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This paper is devoted to a constructive version of the Bousfield-Kan spectral
sequence (BKSS). The BKSS provides a combinatorial basis for the famous
Adams spectral sequence and its descendants. Its systematic description in [1]
remains a relatively difficult text, often cited by its sweet nickname, the “Yellow
Monster”. The modern constructive point of view gives an opportunity to reread
this essential text and to use it to produce a new algorithm computing homotopy
groups, more precisely computing the effective homotopy of a given space, a new
concept much richer than the ordinary homotopy groups. Without changing the
general philosophy of the BKSS , the constructive constraint leads to a significant
reorganization of this rich material and, as it is most often the case, finally to
a simpler and more explicit description. Combined with our own basic tools,
effective homology and effective homotopy, the description of the BKSS given here
is finally not so complicated and could also help the topologists interested by this
nice subject.
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1 Introduction

The origin of the Adams spectral sequence is the famous Hurewicz theorem: the first
non-zero homology and homotopy groups of a simply connected space are the same;
well, but what about the next groups? Frank Adams constructed a spectral sequence [2]
starting with homological objects and converging to homotopical objects; the Hurewicz
theorem is the simplest “application”. The Adams spectral sequence and the related
ones have been intensively used to obtain numerous homotopy groups of spaces where
the homology is simple, typically the spheres, see [3, 4, 5].

Other methods are available to compute homotopy groups. The first computational
method presented by Edgar Brown in his famous paper [6] was a constructive use of

1Partially supported by Ministerio de Economı́a y Competitividad, Spain, project
MTM2013-41775-P.
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the Postnikov tower; it was only a theoretical result: because of the terrible underlying
inductive process, it is not yet implemented sixty years later and its concrete feasability
remains hypothetical. An analogous work can be done with the Whitehead tower.
Using the new concept of effective homology [7], a process fundamentally different
from Edgar Brown’s, the Postnikov and Whitehead towers have on the contrary easily
been implemented, allowing us to access a few homotopy groups2 so far unreachable,
using only the effective homology versions of the Serre and Eilenberg-Moore spectral
sequences.

Observing the well known power of the Adams spectral sequence, mainly due to its rich
algebraic structure, it is natural to also try applying the methods of effective homology
to the Adams spectral sequence. A computer can work only combinatorially and
the combinatorial basis of the Adams spectral sequence is the Bousfield-Kan spectral
sequence (BKSS) [1]. This spectral sequence starts with the homology groups of
a simplicial set and converges to its homotopy groups; the classical Adams spectral
sequence can be derived of the BKSS.

Combinatorial does not imply constructive3. In the case of the BKSS , its combinatorial
nature does not imply it is constructive. For example one may naively hope to have
an “Adams” algorithm allowing a topologist to obtain π∗(X) from H∗(X), but simple
examples show such a goal is impossible: two spaces can have isomorphic homology
groups and different homotopy groups. Some extra information is necessary to obtain
the homotopy groups from the homology groups.

A Spectral Sequence is a family of “pages” {Er
p,q, d

r}r of differential bigraded modules,
each page being made of the homology groups of the preceding one. As expressed
by John McCleary after Definition 2.2 in [8] (or Definition p.28 in the first edition by
Publish or Perish), “knowledge of Er

∗,∗ and dr determines Er+1
∗,∗ but not dr+1 . If we

think of a spectral sequence as a black box, then the input is a differential bigraded
module, usually E1

∗,∗ , and, with each turn of the handle, the machine computes a
successive homology according to a sequence of differentials. If some differential is
unknown, then some other (any other) principle is needed to proceed.” In most cases,
it is in fact a matter of computability: the higher differentials of the spectral sequence

2The main successes of effective homology have been obtained for the homology groups of
the loop spaces, where the Adams and Baues methods cannot be iterated beyond the second
loop space [7].

3The qualifier constructive often raises difficulties for the “classical” mathematicians. The
comments later in this text, mainly at the end of this introduction, also in Section 5 around the
notion of effective homotopy, should help the reader to clarify what constructiveness means.
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are mathematically defined, but their definition is not constructive, i.e., the differentials
are not computable with the usually provided information.

In the case of the Adams spectral sequence, the module structure of the cohomology
with respect to the Steenrod algebra is such an extra information which can be useful,
but it is in general insufficient to determine the differential maps. The Adams spectral
sequence is therefore not constructive.

Let X be a simply connected space. Our version of the BKSS is a general algorithm:

• Input: The effective homology of X .

• Output: The effective homotopy of X .

Effective homology [9, 7] has been designed to transform the Serre spectral sequence
into a genuine algorithm computing the homology groups of a total space from the
homology groups of the base space and the fibre space, in fact the effective homology
of the total space from the effective homologies of the base space and the fibre space.
The same process can be applied to the Eilenberg-Moore spectral sequences. The
reference [7] gives examples showing this is not only a theoretical result: the proved
algorithm can be written down as a computer program, and used to compute groups so
far unreachable. The effective homology method allows one to prevent the “disconnec-
tion” of the spectral sequences from the background process, retaining the connection
with the initial spaces.

The subject of the present paper is analogous. We present, organize and prove here
the BKSS as a general algorithm EH∗(X) 7→ Eπ∗(X), the prefix E meaning effective
(homology or homotopy). The effective homology of a space X is the ordinary one
combined with extra functional objects allowing a user to solve the ambiguities of-
ten observed in “ordinary” homology, typically, the extension problems when exact
or spectral sequences must be used to determine some unknown groups. The extra
functional objects just mentioned cannot reasonably be used by a topologist working
with pen and paper; on the contrary they can be ordinarily used with the help of a com-
puter, thanks to functional programming, now standard in most scientific programming
languages. Same comments for effective homotopy. This paper so opens a fascinating
challenge for the topologists interested by concrete programming.

A reader of a previous version of this paper questioned the authors about the difference
between the qualifiers “constructive” and “algorithmic”. A constructive existence
theorem must define a construction process producing a copy of the claimed existing
object from the given data. In a computational framework, the required construction
process is nothing but an algorithm input 7→ output, but more general situations can
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be considered where the “construction” process has not necessarily the form of an
algorithm, see for example the book Constructive Analysis by Bishop and Bridges [10]
for typical examples of this sort. In the present text, the computational environment
is always implicitly understood, so that no difference here between “constructive” and
“algorithmic”.

The paper is organized as follows. After this introduction, Section 2 includes some
elementary ideas about spectral sequences and simplicial sets. Then a brief description
of the construction of the Bousfield-Kan spectral sequence is given in Section 3, includ-
ing some necessary definitions and results. In Sections 4 and 5 we make constructive
the different ingredients appearing in the definition of the Bousfield-Kan spectral se-
quence. This makes it possible to develop an algorithm computing all components of
the spectral sequence, which is explained in Section 6. Then Section 7 presents our
general algorithm for computing homotopy groups of spaces, which are provided with
the natural filtration induced by the spectral sequence. The paper ends with a section
of conclusions and further work.

2 Preliminaries

2.1 Spectral sequences

In this section we particularize the usual definitions of spectral sequences ( [11], [8])
for the case of the Bousfield-Kan spectral sequence.

Definition 1 A spectral sequence E = (Er, dr)r≥1 is a second quadrant spectral
sequence if for all r ≥ 1 one has Er

p,q = 0 when p > 0 or q < 0.

As it is usual in the literature, in this paper we will represent second quadrant spectral
sequences in the first quadrant by changing the sign of the first degree p. In other words,
we put the module Er

p,q with p ≤ 0 and q ≥ 0 at the point (−p, q) (which is in the
first quadrant), and denote it by Er

−p,q . The differential maps dr
p,q : Er

p,q → Er
p+r,q+r−1

have then the bidegree (r, r − 1). The convergence of the spectral sequence to a
graded module H∗ = {Hn}n∈N is therefore given by a decreasing filtration F and
isomorphisms E∞p,q ∼= Fp−1Hq−p/FpHq−p .

It is worth emphasizing here the following ideas summarizing the main problems of
spectral sequences.
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Remark 2 Spectral sequences naturally arise as a very structured shadow of a more
complicated homological background process. While the objects of the successive
pages are uniquely determined (up to isomorphisms) by the previous page, there is
no general algorithm to compute differentials of one page from those on the previous
pages. In other words, if spectral sequences are disconnected from the background
process, then only in special cases (typically when more information is available) can
one study their convergence, and in cases which are even more special can one solve
the extension problem.

The mathematician comparing the ordinary status of a spectral sequence with which is
provided by effective homology and homotopy observes the shadow mentioned above
is which remains when the functional objects, out of scope without a computer, are
removed.

2.2 Simplicial sets

In this section we introduce some elementary ideas about simplicial sets, which can
be considered a useful combinatorial model for topological spaces. More concretely,
given a Kan simplicial set K with a base point ? ∈ K0 , an algebraic definition of the
homotopy groups of K can be given such that they are isomorphic to the homotopy
groups of the corresponding topological space by means of the realization functor. All
the definitions and results of this section (and details about the connection of simplicial
sets and topological spaces) can be found in [12].

