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Abstract

This paper is devoted to the Cradle Theorem. It is a combinatorial contraction dis-
covered when studying a crucial point of the effective Bousfield-Kan spectral sequence,
an unavoidable step to make effective the famous Adams spectral sequence. The ho-
motopy equivalence TOP(Sp,TOP(Sq, X)) ∼ TOP(Sp+q, X) is obvious in ordinary
topology, not surprising in combinatorial topology, but it happens the proof in the last
case is relatively difficult, it is essentially our Cradle Theorem. Based on a simple and
natural discrete vector field, it produces also new tools to understand and efficiently
implement the Eilenberg-Zilber theorem, the usual one and the twisted one as well.
Once the Cradle Theorem is proved, we quickly explain its role in the Bousfield-Kan
spectral sequence, via the notion of effective homotopy. An interested reader must
know the present paper is elementary, in particular no knowledge of the Bousfield-Kan
and Adams spectral sequences is required. The cradle theorem could also be a good
opportunity to enter the subject of discrete vector fields and to understand its power
in an unexpected field: the structure of simplicial products.

1 Introduction

Given a topological spaceX, its loop space ΩX is defined as the pointed function space ΩX :=
TOP(S1, X) := TOP((S1, ?), (X, ?)), where S1 is the sphere of dimension 1; that is, the ele-
ments of ΩX are continuous maps α : S1 → X such that α(?) = ?. If one applies recursively
the construction, we obtain the iterated loop space ΩpX given by ΩpX = Ω(Ωp−1X). It can
be proved that ΩpX ∼ TOP(Sp, X), where Sp is the sphere of dimension p.

A similar construction can be considered in the category of simplicial sets, denoted SS.
Given a simplicial set K (with a base point ? ∈ K0) satisfying the Kan extension property [5]
and p ≥ 1, one can construct the pointed function space SS(Sp, K); here Sp denotes the
simplicial model for the p-sphere, with only two non-degenerate simplices: the base point ? in
dimension 0 and sp in dimension p. It is well-known that SS(Sp,−) can be seen as a model for
the topological iterated loop space Ωp, and in particular, the homotopy groups of SS(Sp, K)
satisfy πn(SS(Sp, K)) ∼= πn+p(K) (see [4]). However, the isomorphism so indirectly obtained
is not combinatorially constructive so that we do not have the explicit relation between the
elements of πn(SS(Sp, K)) and those of πn+p(K).
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The simplicial functional model for the iterated loop space of a simplicial set K, that
is, the function spaces SS(Sp, K) for p ≥ 1, appear in the construction of the Bousfield-
Kan spectral sequence, an essential Algebraic Topology tool introduced in [2], designed
for computing homotopy groups of simplicial sets1. More concretely, in order to produce
an algorithm computing the different levels of the Bousfield-Kan spectral sequence of a
(1-reduced) simplicial set X, one needs to constructively compute the homotopy groups of
some SS(Sp, GX), where GX is a particular 1-reduced simplicial Abelian group obtained from
the initial simplicial set X and ΩpGX := SS(Sp, GX) is the simplicial functional model for
the simplicial iterated loop space of a simplicial set. The definition of GX is given in [1,
Chapter X], it is not used here, our result may be applied to arbitrary reduced simplicial
groups. The Cradle theorem is used to constructively obtain the necessary correspondence
between the combinatorial homotopy groups of GX and those of ΩpGX . As already said,
it is well-known that πn(SS(Sp, GX)) ∼= πn+p(GX), but it is necessary to remark here that
an explicit isomorphism between these groups is needed to produce an algorithm computing
the Bousfield-Kan spectral sequence.

In order to construct the desired explicit isomorphism πn(SS(Sp, GX)) ∼= πn+p(GX), we
apply our new effective homotopy theory [8], an organization designed to constructively
compute the homotopy groups of simplicial sets. Obtaining the desired isomorphism was ex-
pected to be a routine exercise, but its construction is in fact relatively difficult, leading us to
use Forman’s Discrete Vector Fields [3], revealing also the power of this tool in a totally new
domain. The main point is the so-called Cradle Theorem, a sophisticated algorithm construc-
tively describing a combinatorial contraction of a general prism over its corresponding cradle.
The Cradle theorem, or more precisely its underlying technology, has also been used in [9]
to give a striking new understanding of basic theorems of Algebraic Topology, namely the
Eilenberg- Zilber theorem, the twisted Eilenberg-Zilber theorem, and the Eilenberg-MacLane
correspondance between the Classifying Space and Bar constructions.

