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In this paper, we present a new module for the Kenzo system 
which makes it possible to compute the effective homotopy of 
the total space of a fibration, using the well-known long exact se-
quence of homotopy of a fibration defined by Jean-Pierre Serre. The 
programs are written in Common Lisp and require the implementa-
tion of new classes and functions corresponding to the definitions 
of setoid group (SG) and effective setoid group (ESG). Moreover, we 
have included a new module for working with finitely generated 
abelian groups, choosing the representation of a free presentation 
by means of a matrix in canonical form. These tools are then used 
to implement the long exact homotopy sequence of a fibration. We 
illustrate with examples some applications of our results.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

The problem of computing homology groups of topological spaces is well-known to be difficult, 
for example when loop spaces or classifying spaces are involved. In particular, knowing the homology 
groups of a topological group or space does not imply that the homology groups of its classifying 
space or loop space can also be determined. In the same way, given a fibration F ↪→ E → B , there 
does not exist a general algorithm computing the homology groups of E from the homology groups 
of B and F .
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The effective homology method (introduced in Sergeraert, 1994 and deeply explained in Rubio and 
Sergeraert 2002 and 2006) solves the previous problem when the input spaces belong to the large 
class of spaces with effective homology and produces algorithms for computing for example the homol-
ogy groups of the total space of a fibration, of an arbitrarily iterated loop space (Adams’ problem), 
of a classifying space, etc. One of the main ideas in this method is the notion of a solution for the 
homological problem of a space (Sergeraert, 2009), which provides in particular its homology groups 
and gives also some additional information which is necessary if we want to use the space inside 
more complicated constructions. The effective homology method has been concretely implemented in 
the Kenzo system (Dousson et al., 1999), a Common Lisp program developed by the third author and 
some coworkers which has made it possible to compute some complicated homology groups so far 
unreachable.

The computation of homotopy groups is even harder than homology and is in fact one of the most 
challenging problems in the field of Algebraic Topology. In 1953 Serre obtained a general finiteness re-
sult (Serre, 1953) which states that, if X is a simply connected space such that the homology groups 
Hn(X; Z) are of finite type, then the homotopy groups πn(X) for n > 1 are also abelian groups of finite 
type. In 1957, Edgar Brown published in Brown (1957) a theoretical algorithm for the computation of 
these groups, based on the Postnikov tower and making use of finite approximations of infinite simpli-
cial sets, transforming in this way the finiteness results of Serre into a computability result. However, 
Brown’s algorithm is out of practical use and has never been implemented. Rolf Schön’s work (Schön, 
1991) is an interesting systematic reorganization of Edgar Brown’s algorithm but no implementation 
has yet been tried. Other theoretical methods have been also designed trying to determine homo-
topy groups, but up to our knowledge there does not exist a real implementation in a computer of a 
general algorithm producing the homotopy groups of an arbitrary simply connected space.

Inspired by the fundamental ideas of the effective homology method, in Romero and Sergeraert
(2012) a new effective homotopy theory was introduced trying to allow the computation of homotopy
groups of spaces. As in the case of effective homology, the idea consists in considering first some 
spaces whose effective homotopy can be directly determined, and then different constructors of Alge-
braic Topology (mainly limits and colimits, for example total space of a fibration, homogeneous space, 
etc.) should produce new spaces with effective homotopy. As a first result in this research, in Romero 
and Sergeraert (2012) we developed a theoretical algorithm to determine the effective homotopy of 
the total space of a fibration from the effective homotopies of the fiber and the base space.

In this work we present an implementation of the algorithm in Romero and Sergeraert (2012)
by means of a new module for the Kenzo system, consisting of about 5000 lines of Common Lisp 
code available at http://www.unirioja .es /cu /anromero /research2 .html (together with the most recent 
version of Kenzo). In a work in progress by Gerd Heber (HDF Group), a new Kenzo version easily load-
able from and compatible with any Common Lisp system can be reachable by any GitHub user in the 
Jupyter page https://lisp .style. The new implementation requires the mathematical notions of setoid 
group (SG) (one of the ideas in dependent type theories, see Univalent Foundations Program, 2013) and 
effective setoid group (ESG), notions which carefully distinguish which is only mathematically defined
but however not yet computable, from which is constructively reachable. Moreover, it includes new 
structures and functions for working with finitely generated abelian groups and computing kernels, 
cokernels and central extensions which are then used to implement our effective version of the clas-
sical long exact homotopy sequence of a fibration, so far not constructive. The chosen representation 
for groups is that of a free presentation by means of a matrix in canonical form.

2. Preliminaries

In this section we introduce some elementary ideas about simplicial sets, which can be considered 
a useful combinatorial model for topological spaces. See May (1967) for more details.

Definition 1. A simplicial set K is a simplicial object in the category of sets, that is to say, K consists of:

• a set Kq for each integer q ≥ 0;
• for every pair of integers (i, q) such that 0 ≤ i ≤ q, face and degeneracy maps ∂i : Kq → Kq−1 and 

ηi : Kq → Kq+1 satisfying the simplicial identities:

http://www.unirioja.es/cu/anromero/research2.html
https://lisp.style
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Fig. 1. Simplicial set �2 and its horns �2
0, �2

1 and �2
2.

∂i∂ j = ∂ j−1∂i if i < j

ηiη j = η j+1ηi if i ≤ j

∂iη j = η j−1∂i if i < j

∂iη j = Id if i = j, j + 1

∂iη j = η j∂i−1 if i > j + 1

(1)

Definition 2. For n ≥ 0, the standard n-simplex �n is a simplicial set built as follows. A q-simplex 
of �n is any (q + 1)-tuple (a0, . . . , aq) of integers such that 0 ≤ a0 ≤ · · · ≤ aq ≤ n, and the face and 
degeneracy operators are defined as

∂i(a0, . . . ,aq) = (a0, . . . ,ai−1,ai+1, . . . ,aq)

ηi(a0, . . . ,aq) = (a0, . . . ,ai,ai,ai+1 . . . ,aq)
(2)

Note 3. An interesting subcomplex of �n is the “horn” �n
k which is given by the boundary of the 

simplex �n with the k-th face removed (see an example for n = 2 in Fig. 1).

Definition 4. A simplicial set K is called a Kan simplicial set if it satisfies the following extension con-
dition: for every collection of q simplices x0, x1, . . . , xk−1, xk+1, . . . , xq ∈ Kq−1, therefore of dimension 
q − 1, which satisfy the compatibility condition ∂i x j = ∂ j−1xi for all i < j, i �= k, and j �= k, there exists 
a q-simplex x ∈ Kq such that ∂i x = xi for every i �= k. In other words, K is a Kan simplicial set if every 
map from the horn �q

k → K can be extended to a map from the simplex �q → K . It is also said that 
K is a Kan complex or a fibrant simplicial set.

Let us observe that the existence of the q-simplex x for each collection of (q − 1)-simplices
x0, x1, . . . , xk−1, xk+1, . . . , xq satisfying the compatibility condition does not imply it is always pos-
sible to determine it. We say that the Kan simplicial set K is a constructive Kan simplicial set if the 
desired x can be produced by an algorithm σK . The constructive Kan property of a simplicial set will 
be needed later in this paper.

Definition 5. Let K be a simplicial set. Two q-simplices x and y of K are said to be homotopic, written 
x ∼ y, if ∂i x = ∂i y for 0 ≤ i ≤ q and there exists a (q + 1)-simplex z such that ∂q z = x, ∂q+1z = y, and 
∂i z = ηq−1∂i x = ηq−1∂i y for 0 ≤ i < q.

If K is a Kan simplicial set, then ∼ is an equivalence relation on the set of q-simplices of K for 
every q ≥ 0.

Let 	 ∈ K0 be a base point; we also denote by 	 the degeneracies ηn−1 . . . η0	 ∈ Kn for every n. We 
define Sn(K ) as the set of all x ∈ Kn such that ∂i x = 	 for every 0 ≤ i ≤ n. An element x ∈ Sn(K ) is 
called an n-sphere of K .

