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After extensive preparations in the previous sec-
tion, we are ready to harvest the fruits of our
labour and compute minimal graded free resolu-
tions. [4, p.147]

Announcement.

The methods of Effective Homology [5] give a simple algorithm computing the
minimal resolution of an A0-module of finite type M0, when A0 is an ordinary
polynomial ring A0 = k[x1, . . . , xm]0 localized at 0 ∈ km. Standard arguments
allow us to study instead the global case of A = k[x1, . . . , xm], of an A-module M,
and we are looking for an A0-resolution of M ⊗A A0.

With respect to which seems the previously known methods [4, Section 4.8],
the situation is the following. Our method is conceptually remarkably simple,
once the very nature of effective homology is understood. On the contrary, the
technicalities of the other methods are rather laborious, which of course does not
mean useless. The style of our algorithm is quite different; effective homology
can be seen as an automatic program writing process, deducing machine programs
from simple notions of homological algebra, mainly the homological perturbation
lemma. Experience in Algebraic Topology shows programs obtained in this way
are simple, readable and efficient, the same in Commutative Algebra where other
programs computing the effective homology of Koszul complexes have already
shown the interest of the point of view and the efficiency of the programs that are
so obtained.

So that it will be interesting to compare the concrete algorithms obtained with
our method to the others. The situation is a little amusing: because our programs
are “automatically” written down, it seems sensible to guess the resulting program
shoud be close to one of the other programs. Yes or no? If yes, close to which
one? Interesting questions.

The algorithm has four steps.
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1. Compute a Groebner basis of the module M for an arbitrary monomial order.
Replacing the generators of the Groebner basis by the leading terms produces
another A-module M ′, a monomial module, canonically isomorphic to M as
a k-vector space.

2. The effective homology of the Koszul complex Ksz(M ′) of M ′, because of
the monomial generators, is easily and elementarily computed.

3. The so-called homological perturbation lemma1 is applied between Ksz(M)
and Ksz(M ′), producing the effective homology of the Koszul complex
Ksz(M).

4. The Aramova-Herzog bicomplex [1] of M is constructed. Two further ap-
plications of the homological perturbation lemma produce the looked-for
minimal resolution, with a simple explicit formula for the differentials.

Observe this organization is essentially opposite to the usual one: a resolution
of M is most often firstly computed to obtain the (ordinary) homology of the
Koszul complex. But the effective homology is much richer and in this case it
happens the effective homology of Ksz(M), directly obtained without any resolu-
tions, “contains” in particular the minimal resolution of M . The Aramova-Herzog
bicomplex is to be considered as a reading process of this property.

For the last point, let ρ = (f, g, h) be the reduction (see [5]) describing the
effective homology of Ksz(M), the Koszul complex of M :

ρ = h 5555 55 Ksz(M)
f

//H
goo

where H is the chain complex with null differentials made of k-vector spaces of
dimensions the Betti numbers of Ksz(M). The Aramova-Herzog (ArHr) bicomplex
is ArHr(M) = M ⊗k ∧V ⊗k A, where V = m/m2, with an appropriate bigrading
taking account of the exterior degree in the second component of the tensor product
and of the polynomial degree in the third one. The horizontal differential consists
in considering ArHr(M) = M ⊗ Ksz(A) and ∂′ = 1M ⊗ dKsz(A)

. The vertical

differential sees ArHr(M) = Ksz(M)⊗ A and is ∂′′ = dKsz(M)
⊗ 1A.

Now the minimal resolution R(M) is R(M) = H ⊗k A with the differential:

(Σ) d = (f ⊗ idA)

(
∞∑
i=0

(−∂′(h⊗ idA))i

)
∂′(g ⊗ idA)

The series which looks infinite is in fact finite for any particular evaluation, because
of a nilpotency property necessarily satisfied.

1Should in fact be called the fundamental theorem of homological algebra.
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The minimal non-trivial example.

Let A = k[x] (one variable) and M = A/ < x2 >. And let us assume we do not
know (!) the minimal resolution. Here the ideal is monomial and the steps 1 and 3
of our algorithm are void. The effective homology of the Koszul complex:

Ksz(M) = [· · · ← 0←M ←M.dx← 0← · · ·]

is made of the chain complex:

H = [· · · ← 0← k0
0← k1 ← 0← · · ·]

(where k0 and k1 are copies of the ground field k with respective homological
degrees 0 and 1) and of the maps ρ = (f, g, h) with:

1. f : M → k0 is defined by f(1) = 10, f(x) = 0.