Definition 3 A simplicial set K is a simplicial object over the category of sets, that is
to say, K consists of:

• a set Kq for each integer q ≥ 0;

• for every pair of integers (i, q) such that 0 ≤ i ≤ q, face and degeneracy maps
∂i : Kq → Kq−1 and ηi : Kq → Kq+1 satisfying the simplicial identities:

∂i∂j = ∂j−1∂i if i < j

ηiηj = ηj+1ηi if i ≤ j

∂iηj = ηj−1∂i if i < j

∂iηj = Id if i = j, j + 1

∂iηj = ηj∂i−1 if i > j + 1

The category of simplicial sets is denoted by SS.
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Definition 4 A simplicial set K is called a Kan simplicial set if it satisfies the following
extension condition: for every collection of q (q−1)-simplices x0, x1, . . . , xk−1, xk+1, . . . , xq

which satisfy the compatibility condition ∂ixj = ∂j−1xi for all i < j, i 6= k, and j 6= k ,
there exists a q-simplex x ∈ Kq such that ∂ix = xi for every i 6= k .

Let us observe that the existence of the q-simplex x for each collection of (q− 1)-simplices
x0, x1, . . . , xk−1, xk+1, . . . , xq satisfying the compatibility condition does not imply it is
always possible to determine it. We say that the Kan simplicial set K is a constructive
Kan simplicial set if the desired x is given explicitly by an algorithm. It is not difficult
to prove (see [12, §17]) that every simplicial group is a constructive Kan simplicial set.
The constructive Kan property of a simplicial set will be needed later in this paper.

Definition 5 Let K be a simplicial set. Two q-simplices x and y of K are said to
be homotopic, written x ∼ y, if ∂ix = ∂iy for 0 ≤ i ≤ q, and there exists a (q + 1)-
simplex z such that ∂qz = x, ∂q+1z = y, and ∂iz = ηq−1∂ix = ηq−1∂iy for 0 ≤ i < q.

If K is a Kan simplicial set, then ∼ is an equivalence relation on the set of q-simplices
of K for every q ≥ 0.

Let ? ∈ K0 be a 0-simplex of K , called a base point; we also denote by ? the
degeneracies ηq−1 . . . η0? ∈ Kq for every q. We define Sq(K) as the set of all x ∈ Kq

such that ∂ix = ? for every 0 ≤ i ≤ q, which is said to be the set of q-spheres of K .

Definition 6 Given a Kan simplicial set K and a base point ? ∈ K0 , we define

πq(K, ?) := πq(K) := Sq(K)/(∼)

The set πq(K, ?) admits a group structure for q ≥ 1 and is Abelian for q ≥ 2. It is
called the q-homotopy group of K .

Definition 7 Let f : E → B be a simplicial map. The map f is a Kan fibration
if for every collection of q (q − 1)-simplices x0, . . . , xk−1, xk+1, . . . , xq of E which
satisfy the compatibility condition ∂ixj = ∂j−1xi, i < j, i 6= k, j 6= k , and for every
q-simplex y of B such that ∂iy = f (xi), i 6= k , there exists a q-simplex x of E such
that ∂ix = xi, i 6= k , and f (x) = y. The simplicial set E (resp. B) is called the total
space (resp. the base space) of the fibration. If Φ denotes the simplicial set generated
by a vertex of B (usually the base point ?), then F := f−1(Φ) is called the fiber over
Φ.

Later in this paper we will need the Kan property of a fibration to be constructive; we
say that f is a constructive Kan fibration if the desired q-simplex x of E is produced
by an algorithm.
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3 Description and algorithmic problems of the Bousfield-
Kan spectral sequence

3.1 Definition of the spectral sequence

The Bousfield-Kan spectral sequence was introduced in [13] to establish the Adams
spectral sequence [2] on a simplicial combinatorial background. Under some good
conditions, the Bousfield-Kan spectral sequence associated with a simplicial set X
converges to the homotopy groups of X , π∗(X). However, as we will see later, the
definition of the different levels of the spectral sequence involves complicated structures
and it does not provide an algorithm computing the desired homotopy groups of a
simplicial set.

The Bousfield-Kan spectral sequence is defined by means of a tower of fibrations which
is associated with a cosimplicial simplicial set as explained in the following definitions.
A detailed description of the construction of the spectral sequence can be found in [1].

Restriction 8 The simplicial set X we are working with in this paper is assumed
1-reduced: only one vertex, no non-degenerate edge. It is therefore simply connected
and all the sophisticated technicalities of [1] concerning π1(X) are avoided, in par-
ticular the various nilpotency conditions often required in [1]. All our results can be
easily extended to the nilpotent case systematically studied in [1], but we prefer not to
complicate our task with this subject, essentially disjoint from ours: effectiveness. Our
X is therefore automatically Z-complete and in particular Z-good [1, Ch.III-5.4]. In
short, no bad surprise about the convergence of BKSS(X) toward π∗(X) [1, Ch.V-3.7].

Definition 9 Let X be a simplicial set with a base point ? ∈ X0 , then RX is the
simplicial Abelian group defined as

RX =
R[X]
R[?]

where R[X] denotes the simplicial Z-module freely generated by the simplices of X ,
and R[?] is the simplicial submodule generated by the base point ? and its degeneracies.

Note an arbitrary R-combination of q-simplices of X is only one q-simplex of RX .

Every simplicial group satisfies the Kan extension property [12, Theorem 17.1], so that
we can consider the homotopy groups π∗(RX). On the other hand, the group R[X]q

is nothing but the standard reduced chain group C̃q(X;Z). The next proposition is
then a consequence of the combinatorial Kan definition of the homotopy groups [12,
Theorem 22.1].
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Proposition 10 Given X a pointed simplicial set, there exists a canonical isomorphism

π∗(RX) ∼= H̃∗(X;Z)

where H̃∗(X;Z) denotes the reduced homology groups of X with coefficients in Z.

Definition 11 A cosimplicial simplicial set or cosimplicial space X consists of:

• for every integer p ≥ 0, a simplicial set X p , called the codimension p component
of X ;

• for every pair of integers (i, p) such that 0 ≤ i ≤ p, coface and codegeneracy
operators ∂i : X p−1 → X p (for p ≥ 1) and ηi : X p+1 → X p (both of them
simplicial maps) satisfying the cosimplicial identities:

∂j∂i = ∂i∂j−1 if i < j

ηjηi = ηiηj+1 if i ≤ j

ηj∂i = ∂iηj−1 if i < j

ηj∂i = Id if i = j, j + 1

ηj∂i = ∂i−1ηj if i > j + 1

Cosimplicial simplicial sets form a category that we denote by CSS.

Definition 12 An augmentation of a cosimplicial space X consists of a simplicial set
X−1 and a morphism ∂0 : X−1 → X 0 such that ∂1∂0 = ∂0∂0 : X−1 → X 1 .

In other words, a cosimplicial space X consists of a bigraded family X = {X p
q }p,q∈N

with face, coface, degeneracy and codegeneracy maps ∂i : X p
q → X p

q−1 , ∂j : X p−1
q → X p

q ,

ηi : X p
q → X p

q+1 , and ηj : X p+1
q → X p

q , for 0 ≤ i ≤ q and 0 ≤ j ≤ p. The face and
degeneracy operators ∂i and ηi must satisfy the simplicial identities (Definition 3),
while for ∂j and ηj the cosimplicial identities of Definition 11 hold. Furthermore, ∂i

and ηi commute with both coface and codegeneracy maps ∂j and ηj .

An initial example of cosimplicial space is the cosimplicial standard simplex ∆, whose
columns are the simplicial standard n-simplices ∆n (see [12, Definition 5.4]).

Definition 13 The cosimplicial standard simplex ∆ consists in codimension p of
the standard p-simplex ∆p , and the coface and codegeneracy maps are the unique
morphisms ∂j : ∆p−1 → ∆p and ηj : ∆p+1 → ∆p which map respectively the
fundamental simplex (0, . . . , p−1) of ∆p−1 to ∂j(0, . . . , p) of ∆p and the fundamental
simplex (0, . . . , p + 1) of ∆p+1 to ηj(0, . . . , p) of ∆p if ∂j and ηj are the usual face
and degeneracy operators of the category ∆.
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Another important cosimplicial space is the cosimplicial resolution of a simplicial set,
which plays an essential role in the definition of the Bousfield-Kan spectral sequence.

Definition 14 Let X be a pointed simplicial set. The cosimplicial resolution of X
(with respect to the ring R = Z) is the augmented cosimplicial space RX given by:

• for each cosimplicial degree p, the column RXp is the simplicial Abelian group
Rp+1X obtained by applying p + 1 times the functor R (Definition 9) to the
simplicial set X (with the corresponding face and degeneracy maps);

• the coface and codegeneracy operators are defined as

∂j : RXp−1 = RpX −→ RXp = Rp+1X, ∂j = RjΦRp−j

ηj : RXp+1 = Rp+2X −→ RXp = Rp+1X, ηj = RjΨRp−j

where Φ and Ψ are natural transformations Φ : Id → R and Ψ : R2 → R
induced by the maps Φ : X → RX and Ψ : R2X → RX which are given by
Φ(x) := 1 ∗ x for all x ∈ X and Ψ(1 ∗ y) := y for all y ∈ RX (extended to all
elements in R2X by using the group operation in RX );

• the augmentation is given by the map Φ : X → RX .

It is worth emphasizing that each column RXp = Rp+1X is a simplicial Abelian
group, which implies that for each q ≥ 0 the set RXp

q is an Abelian group, and
the face operators ∂i : RXp

q → RXp
q−1 and the degeneracies ηi : RXp

q → RXp
q+1 are

group morphisms. On the other hand, one can observe that the codegeneracy maps
ηj : RXp+1

q → RXp
q are also morphisms of groups for all j ≥ 0, but ∂j : RXp−1

q → RXp
q

is a group morphism only if j ≥ 1. For j = 0, the coface ∂0 : RXp−1
q → RXp

q is not a
morphism of groups. For this reason, the cosimplicial space RX is said to be grouplike.