Definition 6. Given a Kan simplicial set K and a base point 	 ∈ K0, we define

πn(K , 	) ≡ πn(K ) := Sn(K )/∼
The set πn(K , 	) admits a group structure for n ≥ 1 and it is abelian for n ≥ 2 (see May, 1967 for 
details). It is called the n-th homotopy group of K .
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The previous definition of the homotopy groups πn(K ) of a Kan simplicial set K is well-known 
to be equivalent to the notion of homotopy groups of a topological space; more precisely, the group 
πn(K ) just combinatorially defined is canonically isomorphic to the standard homotopy group πn(|K |)
of the realization |K | of the simplicial set K . However, let us observe that the definition of πn(K ) does 
not give any method computing it.

Since we aim to work with homotopy groups of simplicial sets in a constructive way, we only 
consider Kan simplicial sets whose homotopy groups πn(K ) are abelian groups of finite type. In some 
specific cases, the results produced here could be generalized to simplicial sets K with non abelian 
π1 (see for example the context of the paper (Romero and Rubio, 2013)), but we prefer at the current 
stage of our work to limit ourselves to the abelian case, so avoiding painful technicalities.

Definition 7. Let f : E → B be a simplicial map. The map f is a Kan fibration if for every collection 
of q (q − 1)-simplices x0, . . . , xk−1, xk+1, . . . , xq of E which satisfy the compatibility condition ∂i x j =
∂ j−1xi, i < j, i �= k, j �= k, and for every q-simplex y of B such that ∂i y = f (xi), i �= k, there exists a 
q-simplex x of E such that ∂i x = xi, i �= k, and f (x) = y. The simplicial set E (resp. B) is called the 
total space (resp. the base space) of the fibration. If 
 denotes the simplicial set generated by a vertex 
of B (usually the base point 	), then F := f −1(
) is called the fiber space over 
.

In other words, a map f is a Kan fibration if for every commutative diagram of simplicial set 
morphisms

�q B

�
q
k E

i f

(3)

there is a map �q → E (dotted arrow) making the diagram commute. The map i is the obvious 
inclusion of �q

k in �q .
Later in this paper we will need the Kan property of a fibration to be constructive; we say that 

f is a constructive Kan fibration if the desired q-simplex x of E is produced by an algorithm σ f . This 
idea has also been stated in a cubical framework as one of the main notions in cubical type theories, 
see Cohen et al. (2016).

3. Effective homotopy and setoid groups

As said in Section 2, the homotopy groups πn(K ) of a Kan simplicial set K are formally defined as 
a quotient (see Definition 6) but this definition is not constructive since the nature of the components 
of this quotient, most often highly infinite, does not allow to deduce an algorithm computing it. The 
implementation of the effective homotopy theory, which will make it possible to produce algorithms 
computing the homotopy groups πn(K ) for some Kan simplicial sets, needs to consider πn(K ) as a 
group defined over a setoid as we explain in this section. The definition of setoid group (or group defined 
over a setoid) appears in the context of dependent types theories (see Univalent Foundations Program, 
2013 or the implementation in the Adga library (Bove et al., 2009)). Our new necessary constructions 
of resolution for a central extension and exact sequence of setoid groups are explained in different 
subsections.

3.1. Finitely generated abelian groups

In order to develop our effective homotopy theory, we need first to work effectively with finitely 
generated abelian groups.

If G is a finitely generated abelian group, a finite sequence of generators (g1, . . . , gr) defines a 
surjective map ε : Zr → G . The kernel Kerε is isomorphic to Zs with s ≤ r, giving a short resolution:

0 → Z
s ρ→ Z

r ε→ G → O (4)
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The Smith reduction (Kaczynski et al., 2004, Ch. 3) of the (r, s)-matrix ρ produces a Smith form 
for ρ = Diag(d1, . . . , ds) for a sequence (d1, . . . , ds) of positive natural numbers satisfying the divisor 
condition: di divides di+1 for 1 ≤ i < s. Getting rid of the initial 1’s of the divisor sequence gives 
the minimal resolution, where every divisor is > 1. So that G ∼= Z/d1 ⊕ · · · ⊕ Z/ds ⊕ Z

r−s with 1 <
d1 | d2 | · · · | ds . These divisors and the rank r − s define the isomorphism class of G .

As we will see in Section 5, a finitely generated abelian group will be represented in Kenzo by 
means of a matrix

MG =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

d1 · · · 0
. . .

0 · · · ds

0 · · · 0
...

0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5)

where the number of rows with all entries equal to zero at the bottom of the matrix is equal to 
r − s. A group could also be represented by any general matrix or by means of the factors in the 
diagonal and the number for the block of 0’s to add below, but the restriction of being a matrix in 
canonical form (which will be represented as a sparse matrix, therefore without any significant extra 
cost) is the option we have chosen to facilitate calculations on groups which will be necessary later 
(we will need to use the canonical matrix associated with a group several times and in this way we 
only construct it once).

3.2. Setoid groups

Definition 8. A setoid group (SG) is a 5-tuple (A, ∼, ∗, 0, inv) where:

• A is a set.
• ‘∼’ is an equivalence relation defined on A.
• ‘∗’ is a binary operation defined on A, compatible with the equivalence relation: if a ∼ a′ and 

b ∼ b′ , then a ∗ b ∼ a′ ∗ b′ .
• ‘∗’ is ∼-associative, that is, (a ∗ b) ∗ c ∼ a ∗ (b ∗ c).
• ‘0’ is a ∼-neutral element: a ∗ 0 ∼ a ∼ 0 ∗ a.
• ‘inv’ is a unary function producing a ∼-inverse of its argument: inv(a) ∗ a ∼ 0 ∼ a ∗ inv(a).

The quotient set A/ ∼, setoid, is therefore provided with a group structure. In this text we consider 
only the commutative case: in other words, for every a, b ∈ A, the relation a ∗ b ∼ b ∗ a is satisfied and 
A/ ∼ is abelian.

We are interested by situations where for some reason we know the quotient group A/ ∼=: G A is 
of finite type, but we do not have a priori any mean to determine its isomorphism class. For example, 
when looking for the effective homotopy of a Kan simplicial set K , a setoid group can be the set Sn(K )

of the n-spheres of K for the Kan composition of spheres (May, 1967, §4), the n-th homotopy group 
being the quotient πn(K ) = Sn(K )/ ∼ by the homotopy relation between spheres (Definition 6).

The space K and the set of spheres Sn(K ) most often are far from being of finite type, and also in 
general no algorithm can decide whether two given n-spheres are homotopic. The definition of πn(K )

is therefore not at all constructive. In this initial situation, we are a priori unable to compute πn(K ).
Sometimes we know that two particular n-spheres s and s′ are homotopic, the proof being an 

(n + 1)-simplex h describing the homotopy, as explained in Definition 5. If this is the case, we write 
s ≈ s′ . In other words, the relation s ∼ s′ is a (hypothetical) predicate, true or false, while s ≈ s′ is 
a “theorem”. We use the same distinction for an arbitrary SG, the relation a ≈ a′ meaning a proof 
of a ∼ a′ is provided. Regarding to type theory, relations like ≈ are the default, and by a process 
of propositional truncation the relation ∼ is deduced (see Univalent Foundations Program, 2013 for 
details).
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We assume the properties required for the relation ‘∼’ for a SG are also satisfied for ‘≈’: for 
example, we are always able to produce a certificate for (a ∗ b) ∗ c ≈ a ∗ (b ∗ c) and, given certificates 
for a ≈ a′ and b ≈ b′ , we can produce a certificate for a ∗ b ≈ a′ ∗ b′ , for a ∗ b ≈ b ∗ a, etc.

3.3. Effective setoid groups

Definition 9. An effective setoid group (ESG) A is a tuple:

A = (A,∼,∗,0, inv, G A, f , g,h) (6)

where:

• (A, ∼, ∗, 0, inv) is a setoid group.
• G A is a finitely generated abelian group provided with an explicit minimal resolution via a Smith 

matrix (as explained in Subsection 3.1).
• f : A → G A is a morphism with respect to the respective structures of A and G A .
• g : G A → A is a ≈-morphism: for every a, b ∈ G A , the relation g(a + b) ≈ g(a) ∗ g(b) is satisfied.
• The composition f g : G A → G A is the identity of G A .
• The component h is a process which, given an arbitrary a ∈ A, produces a proof of a ≈ g f (a).

