entry b on the same column as a. So the row Bézout matrix
RB(n, i, j, p, q,−b/r, a/r) defined in the same way as CB can be used for a
left multiplication of the matrix M where ei,i = a and ej,i = b to produce
an equivalent matrix where b on the same column as a is cancelled.

A particular case is important. If a divides b, then the Bézout relation
between a and b is simply 1 · a+ 0 · b = a, giving the equivalence:(

a b
∗ ∗

)
∼=
(
a b
∗ ∗

)(
1 −b/a
0 1

)
=

(
a 0
∗ ∗

)
(5)

So that in this particular case the diagonal entry a is unchanged. It is in
fact a column operation which subtracts from the b column b/a times the a
column. It is the only case where the diagonal entry is unchanged. On
the contrary, if a does not divide b, the diagonal entry a is replaced by the
GCD r of a and b with r < a; the integer r is a strict divisor of a.

More generally, we call CO(n, i, j, α) the column operation consisting in
subtracting α times the column i from the column j, which amounts to a
right multiplication by an unimodular matrix as explained above. This can
be used in particular to take account of the Euclidean division ei,j = ei,i ·q+r
to replace the entry ei,j by the entry r satisfying 0 ≤ r < ei,i. The row
operation RO(n, i, j, α) is defined in the same way.

These operations can be used also to transform a diagonal matrix into
another one which satisfies the divisor condition. Consider this sequence of
equivalences where r (resp. s) is the GCD (resp. LCM) of a and b:(

a 0
0 b

)
∼=
(
a b
0 b

)(
p −b/r
q a/r

)
=

(
r 0
bq ab/r

)
∼=
(
r 0
0 s

)
(6)

A row operation has given a e1,2 = b, then a column Bézout operation
makes the GCD r appear, if as usual ap + bq = r; finally r divides bq
and a row operation cancels bq; also s = ab/r is the LCM of a and b and
is divisible by r. We call this an operation of divisor normalization. An
iteration of such operations allows us, without changing the equivalence
class, to replace an arbitrary diagonal matrix by another one which satisfies
the divisor condition.

3 The KB algorithm.

3.1 Cancelling the entries above the diagonal.

The KB algorithm reduces first the given square non-singular matrix M0 to
a lower triangular matrix M1, equivalent to M0. In particular, the determi-
nant of M0 therefore is the product of the diagonal entries of M1. It is the
so-called column-style Hermite reduction, let us call it HNF-1.

The tempting way to obtain this reduction consists in using Bézout op-
erations to cancel the entries above the diagonal in the most obvious order,

5

described in the case of a 5× 5 matrix as follows:
∗ 1 2 3 4
∗ ∗ 5 6 7
∗ ∗ ∗ 8 9
∗ ∗ ∗ ∗ 10
∗ ∗ ∗ ∗ ∗

 (7)

If an entry to be cancelled is already null, no operation at all for this entry, go
to the next entry. When starting a row, we must check the diagonal entry
of this row is non-null and positive. If negative we multiply the column
by −1. If null, because the matrix is non-singular, an entry on the same row
on the right of the diagonal must be non-null. Exchanging two columns,
which does not change the equivalence class, the null entry of the diagonal
is replaced by a non-null entry; with this organization, the part of this new
column above the diagonal entry is null, which will no longer be true in the
next organization.

This is sufficient for student exercises, but with big matrices, combi-
natorial explosions are often generated, needing intermediate entries in the
process with thousands of digits, leading frequently to a fail of the algorithm,
even with powerful computers.

The Hermite reduction according to Kannan and Bachem consists in
using a different order for cancelling the entries above the diagonal:

∗ 1 2 4 7
∗ ∗ 3 5 8
∗ ∗ ∗ 6 9
∗ ∗ ∗ ∗ 10
∗ ∗ ∗ ∗ ∗

 (8)

So that we cancel successively e1,2, e1,3, e2,3, e1,4, e2,4, e3,4 etc. After
such a Bézout operation killing the entry ei,j with i < j, KB uses for every
1 ≤ k < i the Euclidean division ei,k = qi,kei,i+ri,k and the column operation
CO(n, i, k,−qi,k) replaces also ei,k by ri,k with 0 ≤ ri,k < ei,i. This process
possibly decreasing the ei,k’s for k < i is repeated every time ei,i is used to
cancel an entry ei,j for j > i; this is useful for the lefthand side of the i-th
row, which will be used later for further operations.