Definition 15 A cosimplicial space X is said to be grouplike if for all p ≥ 0 the
space X p is a simplicial group and the operators ∂j for j ≥ 1 and all operators ηj are
homomorphisms of simplicial groups.

Definition 16 A tower of fibrations if a family (Yn, fn)n≥0 of pointed simplicial sets
{Yn}n≥0 with fibrations fn : Yn → Yn−1 :

· · · fn+1−→ Yn
fn−→ Yn−1

fn−1−→ · · · f1−→ Y0
f0−→ Y−1 = ?

where ? denotes the simplicial set with only one simplex ? in each dimension. Its
inverse limit is a simplicial set

lim
←−

Yn = Y

with projections pn : Y → Yn such that fn ◦ pn = pn−1 , satisfying the corresponding
universal property for inverse limits.



10 A. Romero and F. Sergeraert

Given a cosimplicial space, one can construct a tower of fibrations as follows.

Definition 17 Let X be a cosimplicial space and K a simplicial set. Applying the
functor “− × K ” to every component of X produces the cosimplicial space X × K .
Its p component is the simplicial set X p × K . The coface ∂j and codegeneracy ηj

operators are defined as the maps:

X p−1 × K ∂j×IdK−→ X p × K

X p+1 × K
ηj×IdK−→ X p × K

Definition 18 Let X and Y be simplicial sets. The function space Func(X,Y) is a
simplicial set whose q-simplices are the simplicial morphisms X ×∆q → Y and the
faces ∂i and the degeneracies ηi are given by the compositions:

X ×∆q−1 IdX ×∂i

−→ X ×∆q −→ Y

X ×∆q+1 IdX ×ηi

−→ X ×∆q −→ Y

where ∂i : ∆q−1 → ∆q and ηi : ∆q+1 → ∆q are the standard maps introduced in
Definition 13.

Definition 19 Let X and Y be cosimplicial spaces. The function space Func(X ,Y)
is a simplicial set with Func(X ,Y)q = CSS(X × ∆q,Y) and the faces ∂i and the
degeneracies ηi being given by the compositions:

X ×∆q−1 IdX ×∂i

−→ X ×∆q −→ Y

X ×∆q+1 IdX ×ηi

−→ X ×∆q −→ Y

Definition 20 Let X be a cosimplicial space. The total space TotX is the simplicial
set defined as the function space:

TotX := Func(∆,X )

The total space of a cosimplicial space X can be seen as an inverse limit

TotX = lim
←−

TotnX

of the simplicial sets

TotnX = Func(skn ∆,X ) for n ≥ −1

where skn ∆ ⊂ ∆ is the simplicial n-skeleton of the cosimplicial simplicial set ∆; in
other words, skn ∆ consists in codimension p of the n-skeleton of the simplicial set
∆p .
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The map fn : TotnX → Totn−1X is induced by the inclusion skn−1 ∆ ⊂ skn ∆. In
particular, Tot−1X = ? and Tot0X ∼= X 0 . More generally, TotnX depends only on
X i for i ≤ n.

If X is grouplike [1, Ch.X-4.9 and Ch.X-6.1], the map fn is a Kan fibration, which
organizes the X n ’s as a tower of fibrations. Moreover one can prove (see [1, Ch.X-6.3])
that if X is grouplike the fiber Fn of the fibration fn is the simplicial pointed function
space:

Fn := Func∗(Sn,X n ∩ Ker η0 ∩ · · · ∩ Ker ηn−1)

where Sn is the simplicial model for the sphere of dimension n, with only two non-
degenerate simplices ? in dimension 0 and sn in dimension n.

If X is augmented (that is, a simplicial set X−1 and a simplicial morphism ∂0 : X−1 → X 0

are given such that ∂1∂0 = ∂0∂0 : X−1 → X 1 ), then ∂0 induces morphisms

pn : X−1 −→ TotnX

which are compatible with the maps fn : TotnX → Totn−1X . The morphisms pn

are induced by the canonical inclusions X−1 ↪→ X p obtained from the augmented
cosimplicial structure of X .

Finally, every tower of fibrations produces a spectral sequence as follows.

Let (Yn, fn)n≥0 be a tower of fibrations, with inverse limit Y . Projections pn : Y → Yn

are canonically defined satisfying fn ◦pn = pn−1 . Let Fn be the fiber of fn : Yn → Yn−1

for each n ≥ 0. Applying homotopy groups to each fibration gives the exact couple

(1) π∗(Fn) π∗(Fn−1) π∗(F1) π∗(F0)

. . . π∗(Yn) π∗(Yn−1) . . . π∗(Y1) π∗(Y0)
f // f // f // f // f //

i

OO

i

OO

i

OO

∂zz ∂zz ∂zz

where ∂ : π∗(Yn−1)→ π∗−1(Fn) is the connecting morphism and i : π∗(Fn)→ π∗(Yn)
is induced by the inclusion inc : Fn ↪→ Yn .

For each pair (p, q) such that q ≥ p one has the following diagram:
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(2)

πq−p+1(Yp−2) πq−p(Yp−1)

πq−p+1(Yp−1) πq−p(Fp) πq−p(Yp)

πq−p+1(Yp) πq−p(Yp+1)

f
��

f
��

f
��

f
��

f
��

f
��

f
��

f
��

∂ // i //

We denote by f r the composition f◦ r· · · ◦f and we consider i−1(Im f r−1) and Ker f r−1),
which are subgroups of πq−p(Fp). One has the following spectral sequence.

Theorem 21 [1, Ch.IX-4] Given a tower of fibrations (Yn, fn)n≥0 , there exists a second
quadrant spectral sequence E = (Er, dr)r≥1 given by

Er
p,q =

i−1(Im f r−1)
∂(Ker f r−1)

for q ≥ p

Er
p,q = 0 otherwise

with differential maps dr
p,q : Er

p,q → Er
p+r,q+r−1 induced by the composition:

πq−p(Fp) i−→ Im f r−1 ⊆ πq−p(Yp)
(f r−1)−1

−→ πq−p(Yp+r−1) ∂−→ πq−p−1(Fp+r)

This spectral sequence induces a decreasing filtration on the homotopy groups of the
inverse limit Y , π∗(Y), given by Fn(πm(Y)) = Ker(pn : πm(Y) → πm(Yn)). Under
some good conditions (see [1, Ch.IX-5.3 and Ch.IX-5.4] for details), this spectral
sequence converges to the homotopy groups of the inverse limit Y , with isomorphisms
E∞p,q ∼= Fp−1(πq−p(Y))/Fp(πq−p(Y)).

Let us observe that for dimension q−p = 1 the group π1(Fp) could be non-commutative
and then the corresponding Er

p,q ’s could also be non-Abelian. For q = p, it may happen
π0(Fp) is not a group but only a (pointed) set and in that case Er

p,q is defined as the set
of orbits of the action of Ker f r−1 . On the other hand, we have preferred not to detail
the good conditions which ensure the convergence of the spectral sequence; as it is
explained in [1], these conditions are satisfied by the Bousfield-Kan tower of fibrations
when the initial simplicial set X is 1-reduced.
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Theorem 21 provides a formal definition of the different groups Er
p,q and the differential

maps dr
p,q of the spectral sequence associated with a tower of fibrations. If we want

to compute the groups Er
p,q , we need to compute first the groups π∗(Yn) and π∗(Fn)

appearing in the diagram (2); but it is necessary to remark here that a formal description
of these groups is not sufficient; we need explicit descriptions of the maps i, f and ∂ ,
which is possible only if we have explicit representatives for the elements of homotopy
groups and conversely, given a sphere in Yn or Fn , an algorithm must produce its
homotopy class; this is covered by the notion of effective homotopy, see Section 5.1.

If the homotopy groups π∗(Yn) and π∗(Fn) are finitely generated Abelian groups and
they are explicitly known (with the corresponding generators) for all n, then it is clear
that the groups Er

p,q and the differentials dr
p,q are computable because in that case the

involved maps f , i and ∂ can be expressed as finite integer matrices. In this way, if we
want to develop an algorithm computing the spectral sequence associated with a tower
of fibrations, we will try to construct first algorithms which determine (in a constructive
way) the homotopy groups of the simplicial sets Yn and of the fiber spaces Fn .

Let us consider now a 1-reduced simplicial set X , and the associated augmented
cosimplicial space RX . As already observed, RX is grouplike and therefore the
spaces

(TotnRX = Func(skn ∆,RX), fn)n≥0

define a tower of fibrations with fibers Fn = Func∗(Sn,Rn+1X ∩ Ker η0 ∩ · · · ∩
Ker ηn−1). Applying Theorem 21, one obtains a spectral sequence which is called
the Bousfield-Kan spectral sequence of X .

Theorem 22 (Bousfield-Kan spectral sequence) [1, Ch.X-6] Let X be a simplicial
set with base point ? ∈ X0 . There exists a canonical second quadrant spectral sequence
E = (Er, dr)r≥1 , whose term E1 is given by

E1
p,q = πq(Rp+1X) ∩ Ker η0 ∩ · · · ∩ Ker ηp−1

and with differential map d1 induced by the coboundary map δ =
∑

(−1)j∂j . Under
suitable hypotheses (for instance, if X is 1-reduced) this spectral sequence converges
to the homotopy groups π∗(TotRX) ∼= π∗(X).