2 A combinatorial tool: the Cradle Theorem

In this section we present a combinatorial result, named the Cradle Theorem, that we will
use in Section 3 to develop an algorithm computing the effective homotopy of iterated loop
spaces. This combinatorial tool is based on the notion of Discrete Vector Field, which is an
essential component of Forman’s Discrete Morse Theory [3], and has been adapted to the
algebraic setting in [7].

In [9] we briefly introduced the Cradle Theorem to present a different understanding
of some classical results in Algebraic Topology such as the Eilenberg- Zilber theorem, the
twisted Eilenberg-Zilber theorem, and the Eilenberg-MacLane correspondance between the
Classifying Space and Bar constructions. The proof of the Cradle Theorem was not given in

1Pedro Real’s algorithm computing the homotopy groups [6] uses the Whitehead tower, requiring an
iterative use of Serre and Eilenberg-Moore spectral sequences, while Bousfield-Kan produces a unique spectral
sequence, with a rich algebraic structure, leading in particular, if localized at a prime, to the module structure
with respect to the corresponding Steenrod algebra, that is, the Adams spectral sequence.
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that paper; we use the opportunity of our homotopical problem to give here a detailed proof;
it was in fact discovered when processing this essential step of the Bousfield-Kan spectral
sequence explained in Section 3.

2.1 Collapses and Discrete Vector Fields

Let us begin by recalling some definitions which will be necessary for our combinatorial
result.

Definition 1. An elementary collapse is a pair (X,A) of simplicial sets, satisfying the
following conditions:

1. The component A is a simplicial subset of the simplicial set X.

2. The difference X−A is made of exactly two non-degenerate simplices τ ∈ Xn and σ ∈
Xn−1, the second one σ being a face of the first one τ .

3. The incidence relation σ = ∂kτ holds for a unique index k ∈ 0...n.

If the condition 3 is not satisfied, the homotopy types of A and X could be different.

Definition 2. A collapse is a pair (X,A) of simplicial sets satisfying the following conditions:

1. The component A is a simplicial subset of the simplicial set X.

2. There exists a sequence (Ai)0≤i≤m with:

(a) A0 = A and Am = X.
(b) For every 0 < i ≤ m, the pair (Ai, Ai−1) is an elementary collapse.

In other words, a collapse is a finite sequence of elementary collapses. If (X,A) is a
collapse, then a topological contraction X → A can be defined.

Definition 3. Let (X,A) be a collapse. A sequence of elementary collapses is an order-
ing (σ1, σ2, . . . , σ2r−1, σ2r) of all non-degenerate simplices of the difference X − A satisfying
the following properties. Let A0 = A and Ai = Ai−1 ∪ σi for 1 ≤ i ≤ 2r. Then:

1. Every face of σi is in Ai−1.

2. The simplex σ2i−1 is a face of the simplex σ2i, so that the pair (A2i, A2i−2) is an ele-
mentary collapse.

3. A2r = X.

Such a description is a particular case of Forman’s Discrete Vector Field. In our case the
vector field is V = {(σ2i−1, σ2i)0<i≤r}.
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2.2 The Cradle Theorem

Definition 4. Let p, q be two natural numbers. The prism ∆p,q is the simplicial set ∆p,q :=
∆p ×∆q.

We have to define the cradle Cp,q, a simplicial subcomplex of the prism ∆p,q.

Definition 5. The q-horn Λq is the subcomplex Λq ⊂ ∆q made of all the faces of ∆q except
the ∂0-face.

Let us observe that the horn Λq is the union of q simplices of dimension q − 1; adding
the missing face ∂0∆q would produce the boundary ∂∆q of the q-simplex.

Generalizing the previous definition, one can define Λq
j ⊂ ∆q for 0 ≤ j ≤ q as the

subcomplex made of all the faces of ∆q except the ∂j-face. In particular, Λq
0 = Λq.