The reader understands that an effective setoid group is a SG combined with an explicit iso-
morphism A/ ∼ ∼= G A , which group is in particular known. The map f gives the equivalence class 
f (a) ∈ G A of a ∈ A. The map g produces a representative g(a) ∈ A for every element a ∈ G A . If f
and g are coherent, the relation a ∼ g f (a) must be satisfied for every a of A, and the component h
produces a proof of a ≈ g f (a).

In other words, G A is basically just the data needed to make ∼ into a decidable equivalence 
relation, so that an ESG is a group over a decidable setoid. The conditions are then that composition 
in one direction is intensional equality, while in the other direction is propositional equality. One can 
also think that an ESG is an explicit isomorphism between a group over an arbitrary setoid to a group 
with decidable equality, which is furthermore strict (in the categorical sense).

The definitions of SG and ESG make it possible to introduce now the main notion for the imple-
mentation of the effective homotopy theory.

3.4. Effective homotopy

Definition 10. A Kan simplicial set with effective homotopy is a constructive Kan simplicial set K such 
that every homotopy group πn(K ) is an ESG.

As the reader can guess, the interesting point of this definition is the fact that, if a Kan simpli-
cial set K has effective homotopy, then the homotopy groups πn(K ) are given with the relatively 
sophisticated extra information allowing the user to work with them effectively. This can be used for 
example to compute the homotopy groups of the total space of a fibration as it will be explained in 
the following section.

Let us observe that this definition of the effective homotopy of a Kan simplicial is slightly dif-
ferent (but equivalent) to the definition introduced in Romero and Sergeraert (2012). The notions of 
setoid group and effective setoid group have been included now to make the definition clearer and 
more general, so that our Kenzo module can be used in other situations different from the effective 
homotopy context.

In the next two subsections we explain the constructions of resolution for a central extension and 
exact sequence of setoid groups, which are also necessary to determine the effective homotopy of the 
total space of a fibration.
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Fig. 2. Knapp’s proof.

3.5. Resolution for a central extension

If a short exact sequence of groups 0 → A → B → C → 0 is given, it is common in various frame-
works to deduce a resolution of B from resolutions of A and C . In particular, if A, B and C are abelian 
groups of finite type, a simple process produces a short resolution of B from short resolutions of A
and C . This is explained for example in detail in Knapp (2008, Lemma 4.23), but it happens this proof 
is inoperative in our context. It is interesting to explain exactly where the obstacle is located, and to 
modify the proof accordingly.

Knapp’s proof. In Fig. 2, the bottom row 0 → A → B → C → 0 is a given short exact sequence of 
finitely generated abelian groups, the left and right columns being given short resolutions of A and C . 
We must construct the central resolution of B . The Z-module C0 is free, allowing us to lift the map 
εC along j, producing the map h. Using this h, it is easy to define εB making both bottom squares 
commutative. Also, εB is surjective. Therefore 0 → KerεB → A0 ⊕ C0 → B → 0 is the looked-for reso-
lution.

Well, but if B is in fact an unknown group G B , the abelian group associated to a setoid group B , the 
knowledge of the arrow εB : A0 ⊕ C0 → B does not allow to produce the kernel of εB . The equivalence 
relation ‘∼’ defining G B from B is not effective, and examining whether some element b = εB(a0, c0)

of the setoid group B is equivalent to 0 or not in general cannot be decided.

Knapp’s proof revisited. Considering first the classical situation where the group B is known, we give 
now a slightly different construction for the resolution of B . And we will see later this proof is again 
efficient in our contorted situation where the group B is an unknown group, defined as the quotient 
of a setoid group.

Consider Fig. 3 with the same initial data. The map h is constructed as before and the same for the 
projection εB := ε̄A ⊕ ε̄C with ε̄A := iεA and ε̄C := h. Now we describe how we can in fact compute
the kernel of εB . It happens this kernel is necessarily isomorphic to A1 ⊕ C1, the isomorphism being 
an injective map A1 ⊕ C1 → A0 ⊕ C0 to be determined.

All the elements of our diagram are known except a map β : C1 → A0. The key point is the fol-
lowing: the composition εC αC is null but the composition ε̄C αC in general is not.

To understand how this happens, please consider the simplest case of a non-trivial exact se-
quence, when A = C = Z/2, B = Z/4, A1 = A0 = C1 = C0 = Z, the maps εA and εC are the canonical 
projections Z → Z/2, the maps αA and αC are the multiplication by 2. Then the lift of the gen-
erator of C is the generator of B , so that h is also the canonical projection Z → Z/4. This implies 
ε̄CαC (1) = 2 ∈ Z/4, non null.

We will twist the direct sum αA ⊕ αC by the introduction of an appropriate β : C1 → A0. Given 
a generator c1 of C1, the relation jε̄CαC = jhαC = εCαC = 0 implies b := ε̄CαC (c1) is in Ker j = Im i. 
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Fig. 3. Knapp’s proof revisited.

An i-preimage a of b can be lifted as a0 ∈ A0, and we decide β(c1) = −a0. It is clear this a0 is 
constructed to obtain (β(c1), αC (c1)) ∈ KerεB . Doing the same work for the elements of a Z-basis of 
C1 produces a map β ⊕ αC : C1 → A0 ⊕ C0 having its image in KerεB . Let us define αB := αA ⊕ (β ⊕
αC ) =

(
αA β

0 αC

)
; it is clear all the squares of the diagram are commutative.

We claim that:

0 → A1 ⊕ C1
αB−→ A0 ⊕ C0

εB−→ B → 0 (7)

is exact. The map β has been constructed to ensure this sequence is at least a chain complex; mainly 
the composition of both main maps is null, this is the reason of the choice of β . But the columns left 
and right of our diagram in Fig. 3 are exact, all the horizontals are exact, so that the central column is 
exact as well. The sequence (7) is therefore a resolution of B which, if desired, can be made minimal 
by a Smith reduction of αB .

3.6. Exact sequence of SGs

Definition 11. An (effectively) exact sequence of SGs is a sequence:

0 → A
i→ B

j→ C → 0 (8)

where A, B and C are SGs, and i and j are ≈-morphisms. The composition ji is ≈-null; if b ∈ B
satisfies jb ≈ 0, then an algorithm produces a ∈ A satisfying ia ≈ b. The map i is ≈-injective, that is, 
if a ∈ A satisfies i(a) ≈ 0, then an algorithm produces a proof of a ≈ 0. Finally if c ∈ C , an algorithm 
produces b ∈ B and a proof of j(b) ≈ c.

In particular all the equivalence relations mentioned in this definition have the strong form ‘≈’, in 
other words they are assumed with certificates. For example, if a ∈ A, then we can produce a proof of 
ji(a) ≈ 0. If a, a′ ∈ A, we can produce a proof of i(a ∗ a′) ≈ i(a) ∗ i(a′), etc.

For such an exact sequence of SGs, the corresponding sequence of groups:

0 → G A
i→ G B

j→ GC → 0 (9)

is exact, but with these weak hypotheses, these groups are in general unknown.
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Fig. 4. Theorem 12.

Theorem 12. Let:

0 → A
i→ B

j→ C → 0 (10)

be an exact sequence of SGs where A and C are ESGs. Then a canonical process produces an ESG structure for B. 
In particular the group G B is so computed, provided with a short resolution which is a twisted sum of the given 
resolutions of G A and GC .

The appropriate diagram to prove this result is now Fig. 4. The SG A being an E SG , a map f A :
A → G A associating to every element of the setoid A its equivalence class in G A is available. In 
the same way, C being an ESG, a map gC : GC → C is available, associating to every element of the 
“abstract” group GC a “concrete” representative in the setoid C .

Because of the ≈-exactness of the bottom row, we can construct a set-theoretic section σ j of the 
≈-onto map j. And a set-theoretic retraction ρi of the ≈-into map i. Also the provided resolution of 
G A allows us to produce a set-theoretic section σA of εA .