When the last entry en−1,n above the diagonal is cancelled, there remains
to use the last diagonal entry en,n to replace the entries of the last row by
Euclidean rests of division by en,n. The new matrix is the column-style
Hermite reduction of the initial matrix. It is well known this Hermite form
is unique. Kannan and Bachem proved in [8] this algorithm is polynomial.
Experience shows it is quite efficient.

3.2 Canceling the entries below the diagonal.

It’s a little more complicated. We start with a column-style Hermite matrix,
every entry ei,j with j > i is null, all the entries of the diagonal are positive,
and the entries on the left of the diagonal are positive or null, bounded by
the corresponding diagonal entry.

6

Important: the product of the diagonal entries is the absolute value of
the determinant of the initial matrix, a value which is the same for every
triangular matrix with positive diagonal entries equivalent to the initial one.

3.2.1 Phase 1.

First we get rid of the entries below e1,1
e1,1 0 0 0 0
1 ∗ 0 0 0
2 ∗ ∗ 0 0
3 ∗ ∗ ∗ 0
4 ∗ ∗ ∗ ∗

 (9)

The entries e2,1 up to en,1 are cancelled with row Bézout operations
based on e1,1. This does cancel these entries with a drawback: maybe new
non-null entries have appeared above the diagonal:

∗ ∗ ∗ ∗ ∗
0 ∗ 0 0 0
0 ∗ ∗ 0 0
0 ∗ ∗ ∗ 0
0 ∗ ∗ ∗ ∗

 (10)

3.2.2 Phase 2.

We then apply again HNF-1 to obtain something like:
∗ 0 0 0 0
∗ ∗ 0 0 0
∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ 0
∗ ∗ ∗ ∗ ∗

 (11)

Looks like a vicious circle? Not at all. If e1,1 does not divide one of
the entries of the first column, the row Bézout operation replaces e1,1 by a
strict divisor. If on the contrary e1,1 divides the entry ej,1, then the Bézout
operation directly cancels this ej,1, nothing else.

3.2.3 Iteration.

So that we iterate this process on the column 1; in one iteration, during the
phase 1, either e1,1 is replaced by a strict divisor, either it is unchanged in
which case this means it divides all the non-null entries of the first column,
which entries are directly cancelled, without new non-null entries on the first
row. The possible successive values of e1,1 are bounded from below by 1,
so that when the value of e1,1 becomes fixed, all the other entries of the
column 1 and the row 1 are null. We have obtained a matrix equivalent to

7

the original one which looks like:
∗ 0 0 0 0
0 ∗ 0 0 0
0 ∗ ∗ 0 0
0 ∗ ∗ ∗ 0
0 ∗ ∗ ∗ ∗

 (12)

The same work can then be done based on e2,2, then e3,3 and so on.
Finally, we obtain a diagonal matrix equivalent to the initial one, and a
divisor normalization can be applied to obtain the final matrix where the
divisor condition is satisfied.

The original KB algorithm used a simple intermediate complement to
directly obtain a diagonal with the divisor condition satisfied. This is a
detail, without any devil, and we prefer this version which better prepares
us to our final version.

4 Obvious extensions.

We add now a few obvious adaptations to extend the KB algorithm to the
general case of a rectangular matrix M : Zm → Zn of arbitrary rank. The
integer m (resp. n) is the column (resp. row) number of our matrix. We
call k the rank of M , an integer k ≤ min(m,n).

4.1 First adaptation.

When we treat the column i in the first Hermite step, we cancel the entries
e1,i to ei−1,i above ei,i, using the diagonal entries e1,1 to ei−1,i−1. It is then
possible ei,i is null, a problem for the rest of the process. When the matrix
is non-singular, a non-null entry ei,j for j > i is certainly present, in which
case an exchange of columns solves the problem.

In the general case, the organization is a little different. We look first for
a non-null ej,i for j > i below ei,i. If such a non-null ej,i is found, we exchange
the rows i and j to install this ej,i in position (i, i). This is forbidden in
the column-style Hermite reduction: exchanging two rows amounts to left
multiplying the current matrix by a permutation matrix. In other words,
the matrix we will obtain in this way maybe is not the unique column-style
Hermite reduction of the original matrix. But we are interested in fact by
the Smith reduction, so that this is not a real problem. Even if this happens
we continue to call HNF-1 the process so defined.