Definition 6. The (p, q)-cradle is the simplicial subcomplex Cp,q ⊂ ∆p,q defined by:

Cp,q := (∆p × Λq) ∪ (∂∆p ×∆q)

This designation cradle, due to Julio Rubio, is inspired by the particular case p = 1
and q = 2.

∆2

•

•
•

•

•
•

•

•
•

• ∆1

•
•

•
•

Λ2

Theorem 7. (Cradle Theorem) An algorithm can be written down:

• Input:

– Integers p, q ∈ N.

• Output: A sequence of elementary collapses (σ1, σ2, . . . , σ2r−1, σ2r) for the pair (X,A) =
(∆p,q, Cp,q).

The proof of the Cradle Theorem is “elementary”, but relatively difficult, needing a
small package of auxiliary notions having their own interest. These notions correspond to
the standard terminology for products of simplicial sets (for details, see http://ncatlab.

org/nlab/show/product+of+simplices or [11, Section 8]).
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2.2.1 Triangulations

We have to work in the simplicial complex ∆p,q = ∆p × ∆q. A vertex of ∆p is an integer
in p = [0 . . . p] and a (non-degenerate) d-simplex of ∆p is a strictly increasing sequence of
integers 0 ≤ v0 < · · · < vd ≤ p. The same for our second factor ∆q.

The canonical triangulation of ∆p,q is made of (non-degenerate) simplices ((v0, v
′
0), . . . , (vd, v

′
d))

satisfying the relations:

• 0 ≤ v0 ≤ v1 ≤ · · · ≤ vd ≤ p.

• 0 ≤ v′0 ≤ v′1 ≤ · · · ≤ v′d ≤ q.

• (vi, v
′
i) 6= (vi−1, v

′
i−1) for 1 ≤ i ≤ d.

In other words, the canonical triangulation of ∆p,q = ∆p × ∆q is associated to the
poset p× q endowed with the product order of the factors. For example the three maximal
simplices of ∆2,1 = ∆2 ×∆1 are:

• ((0, 0), (0, 1), (1, 1), (2, 1)).

• ((0, 0), (1, 0), (1, 1), (2, 1)).

(0,0)

(1,0)

(2,0)

(0,1)

(1,1)

(2,1)

• ((0, 0), (1, 0), (2, 0), (2, 1)).

2.2.2 Simplex = s-path

We can see the poset p× q as a lattice where we arrange the first factor p in the horizontal
direction and the second factor q in the vertical direction. The first figure below is the
lattice 2 × 1 while the other figures are representations of the maximal simplices of ∆2,1 =
∆2 ×∆1 as increasing paths in the lattice.

•
•
•
•
•
•↑∆1

→
∆2

•
•
•
•
•
•

•
•
•
•
•
•

•
•
•
•
•
•

Definition 8. An s-path π of the lattice p × q is a finite sequence π = ((ai, bi))0≤i≤d of
elements of p × q satisfying (ai−1, bi−1) < (ai, bi) for every 1 ≤ i ≤ d with respect to
the product order. The d-simplex σπ represented by the path π is the convex hull of the
points (ai, bi) in the prism ∆p,q.

The simplices ∆p and ∆q have affine structures which define a product affine structure
on ∆p,q, and the notion of convex hull is well defined on ∆p,q.

“S-path” stands for “path representing a simplex”, more precisely a non-degenerate sim-
plex. Replacing the strict inequality between two successive vertices by a non-strict inequality
would lead to analogous representations for degenerate simplices, but such simplices are not
to be considered in this section.
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This representation of a simplex as an s-path running in a lattice is the key point to
master the relatively complex structure of the canonical prism triangulations.

Definition 9. The last simplex λp,q of the prism ∆p,q is the (p+ q)-simplex defined by the
path:

λp,q = ((0, 0), (0, 1), . . . , (0, q), (1, q), . . . , (p, q))

The path runs some edges of 0 ×∆q, visiting all the corresponding vertices in the right
order; next it runs some edges of ∆p × q, visiting all the corresponding vertices also in the
right order. Geometrically, the last simplex is the convex hull of the visited vertices. The
last simplex of the prism ∆1,2 = ∆1×∆2 is shown in the figure below. The path generating
the last simplex is drawn in full lines, the other edges of this last simplex are dashed lines,
and the other edges of the prism are in dotted lines.