The group G B is not yet known, so that the map h, essential in Knapp’s proof, can be defined here 
only as a map h : C0 → B . It is tempting to define h as the composition σ j gCεC but this would be 
erroneous, for the h to be defined must be ≈-linear, which σ j gCεC in general is not! The map h is first 
to be defined on the elements of a Z-basis of C0, using this time the composition σ j gCεC , and once 
this is done, h is the obvious linear extension to the whole C0.

Now we can use the following path starting from the right component of A1 ⊕ C1 up to the left 
component of A0 ⊕ C0:

C1
αC−→ C0

h−→ B
ρi−→ A

f A−→ G A
σA−→ A0 (11)

Following this path for every element of a Z-basis of C1, then linearly extending to C0 defines a β
map twisting the direct sum αA ⊕ αC .

Now we define G B as the cokernel of αB :=
(

αA β

0 αC

)
; in particular the isomorphism class of 

G B is a direct consequence of the Smith reduction of αB . It is routine work to complete the diagram 
and produce all the missing maps G A → G B → GC , also the maps B → G B and G B → B defining the 
ESG-structure of B , our main goal.
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Table 1
New Kenzo classes.

Kenzo class Mathematical object

ABSMGR-WITH-EFHMT Abelian simplicial group with effective homotopy
EFFECTIVE-SETOID-GROUP Effective setoid group
ESG-MRPH Morphism of effective setoid groups
FNGN-ABGROUP Finitely generated abelian group
FNGN-ABGROUP-MRPH Morphism of finitely generated abelian groups
KAN-FIBRATION Kan fibration
KAN-WITH-EFHMT Kan simplicial set with effective homotopy
SETOID-GROUP Setoid group
SG-MRPH Morphism of setoid groups
SMGR-WITH-EFHMT Simplicial group with effective homotopy

4. Effective homotopy of fibrations

In this section we present some new Kenzo functions for the computation of the effective homo-
topy of the total space of a fibration. The functions implement the following algorithm.

Algorithm 1. (Romero and Sergeraert, 2012)

• Input:
– A constructive Kan fibration p : E → B where B , the base space, is a constructive Kan complex 

(which implies the fiber space F and the total space E are also constructive Kan simplicial 
sets), and F or B is simply connected.

– Respective effective homotopies of the simplicial sets F and B .
• Output: An effective homotopy for the Kan simplicial set E .

The theoretical algorithm was presented in Romero and Sergeraert (2012) although the definition 
of object with effective homotopy given in Romero and Sergeraert (2012) is slightly different from the 
one introduced in Section 3 by means of the notions of setoid group and effective setoid group. The 
implementation uses auxiliary structures already present in Kenzo (simplicial sets, morphisms, etc.) 
and requires 5000 lines of new code including a representation for finitely generated abelian groups, 
setoid groups and effective setoid groups; we deal with this issue in the next section. In Table 1
the reader can find a dictionary with the different Kenzo classes introduced in the module and the 
corresponding mathematical objects.

First of all, new classes KAN-WITH-EFHMT (Kan simplicial set with effective homotopy), SMGR-
WITH-EFHMT (simplicial group with effective homotopy) and ABSMGR-WITH-EFHMT (abelian sim-
plicial group with effective homotopy) have been considered. These classes inherit respectively 
from the Kenzo classes KAN (representing Kan simplicial sets), SIMPLICIAL-GROUP and AB-
SIMPLICIAL-GROUP (abelian simplicial group) and they include a new slot providing the effective 
homotopy of the object.

For example, the class KAN-WITH-EFHMT has one slot1:
efhmt A function which inputs a degree n and returns an ESG.

The homotopy groups of an element of the class KAN-WITH-EFHMT (or of its subclasses SMGR-
WITH-EFHMT and ABSMGR-WITH-EFHMT) can be determined by means of the new function
homotopy-group.

Then, a constructive Kan fibration F ↪→ E
p→ B is implemented as an instance of the new class

KAN-FIBRATION with the following slots:
incl A simplicial morphism representing the inclusion i : F ↪→ E .
incl-1 A morphism i−1 : E ⊃ p−1(∗) → F , a partial inverse of i.
fibr The fibration p : E → B .
kfll A function providing the constructive Kan property of the fibration.

1 Several Lisp technical components without any interest here have been omitted.
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The composition p ◦ incl is supposed to be the null simplicial morphism which sends every 
simplex x ∈ F to the base point in B .

The main function of the new Kenzo module for computing the effective homotopy of the total 
space of a fibration is the function:

kfbr-tot-efhmt fib n
which inputs an object of the class KAN-FIBRATION and a non-negative integer and computes the 
effective homotopy of the total space E in that degree from the effective homotopies of B and F and 
the Kan properties of F , E , B and the fibration p. The result is an object of the class EFFECTIVE-
SETOID-GROUP. The construction requires about 2000 lines of code and follows the idea of the proof 
of Algorithm 1 explained in Romero and Sergeraert (2012), although for the implementation our new 
structures of SG and ESG are used. Here we include a general sketch summarizing the main ideas of 
the theoretical proof and then we include some details about the implementation.

Given a fibration F ↪→ E
p→ B and n ≥ 0, the proof starts with the long exact sequence of homotopy 

(May, 1967, Ch. II):

· · · p∗−→ πn+1(B)
∂−→ πn(F )

inc∗−→ πn(E)
p∗−→ πn(B)

∂−→ πn−1(F )
inc∗−→ · · ·

(12)

where the maps p∗ and inc∗ are the morphisms between the corresponding homotopy groups in-
duced respectively by the fibration p : E → B and the inclusion F ↪→ E , and ∂ : π∗(B) → π∗−1(F ) is 
the connecting morphism (see May, 1967, Ch. II for the definition of this map).

From this one can deduce a short exact sequence

0 −→ Coker
i−→ πn(E)

j−→ Ker −→ 0 (13)

where Coker ≡ Coker[πn+1(B) ∂→ πn(F )] and Ker ≡ Ker[πn(B) ∂→ πn−1(F )], which implies the desired 
group πn(E) can be expressed as an extension of Ker by Coker, πn(E) ∼= Coker×γ Ker, for a cocycle 
γ : Ker× Ker → Coker classifying the extension (see Brown, 1982, Ch. IV.3). Unfortunately, this cocy-
cle is a priori unknown; so that the desired group πn(E) then appears as an unknown quotient of 
Sn(E), a setoid group. Our task consists in determining the missing components f , g , h and G = πn(E)

connecting Sn(E) and πn(E), making of Sn(E) an effective setoid group.
In order to compute the correct extension (and then the components G , f , g and h of the effective 

homotopy of E in degree n), one needs to make the short exact sequence effective (see Definition 11). 
This can be done by defining a set-theoretic section σ : Ker → πn(E) and a set-theoretic retraction 
ρ : πn(E) → Coker such that ρi = IdCoker, iρ + σ j = Idπn(E) and jσ = IdKer. Both maps can be defined 
regarding to the spheres Sn(E) by means of a suitable game of successive applications of the Kan 
properties of B , F , E and the fibration p and the effective homotopies of B and F as explained in 
Romero and Sergeraert (2012).

The implementation of Algorithm 1 is divided in the following steps:

• For each integer n, the groups πn+1(B), πn(F ), πn(B) and πn−1(F ) are determined by means of 
the component G of the effective homotopies of B and F in the corresponding degrees (which 
are given as ESGs).

• The connecting morphisms πn+1(B) ∂−→ πn(F ) and πn(B) ∂−→ πn−1(F ) are computed following 
the definition of May (1967, Ch. II) and using again the effective homotopies of F and B and 
the constructive Kan property of the fibration p. Both of them are implemented as morphisms of 
ESGs.

• Next, we compute the kernel Ker ≡ Ker[πn(B) ∂→ πn−1(F )] and the cokernel Coker =
Coker[πn+1(B) ∂→ πn(F )] by means of two new Kenzo functions called mrph-kernel and
mrph-cokernel respectively. As we will explain in Section 5, the results of these functions 
produce also ESGs and their associated finitely generated abelian groups will be represented by 
means of finite matrices between free Z-modules of finite type MK : K1 → K0 and MC : C1 → C0
respectively.
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Fig. 5. Algorithm 1.