3.2 Didactic example

For a better understanding of the definition of the Bousfield-Kan spectral sequence, let
us consider as a didactic example the case where the realization of the simplicial set X
is the 2-sphere S2 .
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E1

p

q

0 0 0 0 0 0

0 0 0 0 0 0

Z 0 0 0 0 0

0 0 0 0 0 0

0 Z 0 0 0 0

0 0 0 0 0 0

0 Z Z⊕ Z2 0 0 0

0 0 0 0 0 0

0 Z Z3 ⊕ Z2
2 ⊕ Z3 Z2 ⊕ Z3

2 0 0

0 0 0 Z2 0 0

0 Z Z5 ⊕ Z6
2 ⊕ Z2

3Z7 ⊕ Z15
2 ⊕ Z2

3 Z5 ⊕ Z11
2 0

0 0 0 Z4
2 Z5

2 0

Figure 1: Level 1 of the Bousfield-Kan spectral sequence of S2 .

The first level of the spectral sequence can be obtained in terms of the homology groups
of different Eilenberg-MacLane spaces K(π, n)’s (see [14]) and is given by the groups
in Figure 1.

For q ≤ 11 the non-zero differential maps at level r = 1 are d1
1,6 , d1

1,8 , d1
1,10 , d1

2,8 ,
d1

2,10 , d1
3,10 and d1

3,11 . In this particular case one can also determine the groups E2
p,q

for q− p ≤ 6, represented in Figure 2.

Here all the differentials d2 must be equal to zero, which implies that these groups are
already the final groups of the spectral sequence. For each dimension q− p = 2, 3, 4
and 5 one has only one non-zero group E∞p,q , which corresponds to the homotopy
group πq−p(S2). One can observe the well-known results π2(S2) = π3(S2) = Z and
π4(S2) = π5(S2) = Z2 . However, for dimension q − p = 6 we have three non-
zero groups E∞2,8 = Z3 and E∞3,9 = E∞4,10 = Z2 and two extensions are possible,
π6(S2) = Z2 ⊕ Z6 or Z12 . The BKSS apparatus says nothing about the extension
problem at abutment: the BKSS is not constructive. On the contrary our version of the
BKSS leads to Theorem 42 solving such an extension problem.
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E2

p

q

0 0 0 0 0 0

0 0 0 0 0 0

Z 0 0 0 0 0

0 0 0 0 0 0

0 Z 0 0 0 0

0 0 0 0 0 0

0 0 Z2 0 0 0

0 0 0 0 0

Z3 Z2 0 0

Z2 0 0

Z2 0

0

⇒ π6(S
2 ) = Z2⊕ Z6 or Z12???

Figure 2: Level 2 of the Bousfield-Kan spectral sequence of S2 .
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3.3 Algorithmic remarks

Theorem 22 provides the description of the first level of the Bousfield-Kan spectral
sequence associated with a simplicial set X , but we find it convenient to remark here
that this description does not allow us in general to compute directly the groups Er

p,q
and the differential maps dr

p,q (this is a general problem of spectral sequences, as
expressed in Remark 2). The columns Rp+1X have the homotopy type of products of
Eilenberg-MacLane spaces, and Cartan’s algorithm [15] computes the corresponding
πq(Rp+1X) ∼= H̃q(RpX). But to our knowledge, in our very general framework, so far no
effective method (algorithm!) is known allowing one to determine the codegeneracy and
coface operators between these homology groups, so that this definition is not sufficient
to determine the groups Er

p,q . For the computation of the different levels of the spectral
sequence, the tower of fibrations associated with the cosimplicial space RX must be
considered. One needs to determine first in a constructive way (with generators) the
homotopy groups of the spaces Yn = TotnRX and Fn = Func∗(Sn,Rn+1X ∩ Ker η0 ∩
· · · ∩ Ker ηn−1), but they are complicated (infinite) spaces and their homotopy groups
are rather problematic. This makes the computation of the higher groups of the spectral
sequence Er

p,q significantly difficult.

In a previous work [14], we used the effective homology method (introduced in [9] and
explained in depth in [7] and [16]) to develop algorithms computing the first two levels
E1 and E2 of the Bousfield-Kan spectral sequence of a simplicial set X , but determining
the higher levels Er for r ≥ 3 remained open in [14]. The effective homology of a
space X consists in four algorithms which provide in particular its homology groups
(with the corresponding generators) and give some additional information retaining
the connection with the background process which can be necessary if we want to
use the space inside other topological constructions. The effective homology of chain
complexes of finite type can be constructed in an elementary way, and there are also
some theoretical results which provide the effective homology of some particular
spaces. From this starting point, we can obtain the effective homology of more
complicated spaces by applying different constructors of Algebraic Topology (see [16]).

In [14] we produced an algorithm computing the effective homology of RX provided
that X is a 1-reduced simplicial set with effective homology. Our algorithm can be it-
erated producing the effective homology of RpX for p ≥ 1, and thanks to the canonical
isomorphism π∗(RX) ∼= H̃∗(X) one can obtain the homotopy groups πq(Rp+1X) ap-
pearing in the first level E1 of the spectral sequence. They are finite type groups, and our
algorithm provides their generators, so that the kernels Ker[ηi : πq(Rp+1X)→ πq(RpX)]
can be determined by means of some elementary matrix operations. We obtain in this
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way an algorithm computing the first level E1 of the Bousfield-Kan spectral sequence
of a simplicial set X . Then the differential maps d1

p,q : E1
p,q → E1

p+1,q can also be
expressed as finite integer matrices and therefore it is possible to determine their kernel
and their image, and using the Smith Normal Form technique [17] we can easily com-
pute the quotient groups E2

p,q = Ker d1
p,q/Im d1

p−1,q . But then the second differential
d2 : E2

p,q → E1
p+2,q−1 is in principle not known and some extra information is needed

in order to determine the higher levels of the spectral sequence (as explained in Remark
2).

In the following two sections, a deep study of the fibrations in the Bousfield-Kan tower
is done. Making use of a new effective homotopy theory and a combinatorial result
named the Cradle Theorem, we will determine (in a constructive way) the homotopy
groups of the total spaces Yn = TotnRX and the fibers Fn = Func∗(Sn,Rn+1X ∩
Ker η0 ∩ · · · ∩Ker ηn−1). As explained before, once the groups π∗(Yn) and π∗(Fn) are
known with the corresponding generators (and when they are finitely generated Abelian
groups), some elementary operations on matrices will make it possible to determine
all the groups Er

p,q and the differential maps dr
p,q in the spectral sequence associated

with the tower of fibrations, producing in this way the desired algorithm computing all
levels of the Bousfield-Kan spectral sequence.

4 Constructive Kan property of Bousfield-Kan fibrations

In order to develop an algorithm computing the different levels of the Bousfield-Kan
spectral sequence, it is necessary to prove first that the fibrations in the Bousfield-Kan
tower are constructive Kan fibrations (cf. Definition 7).

We recall from the previous section that the Bousfield-Kan fibrations are morphisms
fp : TotpRX → Totp−1RX , where TotpRX is the simplicial set

TotpRX = Func(skp ∆,RX) for p ≥ −1,

which are induced by the inclusions skp−1 ∆ ⊂ skp ∆. Although the morphisms fp
are known to be Kan fibrations [1, Ch.X-6.1], this property has not been proved in a
constructive way.

Theorem 23 Let X be a 1-reduced simplicial set. The fibrations fp : TotpRX →
Totp−1RX in the Bousfield-Kan tower are constructive Kan fibrations.

The proof of this theorem is not trivial. It will be based on two results of very different
nature, named the Epimorphism Theorem and the Cradle Theorem, explained in the
following subsections.



18 A. Romero and F. Sergeraert

4.1 The Epimorphism Theorem

Let us consider a general cosimplicial space G where all the homogeneous parts Gp

are Abelian simplicial groups. These groups are in particular connected by coface and
codegeneracy operators ∂i and ηi as explained before. We assume all these operators
are group morphisms, except maybe ∂0 , so that G is grouplike, see Definition 15.
For each p ≥ 0, the matching space MpG ⊂ (Gp)p+1 consists of the (p + 1)-tuples
a = (a0, . . . , ap) ∈ Gp × · · · × Gp satisfying the relation ηiaj = ηjai+1 if j ≤ i.
Think a (p + 1)-tuple a ∈ MpG is a hypothetical image of some element b ∈ Gp+1

by the multiple map η = (η0, . . . , ηp); if so, the compatibility condition between the
components ai and the codegeneracies must be satisfied.

The following theorem can be deduced from the proof of Proposition 4.9 in [1, Ch.
X]. We follow the same scheme but here more details are included trying to help the
reader.

Theorem 24 (Epimorphism theorem) The map:

η = (η0, . . . , ηp) : Gp+1 → MpG

is surjective and admits a group morphism section.

Proof If a = (0, ..., ai, ..., ap) ∈ MpG has its first i components null, it is elementary
to see, using the commutation relations between cofaces and codegeneracies, that
a− η∂i+1ai has its first i + 1 components null. A candidate σ : MpG→ Gp+1 is said
having grade i if for every a ∈ MpG, a− ησa has its first i components null. Starting
from σ0 = 0, grade 0, we can recursively define σi+1a = σia +∂i+1(a−ησia)i , grade
i + 1, up to σp+1 , grade p + 1, that is, which is the looked-for section.