∆2

•

•
•

•

•
•

•

•
•

• ∆1

•

2.2.3 Subcomplexes

Definition 10. The hollowed prism H∆p,q ⊂ ∆p,q is the difference:

H∆p,q := ∆p,q − int(last simplex).

The faces of the last simplex are retained, but the interior of this simplex is removed.

Definition 11. The boundary ∂∆p,q of the prism ∆p,q is defined by:

∂∆p,q := (∂∆p ×∆q) ∪ (∆p × ∂∆q)

It is the geometrical Leibniz formula.

We will give a detailed description of the pair (H∆p,q, ∂∆p,q) as a collapse, cf. Defini-
tion 1; it is a combinatorial version of the well-known topological contractibility of ∆p,q−{∗}
on ∂∆p,q for every point ∗ of the interior of the prism. A very simple admissible vector field
will be given to homologically annihilate the difference H∆p,q − ∂∆p,q. In fact, carefully
ordering the components of this vector field will give the desired collapse.

2.2.4 Interior and exterior simplices of a prism

Definition 12. A simplex σ of the prism ∆p,q is said to be exterior if it is included in the
boundary of the prism: σ ⊂ ∂∆p,q. Otherwise the simplex is said to be interior. We use the
same terminology for the s-paths, implicitly referring to the simplices coded by these paths.
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The faces of an exterior simplex are also exterior, but an interior simplex can have faces
of both sorts.

Proposition 13. An s-path π in p× q is interior if and only if the projection-paths π1 on p
and π2 on q run all the respective vertices of p and q.

The first s-path π in the figure below represents a 1-simplex in ∂∆1,2, for the point 1 is
missing in the projection π2 on the second factor 2: π is an exterior simplex. The second
s-path π′ represents an interior 2-simplex of ∆1,2, for both projections are surjective.

• •
• •
• •

π =

π = ∂1π
′ • •

• •
• •

π′ = (1)

In particular, if π = ((ai, bi))0≤i≤d is an interior simplex of ∆p,q, then necessarily (a0, b0) =
(0, 0) and (ad, bd) = (p, q): an s-path representing an interior simplex of ∆p,q starts from (0, 0)
and arrives at (p, q).

Proof. If for example the first projection of π is not surjective, this means the first projection
of the generating path does not run all the vertices of ∆p, and therefore is included in one
of the faces ∂k∆

p of ∆p. This implies the simplex σπ is included in ∂k∆p ×∆q ⊂ ∂∆p,q.

We so obtain a simple description of an interior simplex ((ai, bi))0≤i≤d: it starts from (a0, b0) =
(0, 0) and arrives at (ad, bd) = (p, q); furthermore, for every 1 ≤ i ≤ d, the difference (ai, bi)−
(ai−1, bi−1) is (0, 1) or (1, 0) or (1, 1): both components of this difference are non-negative,
and if one of these components is ≥ 2, then the surjectivity property is not satisfied. In a
geometrical way, the only possible elementary steps for an s-path π describing an interior
simplex of ∆p,q are:

• •
• •

• •
• •

• •
• •

2.2.5 Faces of s-paths

If π = ((ai, bi))0≤i≤d represents a d-simplex σπ of ∆p,q, the face ∂kσπ is represented by the
same s-path except the k-th component (ak, bk) which is removed: we could say this point
of p × q is skipped. For example in Figure (1) above, ∂1π

′ = π. In particular a face of an
interior simplex is not necessarily interior.

Proposition 14. Let π = ((ai, bi))0≤i≤d be an s-path representing an interior d-simplex
of ∆p,q. The faces ∂0π and ∂dπ are certainly not interior. For 1 ≤ k ≤ d−1, the face ∂kπ is
interior if and only if the point (ak, bk) is a right-angle bend of the s-path π in the lattice p×q.
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Proof. Removing the vertex (a0, b0) = (0, 0) certainly makes non-surjective a projection π1

or π2 (or both if (a1, b1) = (1, 1)). The same if the last point (ad, bd) is removed.