If such a non-null ej,i is found, now installed in position (i, i), we continue
as before. If no such ej,i is found, this means the column i is now entirely
null. Then we look for a non-null column j with j > i to the right of ei,i = 0
If such a column is found, we exchange the columns i and j and retreat this
column as before restarting from the position e1,i.

If no non-null column to the right of ei,i is found this means all the
columns i to m are now null. This proves the rank k of the initial matrix is
in fact k = i−1 and we stop there the HNF-1 process. We have so obtained
a lower triangular matrix of rank k above an arbitrary rectangle n− k rows
and k columns. The rows of this rectangle are Q-generated by the k rows of

8

the triangular matrix, but not in general Z-generated. The format of this
matrix is: 

e1,1 0 0 · · · 0 0 · · · 0
∗ e2,2 0 · · · 0 0 · · · 0
∗ ∗ e3,3 · · · 0 0 · · · 0
...

...
...

. . .
...

...
. . .

...
∗ ∗ ∗ · · · ek,k 0 · · · 0
∗ ∗ ∗ · · · ∗ 0 · · · 0
...

...
...

. . .
...

...
. . . 0

∗ ∗ ∗ · · · ∗ 0 · · · 0


(13)

where the stars are some integers.
The product G′ = e1,1 · · · ek,k of the diagonal entries of the almost Her-

mite matrix obtained is a multiple of G, this G being the GCD of the
determinants of all the k × k minors of the initial matrix. This G, well
defined for the initial matrix, the same for all the intermediate matrices up
to the Smith form, constant, will play an essential role, keep it in mind. You
can see a small example at the end of Section 8.1.

4.2 Second adaptation.

If less columns than rows, if m < n, it is possible k = m, in which case the
Hermite diagonal finishes in position (k, k), nothing more is to be done for
the HNF-1 step.

If more columns than rows, if m > n and if k = n, when the Hermite
process à la KB has obtained ek,k, it remains the arbitrary columns k + 1
to m to process. This is done in the same way as before, using the non-
null diagonal entries already obtained to cancel all the entries ei,j for j > k
of these columns. In general this decreases the diagonal entries. We finally
have a triangular matrix which is the correct column-style Hermite reduction
of the original matrix. In this case, G′ = G.

If k < n < m, the most frequent case in “hard” algebraic topology, when
we have obtained the first version of ek,k, the story continues as follows.
We process the column k + 1, cancelling the entries e1,k+1 to ek,k+1, using
the available diagonal entries e1,1 to ek,k. These diagonal entries often are
replaced by strict divisors. Then surprise, the column k + 1 is become
entirely null, otherwise the rank would be > k. So that we look for a non-
null column at position j > k+ 1; when it is found it is exchanged with the
column k + 1 now null, and this new column k + 1 is processed in the same
way, same surprise, and so on finishing with a matrix as in (13).

4.3 End of the computation.

When the non-null matrix finally obtained is triangular, the same process
as the one described in [8] can be used, nothing is changed; see Section 3.2.

When we also get a non-null rectangle below the triangle, nothing is
changed for the last step either. The columns are only more or less higher,
but because the row-style Hermite reduction is used column by column, the
same process does give the hoped-for Smith form.

9

4.4 Computing a constructive homology group.

Let a homology group H be obtained via a quotient H = ker d′/ im d. In
constructive homological algebra, it is not only necessary to know that for
example H = Z/12, but if g ∈ Z/12 is a generator, what element of ker d′

could represent it? This problem is solved through the auxiliary matrices
u′, v′, u, v which complement the Smith reductions s′ and s.

More precisely, let us consider this diagram:

Zm

Zm

Zn

Zn

Zk

Zk

Zp

Zp

⊂

d′ d

v′

s′

u′

u
′−

1 d

v

u

s

(14)

with d′d = 0. The Smith reduction of d′ produces s′, u′ and v′ as in the
diagram. The matrix s′ is diagonal so that the kernel Zk of s′ is generated
by the last k factors of Zn. Now d′d = 0 implies s′u′−1d = 0 and the image
of u′−1d is in Zk. The Smith reduction of u′−1d produces s, u and v. The
generators of the homology group H = ker d′/ im d correspond to the basis
vectors of the lower Zk whose corresponding diagonal entry in s is not 1. It
remains to apply u′v−1 to these basis vectors to produce the cycles in ker d′

which represent the generators of H.
In other words, if the matrices u′, v′, u, v are not available, the cycles

representing the homology classes are not reachable and the methods of
constructive homology cannot be applied.