The algorithm must now determine the correct extension of Ker by Coker to determine the group 
πn(E) which appears in the middle of the short exact sequence (13); the key point is the follow-
ing: even if we do not know the isomorphism class of the group πn(E), the algorithm is able to 
determine the extension by making the short exact sequence effective and thanks to the effective 
setoid group structure of Ker and Coker.

• We construct the section σ : Ker → πn(E) and the retraction ρ : πn(E) → Coker following the 
definitions of Romero and Sergeraert (2012) (which make use of the Kan properties of F , E, B
and p and the effective homotopies of B and F ). Let us observe that πn(E) cannot be represented 
yet as an ESG and then the SG structure of Sn(E) introduced in Subsection 3.2 is used instead. In 
other words, σ and ρ are defined only with respect to the spheres representing the (unknown) 
elements of the group.

• Given the effectively exact sequence of SGs

0 Coker Sn(E) Ker 1
ρ σ

i j

(14)

the algorithm presented in Theorem 12 produces an ESG structure on Sn(E), providing the 
looked-for effective homotopy of E in degree n.

The different steps of Algorithm 1 can be represented by means of the diagram of Fig. 5, which 
in particular shows the relation Ker → πn(B) → Sn(B) → Sn(E) → Sn(F ) → πn(F ) → Coker, which is 
then used to determine the free presentation M1 → M0 for πn(E).

5. A Kenzo module for setoid groups and effective setoid groups

As a necessary ingredient for the computation of the effective homotopy of the total space of a 
fibration, a new Kenzo module has been developed dealing with finitely generated abelian groups, 
setoid groups and effective setoid groups. It consists of about 1300 lines of code containing functions 
to construct groups, SGs and ESGs and morphisms of these elements and computing kernels, coker-
nels and central extensions. The module also includes auxiliary functions dealing with matrices and 
computing their canonical form (see Subsection 5.1).
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5.1. Finitely generated abelian groups

A finitely generated abelian group is implemented in Kenzo as an instance of a CLOS class, the 
class FNGN-ABGROUP, with the following main slot:

mtrx A matrix in canonical form corresponding to the minimal resolution of the group.
This relevant slot is stored in Kenzo by means of a sparse matrix of the form:

MG =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

d1 · · · 0
. . .

0 · · · ds

0 · · · 0
...

0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(15)

As said before, a group could also be represented by any general matrix (as for instance in Barakat 
and Bremer, 2008, where a representation of finitely generated modules which works for any com-
putable ring is presented) or by means of the factors in the diagonal and the number for the block 
of 0’s to add below, but the restriction of mtrx being a sparse matrix in canonical form is included 
to facilitate calculations on groups which will be necessary later as explained in Subsection 3.1. To 
this aim, a function canonical-representation is provided computing the canonical form of a 
general matrix N : N1 → N0 and returning a new matrix N ′ : N ′

1 → N ′
0 as the one in (15). The canon-

ical matrix N ′ is obtained by computing the Smith normal form of N and removing rows and lines 
corresponding to 1’s and columns corresponding to 0’s in the diagonal. The function canonical-
representation also returns two matrices R : N ′

0 → N0 and R ′ : N0 → N ′
0 describing the relations 

between the original and the new generators (obtained also by means of the Smith normal form 
algorithm).

To facilitate the construction of instances of the class FNGN-ABGROUP we have provided the func-
tion

build-fngn-abgroup :mtrx mtrx :divs divs
defined with keyword parameters which allows one to construct a group either by means of a ma-
trix or by its list of divisors of the form (d1, . . . , ds, 0, . . . , 0). If the argument mtrx is not present, 
a matrix is constructed by using the parameter divs. The returned value is an instance of the class
FNGN-ABGROUP.

Moreover, our module for finitely generated abelian groups includes some useful functions as for 
example the following ones.

check-fngn-abgroup group
Inform if the slot mtrx of the group group corresponds to a matrix in canonical form.
divisors group
Display on the screen the components Z/d1, . . . , Z/ds or Z of group.
cyclic-group n
Construct the cyclic group Z/n for n ≥ 2. For n = 0, the infinite cyclic group Z is built.
trivial-group
Construct the trivial group Z/1 ≡ 0.
In order to make the program more efficient, when constructing a finitely generated abelian group 

by means of the function build-fngn-abgroup the fact that the matrix mtrx is in canonical form 
is not checked. We follow in this way the general philosophy of Kenzo of building objects without 
checking if the inputs satisfy the necessary conditions (although in this case one can verify that the 
matrix is in canonical form in a later step by means of the function check-fngn-abgroup); in 
particular, let us remark that this kind of checks are not possible when working with objects of 
infinite nature, a frequent situation in the Kenzo program.

A morphism of finitely generated abelian groups is then defined by means of two matrices which 
must commute with the matrices defining source and target groups. In this case the matrices can 
have as entries any integer number and no restriction is considered.
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The class FNGN-ABGROUP-MRPH has the following slots:
sorc The source of the morphism, represented by means of a matrix M A : A1 → A0.
trgt The target of the morphism, represented by means of a matrix MB : B1 → B0.
mtrx0 A matrix M0 : A0 → B0.
mtrx1 A matrix M1 : A1 → B1.

A morphism could in fact be defined only by a matrix M0 such that there exists an M1 which 
makes the diagram commute. A (non-unique) M1, in case it exists, could be computed a posteriori to 
verify that M0 defines a morphism. In our case, the matrix M1 is also included in the construction of 
the morphism to facilitate later calculations.

The new function
build-fngn-abgroup-mrph :sorc sorc :trgt trgt :mtrx0 mtrx0 :mtrx1 mtrx1

inputs two groups and two matrices and constructs an object of the class FNGN-ABGROUP-MRPH.
The main functions to deal with morphisms of finitely generated abelian groups are the following 

ones:
check-fngn-abgroup-mrph mrph
Inform if the morphism mrph is well defined, verifying if the groups sorc and trgt are well de-

fined and the matrices mtrx0 and mtrx1 are compatible with matrices of source and target groups.
mrph-cmps mrph1 mrph2
Compute the composition of the morphisms mrph1 and mrph2.
mrph-zerop mrph
Decide if the morphism mrph is the null morphism.
For example, let us consider the finitely generated abelian groups A = Z/6 ⊕ Z and B = Z/2 and 

the morphism f : A → B given by the sum of the canonical projections Z/6 → Z/2 and Z → Z/2. 
This morphism is defined by means of the matrices M0 = [1 1] and M1 = [3].

Z
2 Z

Z Z

[
1 1

]

[
3

]
[

6
0

] [
2

]

The morphism is constructed in Kenzo with the following statements.

>(progn
(setf a (build-fngn-abgroup :divs ’(6 0)))
(setf b (cyclic-group 2))
(setf m0 (build-mtrx :nrow 1 :ncol 2

:entries ’(1 1)))
(setf m1 (build-mtrx :nrow 1 :ncol 1

:entries ’(3)))
(setf gr-mrph1 (build-fngn-abgroup-mrph :sorc a

:trgt b :mtrx0 m0 :mtrx1 m1)))
[K3 Fngn-abgroup-mrph]
>(check-fngn-abgroup-mrph mrph)
T

The result is the finitely generated abelian group morphism K 3 (the Kenzo object #3) which is 
well defined.

5.2. Setoid groups and effective setoid groups

A new class SETOID-GROUP has been defined with the following slots:
elms A function which determines the elements of the SG.
cmps A function which inputs two elements x and y of the setoid and returns the 

element x ∗ y.
nullel The 0 element of the setoid group.
inv The inverse function.
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Let us observe that the component ∼ of Definition 8, although is mathematically defined for the 
user, is not yet usable by the program: it is not included in the implementation.