In particular the dangerous coface ∂0 is never used, so that σp+1 is a group morphism.
Finally, Gp+1 = Ker η ⊕ Imσp+1 .

It is a variant of the normalization theorem.

4.2 The Cradle Theorem

The second result we are going to use in the proof of Theorem 23 is the Cradle Theorem,
a combinatorial result based on the notion of Discrete Vector Field, which is an essential
component of Forman’s Discrete Morse Theory [18]. In order to introduce the Cradle
Theorem, we need to present first some preliminary definitions.
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Definition 25 An elementary W-contraction (also known as elementary collapse) is a
pair (X,A) of simplicial sets, satisfying the following conditions:

(1) The component A is a simplicial subset of the simplicial set X .

(2) The difference X − A is made of exactly two non-degenerate simplices τ ∈ Xq

and σ ∈ Xq−1 , the second one σ being a face of the first one τ .

(3) The incidence relation σ = ∂kτ holds for a unique index k ∈ 0 . . . q.

It is then said A is obtained from X by an elementary W-contraction, and X is obtained
from A by an elementary W-extension.

If the condition 3 is not satisfied, the homotopy types of A and X could be different.

Definition 26 A W-contraction (or collapse) is a pair (X,A) of simplicial sets satis-
fying the following conditions:

(1) The component A is a simplicial subset of the simplicial set X .

(2) There exists a sequence (Ai)0≤i≤m with:

(a) A0 = A and Am = X .
(b) For every 0 < i ≤ m, the pair (Ai,Ai−1) is an elementary W-contraction.

In other words, a W-contraction is a finite sequence of elementary W-contractions. If
(X,A) is a W-contraction, then a topological contraction X → A can be defined.

‘W’ stands for J.H.C. Whitehead, who undertook [19] a systematic study of the notion
of simple homotopy type, defining two simplicial objects X and Y as having the same
simple homotopy type if they are equivalent modulo the equivalence relation generated
by the elementary W-contractions and W-extensions.

A W-contraction can be seen as a finitary version of anodyne extension (see [20]).

Definition 27 Let (X,A) be a W-contraction. A description by a filling sequence
of this property is an ordering φ = (σ1, σ2, . . . , σ2r−1, σ2r) of all non-degenerate
simplices of the difference X − A satisfying the following properties. Let A0 = A
and Ai = Ai−1 ∪ σi for 1 ≤ i ≤ 2r . Then:

(1) Every face of σi is in Ai−1 .

(2) The simplex σ2i−1 is a face of the simplex σ2i , so that the pair (A2i,A2i−2) is an
elementary W-contraction.

(3) A2r = X .
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The list (σ1, σ2, . . . , σ2r−1, σ2r) is called a W-list.

Such a description is a particular case of Forman’s Discrete Vector Field [18]. In our
case the vector field is V = {(σ2i−1, σ2i)0<i≤r}.

Proposition 28 Let φ be a filling sequence describing the W-contraction (X,A).
Then, if Y is a constructive Kan simplicial set and f : A→ Y is a simplicial morphism,
the filling sequence φ canonically defines a simplicial extension of f to f ′ : X → Y .

Proof The W-list φ = (σ1, σ2, . . . , σ2r−1, σ2r) produces a sequence of elementary
contractions (A2i,A2i−2) for 0 < i ≤ r , the difference A2i − A2i−2 being made of
the simplices σ2i and σ2i−1 which satisfy ∂kσ2i = σ2i−1 for a unique k . Supposing
that f ′ is defined on A2i−2 , then we consider the compatible simplices f ′(∂jσ2i) ∈ Y
for j 6= k and we define f ′(σ2i) by applying the constructive Kan property of Y
and f ′(σ2i−1) := ∂kf ′(σ2i). Starting with f ′|A0 = f , we define recursively f ′ over all
elementary contractions (A2i,A2i−2); for the last one A2r = X , so that we obtain the
extension f ′ : X → Y .

Definition 29 Let p, q be two natural numbers. The prism ∆p,q is the simplicial
set ∆p,q := ∆p ×∆q .

We have to define the cradle Cp,q , a simplicial subcomplex of the prism ∆p,q .

Definition 30 The q-hat Λq is the subcomplex Λq ⊂ ∆q made of all the faces of ∆q

except the 0-face.

Let us observe that the hat Λq is the union of q simplices of dimension q− 1; adding
the missing face ∂0∆q would produce the boundary ∂∆q of the q-simplex.

Generalizing the previous definition, one can define Λq
j ⊂ ∆q for 0 ≤ j ≤ q as the

subcomplex made of all the faces of ∆q except the j-face. In particular, Λq
0 = Λq .

Definition 31 The (p, q)-cradle is the simplicial subcomplex Cp,q ⊂ ∆p,q defined by:

Cp,q = (∆p × Λq) ∪ (∂∆p ×∆q)

This designation cradle, due to Julio Rubio, is inspired by the particular case p = 1
and q = 2.
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Theorem 32 (Cradle Theorem [21]) Let p, q ∈ N and 0 ≤ j ≤ q. The pair (X,A) =

(∆p,q,Cp,q
j ) is a W-contraction.

Similar W-contractions (∆p,q,Cp,q
j ) can be obtained for Cp,q

j := (∆p × Λq
j ) ∪ (∂∆p ×

∆q), for 0 ≤ j ≤ q.

It is obvious the cradle Cp,q
j is topologically a strong deformation retract of the

prism ∆p,q . The combinatorial version of this observation required here, not amazing,
is more difficult than expected; the proof given in [21] obtains the desired contraction
thanks to an appropriate discrete vector field. It happens this discrete vector field
gives a new interesting understanding of the Eilenberg-Zilber theorem, finally leading
to the “right” proof of the old Eilenberg-MacLane conjecture about the correspon-
dence between Classifying Space and Bar constructions (see [22]). In [20], a different
constructive proof of the Cradle Theorem is stated for the particular case of p = 1.
Following the same ideas, a different constructive proof could maybe be given also for
the Cradle Theorem.

4.3 Proof of the constructive Kan property of the Bousfield-Kan fibra-
tions

We can finally present the proof of Theorem 23, which claims that the maps fp :
TotpRX → Totp−1RX involved in the definition of the Bousfield-Kan spectral se-
quence are constructive Kan fibrations.

Proof Let us recall that a map f : E → B is said to be a constructive Kan fibration
if an algorithm σf is provided such that given a dimension q, and index k , a list of
q (q− 1)-simplices x0, x1, . . . , xk−1, xk+1, . . . , xq of E which satisfy the compatibility
condition ∂ixj = ∂j−1xi for all i < j, i 6= k and j 6= k , and a q-simplex y of B such
that ∂iy = f (xi) for i 6= k , then σf returns a q-simplex x of E such that ∂ix = xi for
i 6= k and f (x) = y.
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In our case, given a dimension q and an index k , a list of q (q− 1)-simplices of E =

TotpRX x0, x1, . . . , xk−1, xk+1, . . . , xq consists of a list of morphisms of cosimplicial
spaces xi = αi : skp ∆ × ∆q−1 → RX , and a q-simplex y of B = Totp−1RX is a
cosimplicial morphism y = β : skp−1 ∆×∆q → RX . We must provide a q-simplex
x of E = TotpRX , that is, a map x = γ : skp ∆×∆q → RX , such that ∂iγ = αi for
i 6= k and fp(γ) = β .

The last condition fp(γ) = β implies that the definition of γ on the columns X 0, . . . ,X p−1

of the cosimplicial space X := skp ∆ × ∆q coincides with β . For the columns X s

for s > p, the definition of γ is deduced from the column X p and the cofaces ∂i , and
then it only remains to define γ over the column X p = skp ∆p ×∆q = ∆p ×∆q . In
other words, we have to define γp : ∆p,q → RXp = Rp+1X .

Taking account of the compatibility conditions between the αi ’s, this amounts to
giving a cosimplicial map α : skp ∆ × Λq

k → RX . In particular, for the p-column
we have αp : ∆p × Λq

k → Rp+1X . Similarly, the q-simplex y of B = Totp−1RX is
a cosimplicial morphism y = β : skp−1 ∆ × ∆q → RX , which for codimension p
provides βp : skp−1 ∆p×∆q = ∂∆p×∆q → Rp+1X . The union of the domains of αp

and βp is the cradle Cp,q
k , and both maps are compatible on the common domain due

to the condition ∂iy = f (xi). This defines a unique map αpβp : Cp,q
k → Rp+1X ; we

have to extend this map into a map γp : ∆p,q → Rp+1X which will provide the lifting y
looked for compatible with the xi ’s. But let us remark that not every γp extending
αpβp is correct: the desired γ must be compatible with the codegeneracy maps ηi .
The compatibility with ηi ’s is ensured by applying Proposition 28 and Theorem 24 as
follows.