5 A problem of Algebraic Topology.

This section assumes a minimal knowledge in Algebraic Topology and can
be skipped by the readers interested only by the algebraic problem of the
Smith reduction.

The standard methods of Algebraic Topology, mainly the exact and
spectral sequences, are not algorithms producing for example the desired
homology or homotopy groups. They sometimes succeed in determining
some groups but never have a general scope.

This problem led the author and the colleagues of his research group to
design which is called now the Constructive Algebraic Topology, see [12].

Relatively simple examples have been used to illustrate the power of these
methods. Let us start with the infinite real projective space P∞(R); it’s the
inductive limit of the Pn(R)’s, so the inclusion relation P 3(R) ⊂ P∞R) can
be used to define the quotient space P4 := P∞(R)/P 3(R). It is elementary
to proof P4 is 3-connected and π4(P4) = Z. Therefore the first non-null
homotopy group of the loop space Ω(P4) is π3 = Z.

10

This implies attaching a 4-cell e4 to Ω(P4) by a map S3 → Ω(P4) of de-
gree 4 makes sense, producing the space Ω(P4) ∪4 e4. Now π3(Ω(P4) ∪4
e4) = Z/4. The loop space of the last space is simply connected and
π2(Ω(Ω(P4) ∪4 e4)) = Z/4. Attaching a 3-cell e3 to the last space by a
map S2 → Ω(Ω(P4) ∪4 e4) of degree 2 makes sense, and we take again the
loop space of the last space, obtaining finally the space:

X = Ω(Ω(Ω(P∞(R)/P 3(R)) ∪4 e4) ∪2 e3) (15)

Question: what about the homology groups of X?
This space X has been chosen because it cumulates well known “difficul-

ties” of standard algebraic topology. The homology groups of a loop space
are generally believed be reachable through the Eilenberg-Moore spectral
sequence. But this spectral sequence is not, in the standard context, an
algorithm.

If the space S is a simplicial set of finite type, Franck Adams’ Cobar con-
struction [1] is, in modern language, an algorithm computing the homology
groups of the first loop space. But for example Ω(P4) is not of finite type,
so that the Cobar construction does not give the homology groups of the
second loop space Ω(Ω(P4)) =: Ω2(P 4).

Twenty-four years later, Hans Baues’ AMS Memoirs [2] is entirely de-
voted to an algorithm which computes the homology groups of the second
loop space Ω2(S) of a simplicial set of finite type. The second loop space
only. This is the reason why in our example X, we have chosen to apply
three times the loop space functor.

In fact, the general problem of the homology groups of Ωn(S), for S of
finite type and n-connected, was solved in Julio Rubio’s thesis [11], thanks
to the methods of Constructive Algebraic Topology.

Let S be an arbitrary space and let us assume we know the homology
groups of the first loop space ΩS. If we attach a cell en to S by a map
f : Sn−1 → S, what about the homology groups of Ω(S ∪f en)? A spec-
tral sequence is available for example in [3, Section III.2], but this is not
an algorithm computing these homology groups. On the contrary, if the
effective homology of S is known, which makes sense even if S is not of
finite type, then the methods of Constructive Algebraic Topology give an
algorithm computing the homology groups of Ω(S ∪f en). In particular this
covers the attachments in the definition of our X.

Also, in the particular case the space S is an n-th suspension, then a
(true) algorithm is known [10] giving the homology groups of ΩnS. This
is the reason we have chosen P4 = P∞(R)/P 3(R) as the initial space: this
space is in a sense the simplest example of a 3-connected space which is not
a suspension.

The methods of Constructive Algebraic Topology, are not only theoret-
ical algorithms with a large scope, but they are concretely implemented in
the program Kenzo [6]. And to illustrate the power of these methods and
of this program, we tried to compute the homology groups of X, our a little
contorted space.

In this case the Kenzo program worked during about one week on a rela-
tively powerful computer, briefly described in the Appendix, to produce the
two matrices T8 and T9 mentioned in the introduction. These matrices are

11

such the desired homology group H8X is the quotient group kerT8/ imT9,
which group is deduced from the Smith reduction of T8 and T9. The final
result is:

H8X = (Z/2)253 + (Z/4)9 + Z/8 + Z5 (16)

But what about the Smith reduction of these matrices?