Then, the new class EFFECTIVE-SETOID-GROUP inherits from the previous class SETOID-
GROUP by adding 4 new slots:

gr A finitely generated abelian group G ∼= Z/d1 ⊕ · · · ⊕Z/ds ⊕Z
r−s .

f A function which inputs an element x of the setoid and outputs its corresponding 
element (class) a = (a1, . . . , ar) ∈ G .

g A function which inputs a list a = (a1, . . . , ar) defining an element of the group G
and outputs an element x in the setoid representing this class.

h A function which inputs an element x such that f (x) = 0 in G and outputs some proof
of the fact that x ∼ 0 in the setoid. The proof will depend on the nature of the ESG.

As before, the component ∼ is not included in the implementation although in this case it is 
implicitly defined by f . Moreover, let us remark that the component h does not correspond directly 
to the one in Definition 9 but it is equivalent and more convenient for our later constructions.

A morphism f : A → B for A and B SGs if given by the source, the target and the internal function 
defining the image of each element in A, so that the class SG-MRPH has the following slots:

sorc The source of the morphism.
trgt The target of the morphism.
intr The internal function defining the morphism.

A morphism of effective setoid groups is represented by means of the new class ESG-MRPH which 
inherits from SG-MRPH and has the following new slots:

mtrx0 The matrix M0 of the corresponding morphism of finitely generated abelian 
groups.

mtrx1 The matrix M1 of the corresponding morphism of finitely generated abelian 
groups.

These matrices can be introduced directly when building the morphism or can be deduced later 
from the internal function. Moreover, the slots sorc and trgt must be ESGs.

In order to construct an example of morphism of ESGs, let us consider Eilenberg–MacLane spaces 
K (π, n)′s, which are implemented in our new module of Kenzo as objects with effective homotopy. 
Let π be a finitely generated abelian group, the simplicial group K (π, n) satisfies πn(K (π, n)) ∼= π and 
πi(K (π, n)) = 0 for every i �= n. Moreover, one can observe that in fact Sn(K (π, n)) = K (π, n)n ∼= π
and Si(K (π, n)) = {	} ∼= 0 for i �= n, which makes it possible to define the required components gr,
f, g and h of the effective homotopy of K (π, n) in each degree in an easy way (see Romero and 
Sergeraert, 2012 for details).

For instance, considering again the groups A = Z/6 ⊕ Z and B = Z/2 built in Subsection 5.1, we 
construct now the spaces K (A, 1) and K (B, 1) as follows:

> (setf ka1 (k-g a 1))
[K5 Abelian-Simplicial-Group-with-Effective-Homotopy]
> (setf kb1 (k-g b 1))
[K18 Abelian-Simplicial-Group-with-Effective-Homotopy]

Their effective homotopies have been built in an automatic way and for each degree n they pro-
duce an ESG. Let us consider those in degree 1:

>(setf esg1 (funcall (efhmt1 ka1) 1))
[K30 Effective-Setoid-Group]
>(setf esg2 (funcall (efhmt1 kb1) 1))
[K31 Effective-Setoid-Group]

The elements of these ESGs are the 1-spheres of K (A, 1) and K (B, 1), which are canonically iso-
morphic to the elements of the groups A and B respectively. These elements are coded in Kenzo as 
abstract simplices given by a degeneracy operator (coded as a integer) and a geometric (non degenerate) 
simplex. In particular, the null element of both groups correspond to the abstract simplex η0	 coded 
with the pair (1, 	) and the rest of elements of the groups have degeneracy operator equal to 0. Then, 
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one can construct a morphism of effective setoid groups from esg1 to esg2 by defining the internal 
function, which inputs an abstract simplex of K (A, 1) and produces an abstract simplex of K (B, 1). In 
this case, the image of the base point η0	 in K (A, 1) is the base point in K (B, 1) (the same element) 
and the image of the two generators of A is the generator 1 in B:

>(progn
(setf intr #’(lambda (absm)

(with-absm (dgop gmsm) absm
(if (= 0 dgop) (absm 0 (list (list

(+ (first (first gmsm)) (second (first gmsm))))))
absm))))

(setf esg-mrph1 (build-esg-mrph :sorc esg1 :trgt esg2 :intr intr)))
[K32 Effective-Setoid-Group-Morphism]

The matrices mtrx0 and mtrx1 are computed automatically by Kenzo and correspond to the ones 
defined directly for the morphism of finitely generated abelian groups constructed in Subsection 5.1.

>(mtrx0 esg-mrph1)
========== MATRIX 1 row(s) + 2 column(s) =====
R1=[C1=1][C2=1]
========== END-MATRIX
>(mtrx1 esg-mrph1)
========== MATRIX 1 row(s) + 1 column(s) =====
R1=[C1=3]
========== END-MATRIX

5.3. Computing cokernels and kernels

Let f : A → B be a morphism between two ESG. The kernel Ker f ≡ K ⊂ A and the cokernel 
Coker f ≡ C = B/ Im f are also ESG. In order to implement them in Kenzo we need to define the 
different slots. The components elms, cmps, nullel and inv are induced by those of A and B
respectively; it remains to define the slots gr, f, g and h. In particular, it is necessary to determine a 
free presentation of K and C by means of matrices in canonical form.

Let us begin by considering A and B two abelian groups of finite type, represented respectively by 
matrices M A : A1 → A0 and MB : B1 → B0. Let us suppose also that f : A → B is now a morphism of 
finitely generated abelian groups, given by matrices M0 : A0 → B0 and M1 : A1 → B1, and we want to 
determine free presentations for the finitely generated abelian groups Ker f ≡ K and Coker f ≡ C .

We consider the diagram in Fig. 6 where all the horizontal maps have not been included to sim-
plify the diagram but are defined in the obvious way by using the different matrices. The reader can 
observe that each row in the diagram is exact, each column is a chain complex and the column on 
the right Col3 is also exact. In this way, the homology groups of the two columns on the left Col1 and 
Col2 are canonically isomorphic.

Now, the kernel of f is given by the 1-st homology group of Col1 and the cokernel of f is the 
0-th homology group of Col1. Thanks to the isomorphism previously explained, we can compute both 
groups by determining the homology of the second column Col2, the chain complex:

0 −→ A1

[
M A

M1

]
−→ A0 ⊕ B1

[
M0 −MB

]
−→ B0 −→ 0 (16)

The cokernel of f is computed by considering the 1-degree differential matrix of this com-
plex, [M0 − MB ] ≡ D1, and then computing its canonical form by means of our new function
canonical-representation. The new function mrph-cokernel inputs an object of the class
FNGN-ABGROUP-MRPH f : A → B and outputs an instance C of the class FNGN-ABGROUP and two 
matrices P : B0 → C0 and I : C0 → B0 where C0 is the target of the matrix of the returned group 
C . The matrix P corresponds to the projection B → C = Coker; the matrix I is an auxiliary matrix 
expressing the relation between the generators of C and those of B . Let us observe that in general 
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Fig. 6. Chain complex for computing the kernel and the cokernel.

computing the 0-homology of the complex is not sufficient; the matrices P and I can also be nec-
essary for example to compute the effective homotopy of a fibration. In particular, we will use them 
when determining the cokernel of a morphism of effective setoid groups.

The algorithm for computing the kernel of a morphism f : A → B , which is given by the 
1-homology group of the chain complex (16), is a bit more complicated and has several steps:

• We compute the Smith normal form of the matrix [M0 − MB ] ≡ D1. This produces a new matrix 
D ′

1.

• We apply a base change over the matrix 
[

M A

M1

]
≡ D2 corresponding to the previous Smith nor-

mal form, obtaining a new matrix D ′
2 of the form 

[
0

D ′′
2

]
since D ′

1 ◦ D ′
2 = 0.

• We compute the canonical form of D ′′
2.

The new function mrph-kernel inputs an object of the class FNGN-ABGROUP-MRPH f : A → B
and outputs an instance K of the class FNGN-ABGROUP and two matrices I : K0 → A0 and P : A0 →
K0 where K0 is the target of the matrix of the returned group K . The matrix I corresponds in this 
case to the inclusion K = Ker → A and the matrix P : A0 → K0 expresses the relation between the 
generators of A (being in the kernel) and those of K . As before, these matrices are necessary for 
computing the effective homotopy of a fibration.