We consider the map η : H′ → H introduced in Subsection 4.1 and the codimension p−
1, that is, for each integer q one has H ⊂ (RXp−1

q )p = (RpXq)p is the set of p-tuples
a = (a0, . . . , ap−1) ∈ RXp−1

q × · · · × RXp−1
q satisfying the relation ηiaj = ηjai+1 if

j ≤ i, and H′ = RXp
q = Rp+1Xq . The composition

Cp,q
k

αpβp

−→ Rp+1X
η−→ H

is a simplicial morphism and H is a simplicial group and therefore satisfies the Kan
property, so that applying Proposition 28 we can obtain an extension of this morphism
to a map f ′ : ∆p,q → H . Then we apply the section σ : H → H′ of Theorem 24 to
construct a map γp : ∆p,q → Rp+1X , which is an extension of αpβp : Cp,q

k → Rp+1X
and is compatible with the codegeneracy maps ηi (because the tuples a ∈ H satisfy
the relation ηiaj = ηjai+1 if j ≤ i). This proves the constructive Kan property of the
fibrations in the Bousfield-Kan tower.
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5 Effective homotopy in the Bousfield-Kan tower of fibra-
tions

Let us recall that our goal consists in developing an algorithm computing the different
stages of the Bousfield-Kan spectral sequence, and for this task we need to determine (in
a constructive way, that is, with the corresponding generators) the different homotopy
groups of the spaces Yn = TotnRX and Fn = Func∗(Sn,Rn+1X ∩ Ker η0 ∩ · · · ∩
Ker ηn−1) appearing in the Bousfield-Kan tower of fibrations.

5.1 Effective homotopy theory

The computation of homotopy groups is one of the most challenging problems in
Algebraic Topology. Although several theoretical methods have been designed trying
to determine homotopy groups of spaces, most of them are not constructive and cannot
be directly implemented in a computer and the only available computer programs
cannot be applied in all situations.

The effective homotopy method [23] was designed trying to compute homotopy groups
of simplicial sets in a constructive way. It is based on the ideas of the effective
homology technique [9, 7], implemented in the Kenzo system [24], which makes it
possible to determine homology groups of complicated spaces and has obtained some
results (for example homology groups of iterated loop spaces of a loop space modified
by a cell attachment, components of complex Postnikov towers, etc.) which were not
known before. Moreover, Kenzo can also compute some homotopy groups and has
allowed to detect an error in a theorem published in [25] (see [26] for details on these
calculations).

The Kan simplicial sets K which will be considered in this paper will be connected sim-
plicial sets, that is to say, such that π0(K) has only one homotopy class, π0(K) = {?}.
Furthermore, since we aim to work with the groups π∗(K) in a constructive way, we
only consider Kan simplicial sets whose homotopy groups π∗(K) are Abelian groups
of finite type.

The main notion of the effective homotopy method is the following definition.

Definition 33 The effective homotopy of a constructive Kan simplicial set K is a
graded 4-tuple (πq, fq, gq, hq)q≥1 where:
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• The component πq is a standard presentation of a finitely generated Abelian
group (that is to say, each πq is a direct sum of several copies of the infinite cyclic

group Z and some finite primary cyclic groups Zpq
i
, πq = Zαq⊕Zβ

q
1

pq
1
⊕· · ·⊕Zβ

q
r

pq
r

.
The component πq is therefore a well defined Abelian group of finite type in
some canonical form, inside which the usual computations can be done). As
we will see later, this group will be isomorphic to the desired homotopy group
πq(K) = Sq(K)/(∼).

• The component gq is an algorithm gq : πq → Sq(K) giving for every “abstract”
homotopy class a ∈ πq a sphere x = gq(a) ∈ Sq(K) representing this homotopy
class.

• The component fq is an algorithm fq : Sq(K) → πq computing for every
sphere x ∈ Sq(K) “its” homotopy class a = fq(x) ∈ πq . The algorithm fq
must induce an isomorphism fq : Sq(K)/(∼)

∼=−→ πq and the composition fqgq

must be the identity of πq .

• The component hq is an algorithm hq : Ker fq → Kq+1 satisfying ∂ihq = ? for
all 0 ≤ i ≤ q and ∂q+1hq = IdKer fq . This algorithm produces a certificate for a
sphere x ∈ Sq(K) claimed having a null homotopy class by the algorithm fq .

We can also say that the graded 4-tuple (πq, fq, gq, hq)q≥1 provides a solution for the
homotopical problem of K .

The problem now is how one can determine the effective homotopy of a given Kan
simplicial set K . As done in the effective homology framework [16], we will start
with some spaces whose effective homotopy can be directly determined (for exam-
ple, Eilenberg-MacLane spaces K(π, n)’s for finitely generated Abelian groups π

and n ≥ 1, see [23] for details), and then different constructors of Algebraic Topology
(for instance, fibrations) should produce new spaces with effective homotopy. The
following result allows one to compute the effective homotopy of the total space of
a constructive Kan fibration if the base and fiber spaces are objects with effective
homotopy.

Theorem 34 [23] An algorithm can be written down:

• Input:

{ A constructive Kan fibration p : E → B where B is a constructive Kan
complex (which implies the fiber F and E are also constructive Kan
simplicial sets), and F or B is simply connected.

{ Effective homotopies for the simplicial sets F and B.
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• Output: An effective homotopy for the Kan simplicial set E .

Let us emphasize here that in general, given a fibration F ↪→ E
p→ B, it is not possible

to determine the homotopy groups of the total space, π∗(E), from the groups π∗(F)
and π∗(B). To illustrate this problem it suffices to consider a trivial fibration S1 ↪→
S1 × S2 → S2 and the Hopf fibration S1 ↪→ S3 → S2 ; both fibrations have the same
base and fiber spaces but the homotopy groups of the total spaces S1 × S2 and S3

are different. However, if the three spaces involved in the fibration are constructive
simplicial sets, f is a constructive fibration and both F and B are provided with effective
homotopy, our algorithm determines the groups π∗(E).

If we want to apply our algorithm computing the effective homotopy of a fibration to
the fibrations fn : Yn → Yn−1 in the Bousfield-Kan tower, we need the fibers Fn and
the first space Y0 to be objects with effective homotopy and the fibrations fn to satisfy
the constructive Kan property.

5.2 Effective homotopy of the first space

The first space in the tower of fibrations of Bousfield-Kan is Y0 = RX , the simplicial
Abelian group freely generated by the simplices of X ; it is in particular a constructive
Kan complex since it is a simplicial Abelian group (see [12] for the explicit con-
struction of the Kan property in that case). Moreover, it is well-known that, given X a
pointed simplicial set, there exists a canonical isomorphism π∗(RX) ∼= H̃∗(X;Z) where
H̃∗(X;Z) denotes the reduced homology groups of X with coefficients in Z.

Let us observe that, if X is a finite simplicial set (as for instance one of the spheres Sp ),
its homology groups H̃∗(X;Z) (with generators) can be elementarily computed and
therefore it is not difficult to construct the graded 4-tuple (πq, fq, gq, hq)q≥1 defining
the effective homotopy of RX . In a more general situation, if the simplicial set
X has effective homology (a construction similar to the effective homotopy, for the
determination of homology groups of chain complexes, see [9] or [16] for details),
thanks to the isomorphism π∗(RX) ∼= H̃∗(X;Z) it is also easy to determine the effective
homotopy of the simplicial Abelian group RX . Therefore, if X is a simplicial set with
effective homology (which includes the particular case of X being a simplicial set of
finite type), then Y0 = RX has effective homotopy.

Proposition 35 Let X be a simplicial set with effective homology. Then the first
space in the Bousfield-Kan tower of fibrations, Y0 = RX , is an object with effective
homotopy.
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5.3 Effective homotopy of the fibers

Let us study now the fibers Fn in the Bousfield-Kan fibrations, which are the pointed
function spaces

Fn = Func∗(Sn,Rn+1X ∩ Ker η0 ∩ · · · ∩ Ker ηn−1)

The spaces Fn are simplicial Abelian groups and therefore they are in particular
constructive Kan simplicial sets. The simplicial functor Func∗(Sn,−) can be seen as
a model for the topological iterated loop space Ωn , and in particular it is well-known
that it moves forward the homotopy groups of effective Kan simplicial sets K , that is,
πq(Func∗(Sn,K)) ∼= πq+n(K). However, the constructiveness of this isomorphism is not
obvious. A previous paper [21] constructs an explicit version of this isomorphism, to be
understood as an isomorphism between the effective homotopy groups of Func∗(Sn,K)
and K : given a q-sphere of Func∗(Sn,K), the isomorphism constructs a (q+n)-sphere
of K , etc. The proof is divided into several lemmas which use the effective homotopy
theory and require some applications of our Cradle Theorem, showing the usefulness
of this combinatorial result in a different context.

Using the (explicit) isomorphism πq(Func∗(Sn,K)) ∼= πq+n(K) one can deduce that
the homotopy groups of Fn are:

πq(Fn) = πq(Func∗(Sn,Rn+1X ∩ Ker η0 ∩ · · · ∩ Ker ηn−1))
∼= πq+n(Rn+1X ∩ Ker η0 ∩ · · · ∩ Ker ηn−1)
∼= πq+n(Rn+1X) ∩ Ker η0 ∩ · · · ∩ Ker ηn−1

where the codegeneracy maps on the last term of the equation are the corresponding
maps induced on the homotopy groups, ηi : π∗(Rn+1X)→ π∗(RnX).