6 An accident, a solution.

We used the obvious KB extension described in Section 4 for years for many
matrices, sometimes relatively large, without any problem. The first acci-
dent happens for the matrix T9, a matrix 1995× 5796 with 24374 non-null
entries in [−124 . . . 132] ⊂ Z, about 97.9% of the entries are null.

Tracing carefully the work of our obvious extension of the KB algorithm,
we discovered a terrible growth of the entries of the inferior rectangle. After
the HNF-1 step, we have a matrix with a lower triangle of height and basis
k = 1481, and below a rectangle 514× 1481. When the phase 2 is in work,
the program processes the first 500 columns in one minute and a half, but
the average number of digits of the entries under the diagonal is already 276.
After a few days, the column 682 was processed, which took about 15 hours
to be processed, for one column only. The average number of digits of the
entries under the diagonal is then 482222. And 189217 entries are yet to be
cancelled, 799 columns are remaining to be processed. It is clear our obvious
extension of the KB algorithm meets a problem.

The explanation of this accident is simple. When we cancel, see Sec-
tion 3.2, the entries of the column i that are below the diagonal entry ei,i,
we apply the HNF-2 reduction only to this column, and then we apply the
HNF-1 reduction to the new matrix. In particular, the diagonal entries e1,1
to ek,k are used to decrease the other entries of the same rows, but this does
not decrease the entries of the lower rectangle. Which entries continue to
grow without any limit, giving the standard combinatorial explosion which
easily happens if no precautions are taken to master such a growth.

The solution is very simple. These diagonal entries e1,1 to ek,k are used
to decrease the entries of the rows 1 to k when the HNF-1 reduction is
applied; after this action, every entry of such a row is bounded by the
corresponding diagonal term. Unfortunately, this is without any effect on
the rows k + 1 to n. Why not use these diagonal entries to decrease in the
same way the entries of the corresponding columns, using elementary row
operations? After such an action every entry of the matrix is bounded by
the corresponding diagonal entry of the same column. In the whole process,
the product of the diagonal entries is a divisor of G′, so that we are so sure
to prevent the indefinite growth of the entries of the lower rectangle.

It happens adding this small complement after the processing of every
column in the second part of the KB algorithm is enough to make reasonably
efficient the extended KB algorithm. This done, this updated algorithm
gives in ∼ 12 minutes the Smith reduction of our matrix T9:

((1218 ∗ 1)(253 ∗ 2)(9 ∗ 4)(1 ∗ 8)) (17)

meaning the diagonal is made of 1218 entries 1, 253 entries 2, and so on.

12

But it is still possible to do better.

7 A simpler solution.

The last reasonably efficient version of the extended KB algorithm consisted
in adding a small dose of HNF-2: the HNF-2 reduction à la KB would
systematically use such simple row operations to decrease the entries on the
same column below a diagonal entry ei,i.

This gives another idea. Why not use simply alternately the HNF-1 and
the HNF-2 Smith reductions? This idea was in fact already present in the
initial KB algorithm when processing a column in the second part of the
algorithm.

In the general case, starting from a matrix M0 the HNF-1 reduction gives
a lower triangle above a rectangle in a matrix M1, the rank k is now known.
If we apply HNF-2 to this matrix M1, we will get only an upper triangle in
a matrix M2 where the product of the diagonal entries is then exactly the
GCD G of all the k× k minors of the initial matrix. We then apply HNF-1
to M2, obtaining the matrix M3, now lower triangular, and so on.

Theorem 1 After a finite number ν of steps, the matrix Mν obtained is
diagonal.

♣ All the obtained matrices Mµ for µ ≥ 2 are triangular and the product
of the diagonal entries is constant equal to G.

Let us assume for example we apply HNF-1 to an upper triangular ma-
trix. All the diagonal terms are positive. We must apply a number of column
Bézout operations to cancel the entries above the diagonal, processing the
columns from left to right as explained in Section 3.1, see the matrix (8).