Let us consider again the morphism defined at the end of Subsection 5.1. Its kernel and its cokernel 
are computed as follows.

> (divisors (first (mrph-kernel gr-mrph1)))
Component Z/3Z
Component Z
> (divisors (first (mrph-cokernel gr-mrph1)))
NIL

The matrices m0 =
[

0 1 0
2 2 2

]
and m1 =

[
0 2
1 2

]
define a morphism between the groups Z/2 ⊕

Z/4 ⊕Z and Z/2 ⊕Z/4. In this case the kernel and the cokernel are respectively the groups Z/2 ⊕Z

and Z/2.
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> (progn
(setf a2 (build-fngn-abgroup :divs ’(2 4 0)))
(setf b2 (build-fngn-abgroup :divs ’(2 4)))
(setf m20 (build-mtrx :nrow 2 :ncol 3

:entries ’(0 1 0 2 2 2)))
(setf m21 (build-mtrx :nrow 2 :ncol 2

:entries ’(0 2 1 2)))
(setf gr-mrph2 (build-fngn-abgroup-mrph :sorc a2

:trgt b2 :mtrx0 m20 :mtrx1 m21)))
[K37 Fngn-abgroup-mrph]
> (check-fngn-abgroup-mrph mrph2)
T
> (divisors (first (mrph-kernel gr-mrph2)))
Component Z/2Z
Component Z
> (divisors (first (mrph-cokernel gr-mrph2)))
Component Z/2Z

As said before, the second component in the results of the functions mrph-kernel and mrph-
cokernel are matrices corresponding respectively to the inclusion K → A and the projection B → C .

> (second (mrph-kernel gr-mrph2))
========== MATRIX 3 row(s) + 2 column(s) =====
R1=[C1=-2][C2=1]
R2=[C1=2]
R3=[C2=-1]
========== END-MATRIX
> (second (mrph-cokernel gr-mrph2))
========== MATRIX 1 row(s) + 2 column(s) =====
R1=[C1=-2][C2=1]
========== END-MATRIX

Let us suppose now that A and B are ESGs and f : A → B is a morphism of ESGs. Then the kernel 
and cokernel of f must be also elements of the class EFFECTIVE-SETOID-GROUP. As said before, 
the components elms, cmps, nullel and inv are induced by those of A and B respectively. The 
component gr is computed by using the functions mrph-kernel and mrph-cokernel defined 
for morphisms of finitely generated abelian groups. Finally, the components f, g and h are defined 
as composition of the components f, g and h of A and B and the auxiliary matrices returned by the 
functions mrph-kernel and mrph-cokernel.

For the example introduced at the end of Subsection 5.2 we obtain the following results:

>(setf cok (mrph-cokernel esg-mrph1))
[K42 Effective-setoid-Group]
>(setf ker (mrph-kernel esg-mrph1))
[K45 Effective-setoid-Group]
>(divisors (gr cok))
NIL
>(divisors (gr ker))
Component Z/3Z
Component Z

5.4. Exact sequences

Let 0 → A → B → C → 0 be a short exact sequence of groups. In Subsection 3.5 we have presented 
an algorithm to deduce a short resolution of B from short resolutions of A and C . Our algorithm 
generalizes the construction of Knapp (2008, Lemma 4.23) and in particular can be applied when the 
group B is an unknown group, defined as the quotient of a setoid group. This algorithm has been 
implemented in Kenzo by means of a new function called central-extension.

Let us consider first the trivial extension of Z/3 by Z/3. It is built in Kenzo by the following 
statements.
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> (progn
(setf z3 (cyclic-group 3))
(setf cocycle3 #’(lambda (c1 c2)

’(0)))
(setf e (first (central-extension z3 z3 cocycle3))))

[K47 Fngn-abgroup]

The new object e is a finitely generated group, and its minimal resolution has been computed by 
Kenzo from the resolutions of A and C , in this case both equal to Z/3. The resolution of e is stored 
in the slot mtrx of the group e:

> (mtrx e)
========== MATRIX 2 row(s) + 2 column(s) =====
R1=[C1=3]
R2=[C2=3]
========== END-MATRIX

The extension e is therefore in this case the group Z/3 ⊕Z/3:

> (divisors e)
Component Z/3Z
Component Z/3Z

As a second example, an extension of Z/6 by Z/3 is considered. In this example the cocycle 
γ : Z/6 ×Z/6 → Z/3 is not trivial and the result is the group Z/18.

> (progn
(setf z6 (cyclic-group 6))
(setf cocycle6 #’(lambda (c1 c2)

(let* ((g1 (mod (first c1) 6))
(g2 (mod (first c2) 6))
(rslt
(if (< (+ g1 g2) 6) 0
(if (= 6 (+ g1 g2)) 1

(let ((g1-1 (1- g1)))
(+ (first (funcall cocycle g1-1 g2))

(- (first (funcall cocycle 1 (+ g1 g2 -1)))
(first (funcall cocycle 1 g1-1)))))

))))
(list rslt))))

(setf e2 (first (central-extension z3 z6 cocycle6)))
(divisors e2))

Component Z/18Z

It is worth remarking that in this case the initial block matrix obtained by applying the algorithm 
explained in Subsection 3.5 is given by[

3 1
0 6

]
(17)

whose canonical form is the final matrix [18].
> (mtrx e2)
========== MATRIX 1 row(s) + 1 column(s) =====
R1=[C1=18]
========== END-MATRIX

For examples of central extensions of ESGs see next section.
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6. Outcomes

In this section we present some examples of calculation of the effective homotopy of the total 
space of a fibration from the effective homotopies of the fiber and the base space. These effective 
homotopies have been computed by implementing the different steps of our Algorithm 1; in partic-
ular, the algorithm for computing a resolution for the central extension of two ESGs presented in 
Subsection 3.5 has been used.

First of all, as a mechanism for constructing examples of Kan fibrations, a function is provided 
to build a Kan fibration from a twisted cartesian product; more concretely, the function twop-
kanfibration inputs a twisting operator τ : B → F (see May, 1967, Ch. IV) and outputs an object 
of the class KAN-FIBRATION.

Let us consider the Eilenberg–MacLane spaces K (Z, 2) and K (Z, 3) and a twisting operator 
τ : K (Z, 3) → K (Z, 2) induced by the multiplication Z ×3→ Z. It is built in Kenzo with the following 
statements:

> (progn
(setf x1 (k-zp 0 3))
(setf chmlcl1 (chml-clss x1 3))
(setf chmlcl (n-mrph 3 chmlcl1))
(setf twop (z-whitehead x1 chmlcl))
(setf fib1 (twop-kanfibration twop)))

[K186 Kan-fibration]

The result is an object of the class KAN-FIBRATION. As explained before, Eilenberg–MacLane 
spaces are automatically built in our new module of Kenzo as objects with effective homotopy. In this 
way, it is possible to compute the homotopy groups of the fiber and the base space of the fibration.

>(setf fiber (sorc (incl1 fib1))
base (trgt (fibr1 fib1)))

[K74 Abelian-Simplicial-Group-with-Effective-Homotopy]
> (homotopy-group fiber 2)
Component Z
> (homotopy-group base 3)
Component Z

Let us remark that thanks to the effective homotopy, which is coded by means of functional pro-
gramming, the computation of the homotopy groups of the base and the fiber in any dimension (which 
are null except for the previous degrees) is done in constant time and can be directly determined.

> (homotopy-group fiber 1000)
NIL
> (homotopy-group base 5000)
NIL

The total space of the fibration fib1 is also built in Kenzo as an object of the class KAN-WITH-
EFHMT but in this case the slot efhmt is in principle unbound.

> (setf tot (sorc (fibr1 fib1)))
[K178 Kan-Simplicial-Set-with-Effective-Homotopy]

When it is needed, the slot is automatically computed by means of the function kfbr-tot-
efhmt which inputs an object of the class KAN-FIBRATION and a non-negative integer and com-
putes the effective homotopy of the total space E in that degree. This function corresponds to the 
implementation of Algorithm 1 and in particular uses the construction for determining the ESG struc-
ture of a central extension explained in Subsection 3.6.
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> (homotopy-group tot 1)
NIL
> (homotopy-group tot 2)
Component Z/3Z
> (homotopy-group tot 3)
NIL

We observe that the simplicial set tot can be seen as a model of the Eilenberg–MacLane space 
K (Z/3, 2).