If we examine now the case of ∂kπ for 1 ≤ k ≤ d− 1, nine possible configurations for two
consecutive elementary steps before and after the vertex (ak, bk) to be removed:

• • •× • • •
• • •
× • •

• •
× • • •

• • •×

• • •
• • •
• • •
×

• •
• •
• •
×

• •
• •×

• •
• •
• •
×

•
•
•
×

(2)

In these figures, the intermediate point •× of the displayed part of the considered s-path is
assumed to be the point (ak, bk) of the lattice, to be removed to obtain the face ∂kπ. In the
cases 1, 2, 4 and 5, skipping this point makes non-surjective the first projection π1 on p . In
the cases 5, 6, 8 and 9, the second projection π2 on q becomes non-surjective. There remain
the cases 3 and 7 where the announced right-angle bend is observed.

2.2.6 The Hollowed Prism Theorem

Theorem 15. (Hollowed Prism Theorem) The pair (H∆p,q, ∂∆p,q) is a collapse.

The hollowed prism can be collapsed on the boundary of the same prism.

Proof. The proof is recursive with respect to the pair (p, q). If p = 0, the boundary of ∆0 = ∗
is void, so that the boundary of ∆0,q is simply ∂∆q; the last simplex is the unique q-simplex,
the hollowed prism H∆0,q is also ∂∆q: the desired collapse is trivial, more precisely the
corresponding vector field is empty. The same if q = 0 for the pair (H∆p,0, ∂∆p,0).

The simplices of H∆p,q − ∂∆p,q are all the interior simplices of ∆p,q, except the last
simplex. In particular, the corresponding s-paths satisfy the condition explained in Propo-
sition 13.

Now we prove the general case (p, q) with p, q > 0, assuming the proofs of the cases
(p − 1, q − 1), (p, q − 1) and (p − 1, q) are available. Three justifying filling sequences are
available; it is more convenient to see the sequences of simplices as sequences of s-paths :

• Σ1 = (π1
i )0<i≤2r1 for ∆p−1,q−1 = ∂p∆

p × ∂q∆q.

• Σ2 = (π2
i )0<i≤2r2 for ∆p,q−1 = ∆p × ∂q∆q.

• Σ3 = (π3
i )0<i≤2r3 for ∆p−1,q = ∂p∆

p ×∆q.

All the components of these filling sequences can be viewed as s-paths starting from (0, 0)
and going to (p− 1, q − 1) (resp. (p, q − 1), (p− 1, q)).
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These filling sequences are made of all the non-degenerate s-paths (simplices) of the
difference H∆∗,∗ − ∂∆∗,∗, ordered in such a way every face of an s-path is either interior
and present beforehand in the list, or exterior; furthermore, for the s-paths of even index,
the previous one is one of its faces. Using these sequences, we must construct an analogous
sequence for the bidimension (p, q).

Every s-path πji of dimension d can be completed into an interior s-path πji of dimen-
sion d+ 1 in p× q in a unique way, adding a last diagonal step ((p− 1, q− 1), (p, q)) if j = 1,
or a last vertical step ((p, q − 1), (p, q)) if j = 2, or a last horizontal step ((p − 1, q), (p, q))
if j = 3. Conversely, every interior s-path of ∆p,q can be obtained from an interior s-path of
∆p−1,q−1, ∆p,q−1 or ∆p−1,q in a unique way by this completion process.

For example, in the next figure, we illustrate how an s-path π1
i of 3× 2 can be completed

into an s-path π1
i of 4× 3:

• • • • •
• • • • •
• • • • •
• • • • •

π1
i =

• • • • •
• • • • •
• • • • •
• • • • •

π1
i =

Adding such a last diagonal step does not add any right-angle bend in the s-path, so that
the assumed incidence properties of the initial sequence Σ1 = (π1

1, . . . , π
1
2r1

) are essentially

preserved in the completed sequence Σ
1

= (π1
1, . . . , π

1
2r1

): the faces of each s-path are already
present in the sequence or are exterior; in the even case π1

2i ∈ Σ1, the previous s-path π1
2i−1

is a face of π1
2i and hence π1

2i−1 is a face of π1
2i. For example in the illustration above, if i

is even, certainly ∂1π
1
i = π1

i−1 (for this face is the only interior face) and this implies also
∂1π

1
i = π1

i−1.