But our initial matrix is upper triangular, so that before using the diag-
onal entry ei,i to cancel the entry ei,j with j > i, the symmetric entry ej,i
below the diagonal is null, and the main part of the Bézout operation at the
positions (i, i), (i, j), (j, i) and (j, j) is particular:(

a b
c = 0 d

)(
p −b/r
q a/r

)
=

(
r 0
dq ad/r

)
(18)

where as usual ap + bq = r is the Bézout relation between a and b. The
product of both diagonal terms that are concerned is now ad unchanged. So
that in this process, the product of the diagonal entries remains constant;
let us also remark that, when the column i has been entirely processed,
the state of the matrix is block 2 × 2 where the left upper block is lower
triangular, the right lower block is upper triangular, the left lower block is
null and it is not amazing the product of the diagonal terms is unchanged;
for example when the columns 2 and 3 have been processed for an upper
triangular 5× 5 matrix, the situation is as follows:

∗ 0 0 ∗ ∗
∗ ∗ 0 ∗ ∗
∗ ∗ ∗ ∗ ∗
0 0 0 ∗ ∗
0 0 0 0 ∗

 (19)

13

If ei,i divides ei,j , then ei,i, ej,i = 0 and ej,j are unchanged, ei,j is can-
celled; in the matrix above, the entries corresponding to i = 2 and j = 4 are
underlined. In particular, if ei,j = 0, no operation at all is applied for this
pair (i, j).

If the Bézout relation is non-trivial, ei,i is replaced by a strict divisor,
the missing factor being moved below on the diagonal, but the product G
of the diagonal entries remains constant.

This game with the divisors of the diagonal entries must stop, and it stops
only if all the diagonal entries divide all the corresponding other entries, so
that the result of this Hermite reduction is diagonal. ♣

When a diagonal matrix is so obtained, a divisor normalization as ex-
plained at the end of Section 2 gives the canonical Smith reduction.

Experience shows the computing times of the successive HNF invocations
quickly tend to 0. For example for the matrix T9 which was our initial
example, 3 HNF invocations are necessary with the successive computing
times: 260 - 5 - 0 seconds. The last 0 means the last HNF was entirely
executed in less than 1 second.

For the matrix Test-15000-1 of the next section, the most difficult of
our examples, seven HNF invocations are necessary, with the respective
computing times: 1h31m25s - 14m20s -14m09s - 14s - 1s - 0s - 0s.

8 Benchmarks

We intend to compare the three versions of the KB algorithm now available:

� KB1: the original KB algorithm of [8] naively extended to rectangular
matrices of arbitrary rank.

� KB2: the same algorithm where we use extra row operations to prevent
the entries of the lower rectangle from indefinite growth.

� KB3: the final version where we alternately use the Hermite reductions
HNF-1 and HNF-2 up to obtaining a diagonal matrix.

8.1 Generating test matrices.

It was already explained the lazy solution consisting in generating rectangu-
lar matrices with random entries is erroneous: the Smith reduction is then
made of 1’s with the exception of one or two entries at the end of the diago-
nal. On the contrary, the Smith reduction of our matrix T9 had 263 entries
> 1 and it’s certainly why this matrix raised unexpected difficulties. But
how to obtain matrices which in a sense are highly Smith non-trivial?

There is a simple method, which in particular easily generates examples
of matrices with the same accident when using the KB1 algorithm.

This method consists in starting with a diagonal matrix made of arbi-
trary positive integers, for example random positive integers in an interval
[1 . . . n] where n can be chosen. The rank is predefined as the number of
non-null entries on the diagonal. Then we remember which is usually called
the elementary operations which can be used on a matrix without changing
its equivalence class, therefore without changing its Smith reduction:

14

� Multiply a column or a row by -1.

� Swap two columns or two rows.

� Add to some column (resp. row) the product of another column (resp.
row) by some integer.

The elementary step of our generation process is made of five substeps:

1. Choose two different random columns of our matrix and swap them.

2. Choose a random column and a random row and multiply these column
and row by -1.

3. Choose two different random rows and some random integer α ∈
[−a . . . a]; then add to the second row α times the first row.

4. Choose two different random rows of our matrix and swap them.

5. Choose two different random columns and some random integer α ∈
[−a . . . a]; then add to the second column α times the first column.

A generator of random integers being available, the number a being
given, this defines an elementary step of transformation of our matrix. This
process can be repeated an arbitrary number of times.