Let us also observe that the second relation πq+n(Rn+1X ∩Ker η0 ∩ · · · ∩Ker ηn−1) ∼=
πq+n(Rn+1X) ∩ Ker η0 ∩ · · · ∩ Ker ηn−1 is easily made explicit thanks to the fact of
Rn+1X being a simplicial Abelian group. For each 0 ≤ i ≤ n − 1, one can define
inverse group morphisms φ : πq+n(Rn+1X∩Ker ηi∩ · · ·∩Ker ηn−1)→ πq+n(Rn+1X∩
Ker ηi+1 ∩ · · · ∩ Ker ηn−1) ∩ Ker ηi given by φ([x]) = [x] and ψ : πq+n(Rn+1X ∩
Ker ηi+1∩ · · · ∩Ker ηn−1)∩Ker ηi → πq+n(Rn+1X∩Ker ηi∩ · · · ∩Ker ηn−1) given by
ψ([x]) = [x− ∂iηix]. In this way, the composition of the two relations in the previous
equation is an explicit isomorphism.

We want to compute now the effective homotopy of Fn . We recall first that Rn+1X
satisfies π∗(Rn+1X) ∼= H̃∗(RnX). For n ≥ 1, RnX is an infinite simplicial set, so
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that in principle it is not easy to compute its (reduced) homology groups. However,
in [14] we developed an algorithm which determines the effective homology of RX
from the effective homology of the simplicial set X , supposing that X is 1-reduced.
This algorithm can be iterated n times computing in this way the effective homology
of RnX , which provides us the desired effective homotopy of Rn+1X whenever X is
a 1-reduced simplicial set with effective homology. The groups πq+n(Rn+1X) (with
the generators) can then be computed and are finitely generated groups, so that the
kernels Ker ηi can be easily determined by means of some simple matrix operations.
We obtain in this way the effective homotopy of the fibers Fn .

Proposition 36 An algorithm can be written down:

• Input:

{ A 1-reduced simplicial set X with effective homology.
{ An integer n ≥ 0.

• Output: An effective homotopy for the fiber Fn = Func∗(Sn,Rn+1X ∩Ker η0 ∩
· · · ∩ Ker ηn−1).

5.4 Effective homotopy of the total spaces

In order to determine the effective homotopy of the total spaces Yn = TotnRX in the
Bousfield-Kan tower of fibrations, we apply Theorem 34 over the different fibrations
in an iterative way:

(1) The first base space Y0 = RX has effective homotopy (Proposition 35).

(2) The first fiber F1 = Func∗(S1,R2X∩Ker η0) has effective homotopy (Proposition
36).

(3) The first fibration f1 : Y1 → Y0 is a constructive Kan fibration (Theorem 23).

(4) Applying Theorem 34, we deduce that our total space Y1 has effective homotopy.

(5) Now Y1 is also the base space of the second fibration f2 : Y2 → Y1 .

(6) The second fibre F2 has also effective homotopy (Proposition 36).

(7) The second fibration f2 is a constructive Kan fibration (Theorem 23).

(8) We deduce from Theorem 34 that Y2 has effective homotopy. Again this is the
base of a new fibration f3 : Y3 → Y2 , with fiber F3 .

(9) We continue the same process for all fibrations in the tower.



28 A. Romero and F. Sergeraert

In this way we obtain iteratively the effective homotopy of all spaces Yn in the tower
of fibrations. In particular, the effective homotopy of Yn gives us the homotopy groups
πq(Yn) (and their generators).

Theorem 37 An algorithm can be written down:

• Input:

{ A 1-reduced simplicial set X with effective homology.
{ An integer n ≥ 0.

• Output: An effective homotopy for the space Yn = TotnRX .

The effective homotopy of the different elements of the tower of fibrations will be used
in the following sections to determine all levels of the Bousfield-Kan spectral sequence
and to construct an algorithm computing the homotopy groups of a simplicial set K .

6 An algorithm computing the Bousfield-Kan spectral se-
quence

As seen in Section 3, the spectral sequence associated with a tower of fibrations
(Yn, fn)n≥0 is given by the formula:

Er
p,q =

i−1(Im f r−1)
∂(Ker f r−1)

for q ≥ p

where i−1(Im f r−1) and ∂(Ker f r−1) are subgroups of πq−p(Fp) obtained from the
diagram:

(3)

πq−p+1(Yp−2) πq−p(Yp−1)

πq−p+1(Yp−1) πq−p(Fp) πq−p(Yp)

πq−p+1(Yp) πq−p(Yp+1)

f
��

f
��

f
��

f
��

f
��

f
��

f
��

f
��

∂ // i //
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The differential maps dr
p,q : Er

p,q → Er
p+r,q+r−1 are induced by the composition:

πq−p(Fp) i−→ Im f r−1 ⊆ πq−p(Yp)
(f r−1)−1

−→ πq−p(Yp+r−1) ∂−→ πq−p−1(Fp+r)

It is clear that, if all the homotopy groups π∗(Yn) and π∗(Fn) are finitely generated
Abelian groups and they are explicitly known through the effective homotopy of the
spaces Yn and Fn , then one can determine the groups Er

p,q and the differential maps
dr

p,q by means of elementary operations with the integer matrices defining the maps i,
f and ∂ of the diagram.

In the case of the Bousfield-Kan tower of fibrations associated with a simplicial set X ,
we have proved in Section 5 that the spaces Yn = TotnRX and Fn = Func∗(Sn,Rn+1X∩
Ker η0 ∩ · · · ∩ Ker ηn−1) have effective homotopy, which in particular provides the
homotopy groups π∗(Yn) and π∗(Fn) with the generators. Therefore, we obtain the
following algorithm computing the desired groups Er

p,q and the differential maps dr
p,q

of the Bousfield-Kan spectral sequence of a simplicial set X .

Theorem 38 An algorithm can be written down:

• Input: A 1-reduced pointed simplicial set X with effective homology.

• Output:

{ The groups Er
p,q for every r ≥ 1 and p, q ∈ N of the Bousfield-Kan

spectral sequence associated with X (with generators).
{ The differential maps dr

p,q for all p, q ∈ N and r ≥ 1.

This algorithm makes it possible to determine the different stages of the Bousfield-Kan
spectral sequence associated with a simplicial set X (supposed to be 1-reduced and
with effective homology). The implementation of the corresponding programs can be
managed by means of a functional programming language as Common Lisp, even if
it involves the representation of complicated (infinite!) structures. The programs will
be included in a new module for the Kenzo system [24]; some functions have already
been designed but our algorithm is not fully implemented yet.

As seen in Theorem 22, the Bousfield-Kan spectral sequence associated with a 1-
reduced simplicial set X is known to converge to the homotopy groups of X . In
this way, our algorithm makes it possible to compute the graded part of the natural
filtration induced on the homotopy groups (introduced in Theorem 21). As already
explained, this information does not provide a general algorithm for computing the
desired homotopy groups π∗(X) (because of extension problems), but in some particular
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cases the groups Er
p,q obtained by our algorithm in Theorem 38 could be sufficient to

deduce some low dimension homotopy groups.

Let us recall from Section 3.2 that for example, in the case of the 2-sphere S2 , the
level E2 of the Bousfield-Kan spectral sequence allows us to deduce the (well-known)
homotopy groups πi(S2) for i = 2, 3, 4, 5. However, in dimension q− p = 6 one has
three non-zero groups E∞2,8 = Z3 and E∞3,9 = E∞4,10 = Z2 and several extensions are
possible, so that the spectral sequence does not determine the homotopy group π6(S2).

In the following section we explain how the desired homotopy groups of a simplicial
set X can be constructively determined directly from the tower of fibrations which
produces the Bousfield-Kan spectral sequence (without determining the groups Er

p,q and
solving the possible extension problems), obtaining in this way an algorithm computing
homotopy groups of spaces. Moreover, we present an algorithm for computing the
natural filtration induced on the homotopy groups by the spectral sequence (and not
only the graded part which can be directly deduced from the groups E∞p,q ), which is a
more refined invariant than the naked homotopy groups.

7 An algorithm computing the effective homotopy of a space

Let X be a simplicial set, non necessarily satisfying the Kan property.

Definition 39 A Kan completion KX of X is a constructive Kan simplicial set provided
with an inclusion X ↪→ KX .

Remark 40 Several methods can be considered to construct a Kan completion KX
for a simplicial set X . For example, we can recursively define KXn from KX0 :=
X and KXn+1 from from KXn as follows. For every 0 ≤ k ≤ q + 1 and every
collection of q + 1 elements x0, x1, . . . , xk−1, xk+1, . . . , xq+1 of KXn

q which satisfy the
compatibility condition ∂ixj = ∂j−1xi for all i < j, i 6= k, and j 6= k , we add a new
(q+1)-simplex x and a new q-simplex x′ to KXn+1 , whose faces are deduced from the
collection x0, x1, . . . , xk−1, xk+1, . . . , xq+1 (such that ∂ix = xi for i 6= kand ∂kx = x′ ).
Then KX := ∪nKXn is clearly Kan and can be called the jigsaw model of X .

Two Kan completions KX and KX′ for a simplicial set X are homotopically equivalent
in a canonical way. In particular, the jigsaw model is equivalent to TotRX .
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We can now generalize the definition of effective homotopy introduced in Section 5.1
for Kan simplicial sets as follows.

Definition 41 Let X be a simplicial set. The effective homotopy of X consists in a
Kan completion KX , provided with a solution for its homotopical problem, that is, a
graded 4-tuple (πq, fq, gq, hq)q≥1 for KX as in Definition 33.

It is clear that, in particular, the effective homotopy of a space X provides its homotopy
groups. In this section, we use the space TotRX as a Kan completion of X for
computing its effective homotopy.