The space tot can be used now as the base of a new Kan fibration with new fiber K (Z/3, 2) (in 
this case the space K (Z/3, 2) is directly constructed by means of the function k-zp). We consider 
here the null twisting operator τ2 : tot→ K (Z/3, 2).

>(progn
(setf zero-twop2 (zero-twop tot (k-zp 3 2)))
(setf fib2 (twop-kanfibration zero-twop2))
(setf tot2 (sorc (fibr1 fib2))))

[K257 Kan-Simplicial-Set-with-Effective-Homotopy]

The homotopy groups of the new space are:

> (homotopy-group tot2 1)
NIL
> (homotopy-group tot2 2)
Component Z/3Z
Component Z/3Z
> (homotopy-group tot2 3)
NIL

The construction can be iterated, producing in this case a new space tot3 = K (Z/6, 1) × tot2. 
Let us observe that this space is not simply connected but π1 is abelian and can be computed and 
used by the effective homotopy method.

> (progn
(setf zero-twop3 (zero-twop tot2 (k-zp 6 1)))
(setf fib3 (twop-kanfibration zero-twop3))
(setf tot3 (sorc (fibr1 fib3))))

[K339 Kan-Simplicial-Set-with-Effective-Homotopy]
> (homotopy-group tot3 1)
Component Z/6Z
> (homotopy-group tot3 2)
Component Z/3Z
Component Z/3Z
> (homotopy-group tot3 3)
NIL

As a second example of calculation of our programs, we consider now the first steps of the Post-
nikov tower (May, 1967, Ch.V) for the 2-sphere S2. They can be built in Kenzo by means of the 
following statements:

>(progn
(setf p2 (k-zp 0 2))
(setf ch4 (chml-clss p2 4))
(setf f3 (z-whitehead p2 ch4))
(setf pfib3(twop-kanfibration f3))
(setf p3 (sorc (fibr1 pfib3))))

[K426 Kan-Simplicial-Set-with-Effective-Homotopy]

The result is a Kan simplicial set with effective homotopy, stored in the variable p3, which corre-
sponds to the total space of a fibration with twisting operator f 3 : K (Z, 2) → K (Z, 3). The effective 
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homotopy of this space is directly built by Kenzo from the effective homotopies of the base and the 
fiber, so that the homotopy groups of p3 can be determined. We can observe that they correspond to 
πi(S2) for i ≤ 3.

>(homotopy-group p3 1)
NIL
>(homotopy-group p3 2)
Component Z
>(homotopy-group p3 3)
Component Z

The process can be iterated and the space p j of the tower satisfies πi(p j) ∼= πi(S2) for i ≤ j. The 
following Kenzo code shows the homotopy groups πi(S2) for i ≤ 6, obtaining in particular π6(S2) ∼=
Z/12.

>(progn
(setf ch5 (chml-clss p3 5))
(setf f4 (zp-whitehead 2 p3 ch5))
(setf pfib4 (twop-kanfibration f4))
(setf p4 (sorc (fibr1 pfib4)))
(setf ch6 (chml-clss p4 6))
(setf f5 (zp-whitehead 2 p4 ch6))
(setf pfib5 (twop-kanfibration f5))
(setf p5 (sorc (fibr1 pfib5)))
(setf ch7 (chml-clss p5 7))
(setf f6 (zp-whitehead 12 p5 ch7))
(setf pfib6 (twop-kanfibration f6))
(setf p6 (sorc (fibr1 pfib6))))

[K1143 Kan-Simplicial-Set-with-Effective-Homotopy]
>(homotopy-group p6 2)
Component Z
>(homotopy-group p6 3)
Component Z
>(homotopy-group p6 4)
Component Z/2Z
>(homotopy-group p6 5)
Component Z/2Z
>(homotopy-group p6 6)
Component Z/12Z

7. Evaluation of other algorithms and programs

The first theoretical result about an algorithm computing the homotopy groups of a simply con-
nected finite simplicial set is due to Brown (1957), but it is well known this method is too complicated 
to be practically used. A better presentation of this method was given by Schön (1991), also with a 
larger scope, but was never implemented.

Jean-Pierre Serre’s thesis (Serre, 1951) was a revolution in Algebraic Topology, mainly due to the 
use of spectral sequences, the powerful tool invented by Jean Leray and Jean-Louis Koszul. Powerful, but 
yet this tool does not produce an algorithm computing the homology and homotopy groups that are 
looked for. The main goal of the Kenzo program (Dousson et al., 1999), based on effective homology, 
was to circumvent this major obstacle, thanks to an intensive use of functional programming, now 
easy with the modern programming languages, Lisp, Haskell, OCaml, for example. The scope of the 
Kenzo program is large, allowing us for example to compute a few homotopy groups of complicated 
spaces, so far unknown. Up to our knowledge, no other computer program is capable of computing 
homotopy groups of arbitrary simply connected finite simplicial sets as Kenzo. The long experience 
of the algebraic topologists around the homotopy groups of spheres, see typically Ravenel (2003) and 
Kochman (1990), shows how the Adams spectral sequence is powerful in this domain; nevertheless 
up to now without giving an algorithm computing these groups. Also, in the framework of Homotopy 
Type Theory, several people have proven known results about some homotopy groups of spheres, 
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such as π3(S2) = Z, π4(S3) = Z/2, see for example Brunerie (2016). But the Homotopy Type Theory 
methods do not yet have produced an algorithm computing from scratch the first homotopy groups 
of arbitrary simply connected simplicial sets.

It was proved by Bousfield and Kan (1972) that the Adams spectral sequence is below the so-
called Bousfield–Kan spectral sequence, combinatorially more convenient, a spectral sequence which 
can be proved producing an actual algorithm for the desired homotopy groups, see Romero and Serg-
eraert (2017). The exact Serre sequence for fibrations then play an essential role inside this spectral 
sequence, and the present work is mainly designed to give a comfortable framework using this exact 
sequence in the difficult context of setoid simplicial sets.

8. Conclusions and further work

In this work we have presented a new module for the Kenzo system for the computation of the 
effective homotopy of the total space of a fibration from the effective homotopies of the fiber and the 
base space. The module consists of about 5000 lines of Common Lisp code containing the definition of 
new structures and functions. In particular, it includes the notions of setoid group and effective setoid 
group and a new module for working with finitely generated abelian groups and computing kernels, 
cokernels and central extensions which is then used to implement the long exact homotopy sequence 
of a fibration. The chosen representation for groups is that of a free presentation by means of a 
matrix in canonical form. As examples of calculations, some particular fibrations have been presented 
showing the computation of their homotopy groups.

The algorithm computing the effective homotopy of the total space of a fibration could be en-
hanced by obtaining similar programs producing the effective homotopy of the base space (respec-
tively the fiber space) from the effective homotopies of the total space and the fiber (resp. the base). 
Furthermore, other constructions (loop spaces, classifying spaces, etc.) in Algebraic Topology should 
be studied, as already done in the effective homology framework (see Rubio and Sergeraert, 2006). In 
other words, given a Kan simplicial set and a solution for its homotopical problem, algorithms should 
be designed and implemented computing the effective homotopy of its loop space, classifying space, 
etc. The case of the loop space has been considered in Romero and Sergeraert (2015), where a theo-
retical (not yet implemented) algorithm producing the effective homotopy of iterated loop spaces has 
been developed.

On the other hand, our algorithm computing the effective homotopy of a fibration can be con-
sidered an important ingredient in the development of a constructive version of the Bousfield–Kan 
spectral sequence associated with a simplicial set X (Bousfield and Kan, 1972). In Romero and Serger-
aert (2017) we developed a theoretical algorithm producing the different components of the spectral 
sequence when the initial space X is an object with effective homology. As a further work, the imple-
mentation of this algorithm should be done in Common Lisp as a new module for the Kenzo system 
making use of the module for the effective homotopy of fibrations presented in this paper.
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