A toy example: starting from a 4 × 5 matrix where the diagonal is the
Smith form (1 3 9 0), applying 10 times our elementary step with a = 10,
using the generator of random integers of our Lisp system, we obtain this
matrix:

1 0 0 0 0
0 3 0 0 0
0 0 9 0 0
0 0 0 0 0

 7−→


37584 4383 29997 −54 11688
308 36 250 0 96
−40316 −4707 −33907 −153 −12552

5626 657 4778 27 1752

 (20)

As an example, applying the HNF-1 and then the HNF-2 operator to
the last matrix we obtain successively:

HNF-17−→


3 0 0 0 0
0 2 0 0 0

180 49 3087 0 0
−30 −8 −513 0 0

HNF-27−→


3 0 0 0 0
0 1 0 0 0
0 0 9 0 0
0 0 0 0 0

 (21)

and it remains to permute the diagonal terms to obtain the canonical Smith
reduction.

In this example, the product G′ = e1,1e2,2e3,3 = 3×2×3087 = 686×27 =
686 × G where G = 27 is the GCD of the determinants of the 3-minors of
the initial matrix, and therefore the product of all the divisors of the Smith
reduction.

8.2 Experiments.

We now work as follows. A list of numbers is given for every experiment.
For example the first list is (10 100 300 80 20 300 10) with the respective
meanings:

� 10: The experiment is repeated 10 times with 10 different matrices as
described now.

� 100: Number of rows.

� 300: Number of columns.

15

� 80: Rank.
� 20: The initial diagonal entries are random integers in [1 . . . 20].
� 300: The number of elementary steps that are run where. . .
� 10: . . . the coefficient α for the row and column operations is a random

integer α ∈ [−10 . . . 10].

For each experiment, we give the average absolute value of the non-null
entries of the first matrix of the experiment, and also the percentage of null
entries. We then give the Smith reduction that has been computed for this
matrix. For each version of the KB algorithm, we give the total runtime,
and for the KB3 version, we give also the number of HNF reductions which
were necessary.

The appendix gives the necessary references to reach these matrices and
the corresponding execution listings.

8.2.1 (10 100 300 80 20 300 10)

For the first matrix, about 92% of entries are null and the average absolute
value of the non-null entries is 1.91× 105. The Smith reduction of the first
matrix is:

((41 ∗ 1)(12 ∗ 2)(8 ∗ 6)(10 ∗ 60)(2 ∗ 180)(1 ∗ 2520)(1 ∗ 42840)

(1 ∗ 556920)(1 ∗ 10581480)(2 ∗ 116396280)(1 ∗ 232792560)) (22)

� KB1: total runtime = 2.94 seconds.
� KB2: total runtime = 2.36 seconds.
� KB3: total runtime = 2.02 seconds. 4 HNF reductions have been

necessary eight times and 5 HNF two times.

8.2.2 (10 150 500 120 10 500 10)

For the first matrix, about 92% of entries are null and the average absolute
value of the non-null entries 5.42 × 106. The Smith reduction of the first
matrix is:

((57 ∗ 1)(32 ∗ 2)(4 ∗ 6)(2 ∗ 12)(13 ∗ 60)(1 ∗ 180)(11 ∗ 2520)) (23)

� KB1: total runtime = 23.4 seconds.
� KB2: total runtime = 10.6 seconds.
� KB3: total runtime = 9.8 seconds. 4 HNF reductions have been nec-

essary eight times and 5 two times.

8.2.3 (10 500 1500 400 10 1000 10)

For the first matrix, about 99.194% of entries are null and the average
absolute value of the non-null entries is 1.64× 104. The Smith reduction of
the first matrix is:

((207 ∗ 1)(78 ∗ 2)(31 ∗ 6)(3 ∗ 30)

(30 ∗ 60)(14 ∗ 180)(6 ∗ 360)(31 ∗ 2520)) (24)

16

� KB1: total runtime = ??? After two days, it was clear the program
failed in a reasonable time. The KB1 version is no longer used for the
next experiments.

� KB2: total runtime = 106 seconds.
� KB3: total runtime = 76 seconds. 4 HNF reductions have been nec-

essary one time, 5 five times and 6 four times.

8.2.4 (2 2000 6000 1600 10 1000 10)

For the first matrix, about 99.9743% of entries are null and the average
absolute value of the non-null entries is 68. The Smith reduction of the first
matrix is:

((796 ∗ 1)(334 ∗ 2)(151 ∗ 6)(5 ∗ 12)

(157 ∗ 60)(3 ∗ 120)(8 ∗ 360)(146 ∗ 2520)) (25)

� KB2: total runtime = 133 seconds.
� KB3: total runtime = 55.1 seconds. 4 HNF reductions have been

necessary one time, and 5 another time.