We consider the tower of fibrations (Yn = TotnRX, fn)n≥0 appearing in the construction
of the Bousfield-Kan spectral sequence of a simplicial set X . If X is 1-reduced, the
homotopy groups of the inverse limit Y = TotRX = lim←−TotnRX are πm(TotRX) ∼=
πm(X) ∼= lim←−πm(TotnRX).

On the other hand, the first level of the Bousfield-Kan spectral sequence is defined
(see Theorem 22) as E1

p,q = πq(Rp+1X) ∩ Ker η0 ∩ · · · ∩ Ker ηp−1 = πq−p(Fp), where
Fp := Func∗(Sp,Rp+1X ∩ Ker η0 ∩ · · · ∩ Ker ηp−1) is the fiber of the fibration fp :
TotpRX → Totp−1RX . In a previous work [14] we have proved that, if the simplicial
set X is 1-reduced, the groups E1

p,q = πq−p(Fp) satisfy E1
p,q = 0 for q < 2p + 2,

which implies πm(Fn) = 0 for n > m− 2 (see [27] for a detailed proof of this result).

We observe then the long exact sequence of homotopy [12] of the fibration fn :

· · · ∂−→ πm(Fn) inc∗−→ πm(TotnRX)
f∗−→ πm(Totn−1RX) ∂−→ πm−1(Fn) inc∗−→ · · ·

where one can easily deduce that πm(TotnRX) ∼= πm(Totn−1RX) for n > m− 2. The
isomorphism is explicit because fn is a constructive Kan fibration and the base and the
total spaces are objects with effective homotopy (see [23]). This implies

. . . ∼= πm(TotnRX) ∼= πm(Totn−1RX) ∼= . . . ∼= πm(Totm−1RX) ∼= πm(Totm−2RX)

and then πm(X) ∼= lim←−πm(TotnRX) ∼= πm(Totm−2RX). Therefore, if we know the
homotopy groups of the spaces TotnRX , the homotopy groups of X can be directly
determined as πm(X) ∼= πm(Ym−2), without using the different components Er

p,q of the
spectral sequence. We observe in particular π2(X) ∼= π2(Tot0RX) = π2(RX) ∼= H2(X);
it is the Hurewicz theorem for X is 1-reduced.

Let us remark that, thanks to Theorem 37, the spaces Yn = TotnRX have effective ho-
motopy; in this way, the isomorphism πm(Y) ∼= πm(Ym−2) provides the first component
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πq of the effective homotopy of the inverse limit Y = TotRX = lim←−TotnRX . More-
over, it is not difficult to construct the components g, f and h defining the effective
homotopy of the inverse limit Y as follows.

A sphere s ∈ Sm(Y) is a family of spheres si ∈ Sm(Yi) compatible with the fibrations
fi . Given an “abstract” homotopy class a ∈ πm ∼= πm(Y) ∼= πm(Ym−2), the effective
homotopy of Ym−2 provides a sphere sm−2 = gYm−2(a) ∈ Sm(Ym−2). We consider
sm−3 = fm−2(sm−2) and then in a recursive way si = fi+1(si+1) for i < m − 2. To
determine the spheres si ∈ Sm(Yi) for i > m− 2, it suffices to apply in an iterative way
the constructive Kan property of the fibrations fi . We define g(a) := (si)i≥0 .

On the other hand, let s ≡ (si)i≥0 ∈ Sm(Y). We consider sm−2 ∈ Sm(Ym−2) and “its”
homotopy class a = f Ym−2(sm−2) ∈ πm given by the effective homotopy of Ym−2 . We
define f (s) := a.

Finally, let s ∈ Sm(Y) such that f (s) = 0 ∈ πm . We consider sm−2 ∈ Sm(Ym−2).
Following the previous definition of the component f , one has f Ym−2(sm−2) = 0 and
then the component hYm−2 of the effective homotopy of Ym−2 provides an (m + 1)-
simplex zm−2 ∈ Ym−2 such that ∂izm−2 = ? for all 0 ≤ i ≤ m and ∂m+1zm−2 = sm−2 .
We consider now zm−3 = fm−2(zm−2) and then in a recursive way zi = fi+1(zi+1)
for i < m − 2. On the other hand, taking into account sm−1 , sm−2 and zm−2 , the
constructive Kan property of the fibration provides an (m + 1)-simplex w of Ym−1

such that fm−1(w) = zm−2 , ∂iw = ? for 1 ≤ i ≤ m, ∂m+1w = sm−1 and ∂0w is an
element in Sm(Fm−1). Since πm(Fm−1) = 0, algorithm hFm−1 in the effective homotopy
of Fm−1 returns an (m + 1)-simplex v ∈ Fm−1 such that ∂iv = ? for all 0 ≤ i ≤ m
and ∂m+1v = ∂0w. Applying again the constructive Kan property of the fibration
fm−1 , one has an (m + 2)-simplex y of Ym−1 with fm−1(y) = ηm+1zm−2 , ∂0y = v,
∂iy = ? for 1 ≤ i ≤ m and ∂m+2y = w. Then we take zm−1 := ∂m+1y which satisfies
fm−1(∂m+1y) = zm−2 , ∂i∂m+1y = ? for 0 ≤ i ≤ m and ∂m+1∂m+1y = sm−1 . Iterating
the process, we build zi for every i > m − 2. The element z = (zi)i≥0 ∈ Y is the
desired element providing a certificate of the sphere s claimed having a null homotopy
class in πm .

In this way, the effective homotopy of the total space Y = TotRX = lim←−TotnRX
has been determined. Thanks to the canonical morphism X ↪→ TotRX , we obtain
therefore the following algorithm computing the effective homotopy of a simplicial set
X . In particular, this makes it possible to compute the homotopy groups π∗(X).

Theorem 42 An algorithm can be written down:

• Input: A 1-reduced simplicial set X with effective homology.
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• Output: The effective homotopy of X .

On the other hand, as stated in Theorem 21, the spectral sequence of a tower of fibrations
(Yn, fn)n≥0 induces a filtration on the homotopy groups of the inverse limit Y given by:

Fn(πm(Y)) = Ker(pn : πm(Y)→ πm(Yn))

In our case, the Bousfield-Kan spectral sequence produces the filtration of πm(lim←−TotnRX) ∼=
πm(X):

Fn(πm(X)) = Ker(pn : πm(X)→ πm(TotnRX))

Thanks to Theorem 42 and the isomorphism πm(X) ∼= πm(Totm−2RX), one can com-
pute the homotopy groups πm(X) and determine the subgroups Ker(pn : πm(X) →
πm(TotnRX)) by means of operations on matrices, producing in this way the following
algorithm.

Theorem 43 An algorithm can be written down:

• Input:

{ A 1-reduced simplicial set X with effective homology.
{ Integers m ≥ 2 and n ≥ 0.

• Output: The group Fn(πm(X)) corresponding to the natural filtration induced
on πm(X) by the Bousfield-Kan spectral sequence.

Theorem 42 provides a general algorithm computing homotopy groups of (1-reduced)
simplicial sets with effective homology, and in particular it makes it possible to deter-
mine stable and unstable sphere homotopy groups, which is known to be an interesting
problem in Algebraic Topology. Moreover, Theorem 43 makes it possible to determine
the natural filtration induced by the Bousfield-Kan spectral sequence, which is a more
refined invariant than the naked homotopy groups. As already said, finite type simpli-
cial sets are objects with effective homology so that (if they are 1-reduced) one can
also apply our algorithms on them. Moreover, there exist effective homology versions
of many topological constructors and this makes it possible to consider a wide variety
of complicated (infinite) simplicial sets which have effective homology, and then we
can also compute their homotopy groups (and the corresponding filtration).

Although our algorithm computing homotopy groups of spaces is not yet implemented,
there is no doubt at all about the feasibility of such a concrete implementation: these
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new algorithms have the same general style as numerous other algorithms already im-
plemented in the Kenzo program [24], already producing striking results, in particular
around complicated loop spaces. However, it is necessary to remark that several algo-
rithms of exponential nature will be present in our calculations, so that one can expect
complexity problems which will surely prevent us from computing homotopy groups
in high dimensions, and in particular it is clear that our results could not compete with
the specific procedures designed for computing homotopy groups of spheres. However,
our algorithm can be applied to general spaces, which can make it possible to determine
some unknown homotopy groups of complicated simplicial sets.

8 Conclusions and further work

In this paper an algorithm computing the effective homotopy of a simplicial set has
been explained. The algorithm is based on the Bousfield-Kan spectral sequence, and
its main ingredient consists in defining the effective homotopy of the different elements
in the tower of fibrations which appears in the definition of the spectral sequence. The
algorithm can be applied to 1-reduced simplicial sets X with effective homology,
allowing in particular the computation of stable and unstable homotopy groups of
spheres. We are also able to compute the natural filtration induced on the homotopy
groups by the spectral sequence.

Our algorithms are not yet concretely implemented as computer programs. Although
such a concrete implementation can certainly be done using the functional programming
language Common Lisp, due to the exponential nature of some of the calculations one
can hope the computations will not be too fast and only low dimension homotopy groups
will be obtained. In order to improve the complexity of our calculations one of the main
components of the pending work consists in writing down a good implementation of
a good algorithm computing the effective homology of K(Z, n), an interesting subject
by itself: it is easy to prove the computation of the effective homology of a simplicial
group Rp+1X can be reduced to the same problem for the main Eilenberg-MacLane
spaces K(Z, n), see [14].
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