On the contrary, in the case j = 2, the completion process can add one right-angle bend,
no more. For example, in this illustration:

• • • • •
• • • • •
• • • • •
• • • • •

π2
i =

• • • • •
• • • • •
• • • • •
• • • • •

π2
i =

• • • • •
• • • • •
• • • • •
• • • • •

∂5π
2
i =

If the index i is even, then ∂1π
2
i = π2

i−1 and the relation ∂1π
2
i = π2

i−1 is satisfied as well.
But another face of π2

i is interior, namely ∂5π
2
i , generated by the new right-angle bend;

because of the diagonal nature of the first step of this face, this face is present in the list Σ
1
,

see the previous illustration.

Which is explained about Σ
2

with respect to Σ
1

is valid as well for the list Σ
3

with respect

to Σ
1
.

The so-called last simplices, see Definition 9, must not be forgotten! The last sim-
plex λp−1,q−1 (resp. λp,q−1) is not in the list Σ1 (resp. Σ2): these lists describe the collapses of
the hollowed prisms over the corresponding boundaries: all the interior simplices are in these
lists except the last ones. The figure below gives these simplices in the case (p, q) = (4, 3):

• • • • •
• • • • •
• • • • •
• • • • •

λ3,2 =
• • • • •
• • • • •
• • • • •
• • • • •

λ4,2 =
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Examining now the respective completed paths:

• • • • •
• • • • •
• • • • •
• • • • •

λ
3,2

= • • • • •
• • • • •
• • • • •
• • • • •

λ
4,2

=

shows that ∂p+q−1λ
p,q−1

= λ
p−1,q−1

; also the faces ∂q−1λ
p−1,q−1

and ∂q−1λ
p,q−1

are respectively

in Σ
1

and Σ
2
.

Putting together all these facts leads to the conclusion: if Σ1, Σ2 and Σ3 are respective
filling sequences for (H∆(∗,∗) − ∂∆(∗,∗)), with (∗, ∗) = (p− 1, q − 1), (p, q − 1) and (p− 1, q)
then the following list is a filling sequence proving the desired collapse property for the indices
(p, q):

Σ
1 || Σ

2 || (λ
p−1,q−1

, λ
p,q−1

) || Σ
3

where ‘||’ is the list concatenation. Fortunately, the last simplex λp,q = λ
p−1,q

is the only
interior simplex of ∆p,q missing in this list.

Let us remark that in [7] a different (but totally analogous) Hollowed Prism Theorem
was proved; there the last simplex λp,q is the (p+ q)-simplex of ∆p,q

λp,q = ((0, 0), (1, 0), . . . , (p, 0), (p, 1), . . . , (p, q))

and the proof of the theorem is also done by induction, assuming the proofs of the cases
(p− 1, q − 1), (p, q − 1) and (p− 1, q) are available.

2.2.7 Examples

The reader can apply himself the above algorithm for the small dimensions. The table below
gives all the results for (p, q) ≤ (2, 2).

• •
• •(p, q) = (1, 1) • •

• •

• • •
• • •(p, q) = (2, 1) • • •

• • •
• • •
• • •

• • •
• • •

• •
• •
• •

(p, q) = (1, 2) • •
• •
• •

• •
• •
• •

• •
• •
• •

• • •
• • •
• • •

(p, q) = (2, 2) • • •
• • •
• • •

• • •
• • •
• • •

• • •
• • •
• • •

• • •
• • •
• • •

• • •
• • •
• • •

• • •
• • •
• • •

• • •
• • •
• • •

• • •
• • •
• • •

• • •
• • •
• • •

• • •
• • •
• • •

• • •
• • •
• • •

For significantly bigger values of (p, q), only a program can produce the corresponding fill-
ing sequences. A short Lisp program (45 lines) can produce the justifying list for reasonably
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small values of p and q. For example, if p = q = 8, the filling sequence is made of 265,728
paths, a list produced in 4 seconds on a modest laptop. But if p = q = 10, the number of
paths is 8,097,452; and the same laptop is then out of memory. A typical behaviour in front
of exponential complexity: the necessary number of paths is > 3p if p = q > 1.