8.2.5 (2 5000 15000 4000 20 8000 10)

For the first matrix, about 99.956% of the entries are null and the average
absolute value of the non-null entries is 55160. 32841 entries are non-null.
The Smith reduction of this first matrix is:

((2009 ∗ 1)(803 ∗ 2)(187 ∗ 6)(181 ∗ 12)(418 ∗ 60)(6 ∗ 180)

(186 ∗ 2520)(7 ∗ 42840)(5 ∗ 471240)(7 ∗ 17907120)(191 ∗ 232792560)) (26)

The computing times:

� KB2: total runtime = 22 hours.
� KB3: total runtime = 4.4 hours. The first matrix needed six HNF in-

vocations, the second one, Test-15000-1, needed as already explained
seven HNF steps.

So that KB3 is in this case about 5 times faster than KB2.
Comparing the examples 8.2.1 to 8.2.5 makes clear that more difficult is

the tested matrix, better is the KB3 algorithm with respect to KB2. The
same kernel functions, HNF reductions, Bézout operations and so on, have
been used in both cases in the same environment for KB2 and KB3 tests,
so that the difference is only due to the different general organizations.

8.2.6 T9.

We close our “experiments” by the current status of our programs with
respect to the matrix T9 at the origin of this work. The density of null en-
tries is 99.6537%; the average absolute-value of the non-null terms is simply
3.0275.

This matrix is Smith-reduced by KB2 in about 7 minutes and by KB3
in 4.5 minutes. In the last case, 3 HNF reductions are enough.

17

References

[1] J. Frank Adams. On the Cobar construction. Proceedings of the Na-
tional Academy of Science of the U.S.A., 1956, vol.42, pp.09-412.

[2] Hans J. Baues. The double bar and cobar constructions. Compositio
Mathematica, 1981, vol.43, pp.331-341.

[3] Hans J. Baues. Algebraic Homotopy. Cambridge University Press, 1989.

[4] Henri Cohen. A Course in computational Algebraic Number Theory.
Springer, 3d ed., 1996.

[5] G.-M. Dı́az-Toca, H. Lombardi, C. Quitté. Modules sur les anneaux
commutatifs. Calvage & Mounet, 2014.

[6] Xavier Dousson, Julio Rubio, Francis Sergeraert and Yvon Siret.
The Kenzo program.
http://www-fourier.ujf-grenoble.fr/∼sergerar/Kenzo/

[7] Jean-Guillaume Dumas, B. David Saunders, Gilles Villard. On effi-
cient sparse integer matrix Smith normal form computations. Journal
of Symbolic Computation, 2001, vol.32, pp.71-99.

[8] Ravindran Kannan, Achim Bachem. Polynomial algorithms for comput-
ing the Smith and Hermite normal forms of an integer matrix. SIAM
Journal of Computing, 1979, vol.8, pp.499-507.

[9] The Magma Handbook,
https://magma.maths.usyd.edu.au/magma/handbook/text/278#mat:smithform

[10] R. James Milgram. Iterated loop spaces. Annals of Mathematics, 1966,
vol.84, pp.386-403.

[11] Julio Rubio. Homologie effective des espaces de lacets itérés. Thèse,
Université Joseph Fourier, Grenoble 1991.
http://dialnet.unirioja.es/servlet/tesis?codigo=1331

http://tel.archives-ouvertes.fr/tel-00339304/

[12] Julio Rubio, Francis Sergeraert. Constructive Algebraic Topology. Bul-
letin des Sciences Mathématiques, 2002, vol.126, pp.389-412.

[13] Francis Sergeraert.
The Kannan-Bachem Algorithm.
http://www-fourier.univ-grenoble-alpes.fr/~sergerar/Kenzo/KB

9 Appendices.

9.1 Our machine.

The technical data of the computer used for these experiments:

� Dell PowerEdge Server R740.

� Two Intel processors Xeon Gold 6242R, 3.1GHz, 35.75M Cache,
10.40GT/s, 2UPI, Turbo, HT-20C/40T; 40 cores.

� RAM = 512Go.

18

It’s an opportunity to thank the engineers of the Computer Center of
the Fourier Institute, Didier Depoisier and Patrick Sourice, for their patient,
constant and friendly help.

9.2 Matrices and listings.

All the matrices used for experiments in Section 8.2 are available on our
website [13]. The complete execution listings are also included.

-o-o-o-o-o-o-

19