2.2.8 Proof of the Cradle Theorem

Proof. We must again construct a justifying list. The difference ∆p,q − Cp,q is made of the
interior ∆p,q − ∂∆p,q of the prism ∆p,q and the interior of the highest face ∆p × ∂0∆q. The
justifying list of (H∆p,q−1, ∂∆p,q−1) fills in this highest face except its last simplex λp,q−1;
then the justifying list of (H∆p,q, ∂∆p,q) fills in the rest of the prism ∆p,q except its last
simplex λp,q; there remains to complete by both last simplices.

For example, the s-path list for the pair (∆1,2, C1,2) with respect to the genuine cradle C1,2

is the following.

• •
• •
• •

• •
• •
• •

• •
• •
• •

• •
• •
• •

• •
• •
• •

• •
• •
• •

• •
• •
• •

• •
• •
• •

Remark 16. Similar collapses (∆p,q, Cp,q
j ) can be obtained for Cp,q

j := (∆p×Λq
j)∪(∂∆p×∆q),

for 0 ≤ j ≤ q.

3 Effective homotopy of iterated loop spaces

In this section we briefly explain the role of the Cradle theorem for the computation of
effective homotopy of iterated loop spaces, a necessary ingredient for the construction of
an algorithm computing the Bousfield-Kan spectral sequence. See [10] for a more complete
description of the results presented in this section.

The Bousfield-Kan spectral sequence is an Algebraic Topology tool designed for com-
puting homotopy groups of simplicial sets. One of the ingredients for the development of
an algorithm computing the different levels of the Bousfield-Kan spectral sequence of a
(1-reduced) simplicial set X consists in constructively computing the homotopy groups of
some ΩpGX , where GX is a particular 1-reduced simplicial Abelian group obtained from the
initial simplicial set X (see in [1] the definition of these simplicial groups GX and more infor-
mation on the construction of the Bousfield-Kan spectral sequence) and ΩpGX := SS(Sp, GX)
is the simplicial functional model for the iterated loop space of a simplicial set. The Cradle
theorem is used to this aim.

The effective homotopy method was introduced in [8] trying to compute homotopy groups
of Kan simplicial sets, a challenging problem in the field of Algebraic Topology. It is necessary
that the Kan property [5] is satisfied in a constructive way, that is, the desired x is given
explicitly by an algorithm (and then the simplicial set K is said to be constructive). In [8] the
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notion of object with effective homotopy was defined, consisting in four algorithms describing
in a constructive way the homotopy groups of a constructive Kan simplicial set, which is said
to have effective homotopy. The main point is the following: if a “reasonable” combinatorial
topological construction is made using objects with effective homotopy, then the resulting
object is also with effective homotopy. As a first work in this research, we presented in [8]
a result allowing one to compute the effective homotopy of the total space of a constructive
Kan fibration [8] if the base and fiber spaces are objects with effective homotopy. Similar
algorithms have been developed computing the effective homotopy of the fiber (resp. base)
space of a fibration when the effective homotopies of the base (resp. fiber) and the total
space are known.

Given a simplicial set G (with a base point ?) and an integer p ≥ 1, the pointed function
space ΩpG := SS(Sp, G) is a simplicial set whose q-simplices are maps α : Sp × ∆q =
∆p/∂∆p ×∆q → G such that α(?, σ) = ? for every σ ∈ ∆q (see [5] for the definition of face
and degeneracy operators). For p = 1, ΩG := SS(S1, G) is known to be a model for the loop

space of G, that is, it is the fiber of a fibration ΩG ↪→ PG
f→ G where PG is a contractible

space. In our case PG is the pointed function space PG := SS(∆1, G), which is known to be
contractible, the base space G is seen as G ∼= SS(∆0, G), and f = (∂0)

∗
: PG = SS(∆1, G)→

SS(∆0, G) ∼= G is induced by ∂0 : ∆0 → ∆1. From the long homotopy exact sequence of
the fibration one can easily deduce that π∗(ΩG) ∼= π∗+1(G). However, it is necessary to
remark that the isomorphism obtained from the long exact sequence of homotopy is not
constructive, and therefore we do not have the explicit correspondence between both groups.

For p > 1, one has also fibrations ΩpG ↪→ P pG
(∂0)

∗

→ Ωp−1G where P pG := SS(∆p/Λp, G)
is a again a contractible simplicial Abelian group. As before, the long exact sequence of
homotopy implies π∗(Ω

pG) ∼= π∗+1(Ωp−1G) and then one has π∗(Ω
pG) ∼= π∗+p(G), but again

the isomorphism is not explicit.

In order to compute in a constructive way the homotopy groups of the spaces ΩpG,
we determine in an iterative way the effective homotopy of these spaces. We start with

the fibration ΩG ↪→ PG
f→ G. The three spaces in the fibration are simplicial Abelian

groups and therefore their Kan property is constructive (see [5]). Then, on the one hand,
the base space G is supposed to have effective homotopy. On the other hand, the total
space PG is known to be contractible. If we make PG an object with effective homotopy
(defining the four necessary algorithms, see [8]) and we prove that the fibration f = (∂0)

∗

is a constructive Kan fibration, then our algorithms provide the effective homotopy of the

fiber ΩG. For p > 1, one has the fibrations ΩpG ↪→ P pG
(∂0)

∗

→ Ωp−1G. As before, the
three spaces in the fibration are simplicial Abelian groups and therefore constructive Kan
simplicial sets. We suppose by induction that Ωp−1G has effective homotopy. If results are
given proving that the fibration f = (∂0)

∗
is a constructive Kan fibration and that the total

space P pG := SS(∆p/Λp, G) has effective homotopy, we could also obtain the desired effective
homotopy of ΩpG. All these necessary intermediate results are obtained by means of the
Cradle Theorem, which plays an essential role in the proofs of the two following lemmas (see
[10] for details).

Lemma 17. The fibrations f = (∂0)
∗

: P pG→ Ωp−1G are constructive Kan fibrations.
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Lemma 18. An algorithm can be written down computing the effective homotopy of P pG :=
SS(∆p/Λp, G).

This leads to the following theorem, computing the desired effective homotopy of iterated
loop spaces.

Theorem 19. An algorithm can be written down:

• Input:

– A 1-reduced simplicial Abelian group G.

– A solution for the homotopical problem of G, SHmtPG.

– An index p ≥ 1.

• Output: A SHmtPΩpG for the functional model of the iterated loop space ΩpG :=
SS(Sp, G).

This allows us to compute the effective homotopy of the spaces ΩpG and then we obtain
the following theorem, which will be used for the computation of the Bousfield-Kan spectral
sequence.

Corollary 20. Let G be a 1-reduced simplicial Abelian group G with effective homotopy
and p, n ≥ 1. Then one can construct an explicit isomorphism:

πn(ΩpG) ∼= πn+p(G)

In this way, the combination of the effective homotopy method and our combinatorial
Cradle Theorem makes it possible to constructively determine the homotopy groups of iter-
ated loop spaces. Once we have the space ΩpG with effective homotopy, it could be used
inside other fibrations or some constructions in Algebraic Topology to determine the effec-
tive homotopy of complicated spaces. Moreover, the effective homotopy of the iterated loop
spaces ΩpG will be used for the construction of an algorithm computing the different levels
of the Bousfield-Kan spectral sequence in a forthcoming paper.

4 Conclusions

Given a simplicial group G and p ≥ 1, the functional space ΩpG := SS(Sp, G) can be seen
as a model for the iterated loop space of a topological space. In particular, it is well-known
that πn(ΩpG) ∼= πn+p(G) for every n ≥ 1, but this isomorphism is not constructive.

This paper has presented the Cradle Theorem, a combinatorial result based on the notion
of Discrete Vector Field [3] introduced by Robin Forman, which was used in [9] to explain a
totally new understanding of some basic results in Algebraic Topology. Now we combine this
combinatorial result with our new effective homotopy theory [8] to compute in a constructive
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way the homotopy groups of iterated loop spaces. The result is an algorithm producing the
effective homotopy of ΩpG for every simplicial Abelian group G with effective homotopy.
Once we have the effective homotopy of ΩpG, this space could be considered inside other
fibrations or some constructions in Algebraic Topology to determine the effective homotopy
of other spaces. Moreover, the effective homotopy of ΩpG is one of the necessary ingredients
for the development of an algorithm computing the different levels of the Bousfield-Kan
spectral sequence [2] associated with a simplicial set.
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