2. f : M.dx→ k1 is defined by f(1.dx) = 0, f(x.dx) = 11.

3. g : k0 →M is defined by g(10) = 1.

4. g : k1 →M.dx is defined by g(11) = x.dx.

5. h : M →M.dx is defined by h(1) = 0, h(x) = 1.dx.

We must guess the right differential on H⊗kA. The only non-trivial differential
dR(M)(11 ⊗ 1A) comes from a unique non-null term in the series (Σ), following the
path:

11⊗1A
g⊗idA7−→ x⊗dx⊗1A

∂′
7→ x⊗1⊗x

−h⊗idA7−→ −1⊗dx⊗x
∂′
7−→ −1⊗1⊗x2 f⊗idA7−→ −10⊗x2

and, surprise, we find the resolution 11 ⊗ 1A 7→ −10 ⊗ x2. You find it is a little
complicated for a so trivial particular case? The point is the following: this exam-
ple in a sense is complete, the most general case is not harder, you have here all
the ingredients of the general solution, nothing more is necessary.

The key point is that the effective homology of Ksz(M) contains in particular
the homotopy operator h, the main tool in the computation of the minimal reso-
lution. Aramova and Herzog [1] apply the two usual bicomplex spectral sequences
to their bicomplex, but the only knowledge of cycles representing the homology
classes is not sufficient to determine the minimal resolutions. Effective homol-
ogy contains in particular distinguished cycles representing the homology classes,
but also much more information about the exact homological status of the chain
complex with respect to these cycles.

In the crucial paper [1] — thanks to the authors for their very useful paper —
the detailed examination of the computations in p.12 is instructive. In the line 13
from down, they observe “−x1e2∧e3+x2e1∧e3 is homologous to −x3e1∧e2”, which
allows them to identify both elements when computing the searched differential;
in other words, a boundary can be neglected. But a little later, in the same
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situation, line 1 of p. 13 other boundaries are not at all neglected, their boundary
preimages are in this case essential when constructing the differential. Why this
difference? No explanation in the paper. We can suspect the authors have been
a little “helped” by the right resolution known in advance? In fact the difference
comes from an implicit homotopy operator h which is required to explain the
difference. See the details in the next Section.

Note also how our method is simple with respect to the terrible spectral se-
quence computations in [1]; it is a striking illustration of the power of the methods
of effective homology: they are simpler than the corresponding spectral sequences
and also more efficient, in particular from an algorithmic point of view.

A few talks (Toulouse, Sevilla, Luminy, Marrakech, Karlsruhe, Logroño,
Grenoble) have been recently given about these techniques and the correspond-
ing pdf file2 gives a more extended presentation of effective homology when
used in commutative algebra. A Lisp logfile3 gives also a typical example of
computation of the effective homology of a Koszul complex, for the module
K[x, y, z, t]/<x− t5, y − t7, z − t11 >.

Examples.

First Aramova-Herzog example.

In the paper [1], Aramova and Herzog consider the toy example of the ideal I =
<x1x3, x1x4, x2x3, x2x4 > in A = k[x1, x2, x3, x4]. The ideal is monomial and again,
steps 1 and 3 of our algorithm are void. The Betti numbers of Ksz(A/I) are
(1, 4, 4, 1) and the effective homology of Ksz(A/I) is a diagram:

ρ = h 5555 55 Ksz(A/I)
f

//H
goo

where H is the chain complex with null differentials:

· · · ←− k
0←− k4 0←− k4 0←− k ←− · · ·

The arrows f and g are chain complex morphisms satisfying fg = idH , the self-
arrow h is a homotopy between gf and idKsz(A/I), that is, idKsz(A/I) = gf +dh+hd,
and finally, the composite maps fh, hg and h2 are null. These maps smartly express
the big chain complex Ksz(A/I) as the direct sum of the small one H, in this case
with trivial differentials, and an acyclic one (ker f) with an explicit contraction h.
Our Kenzo program [2] computes this effective homology in a negligible time with
respect to input-output. In particular the map g defines representants for the
alleged homology classes, the map f is a projection which in particular sends
cycles to their homology classes, and h is the main component of a constructive
proof of these claims.

2http://www-fourier.ujf-grenoble.fr/∼sergerar/Papers/Koszul.pdf
3http://www-fourier.ujf-grenoble.fr/∼sergerar/Papers/Koszul.txt
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The minimal resolution of A/I is R(A/I) = H⊗A where a non-trivial differen-
tial must be installed. Let us apply our formula to the unique generator h3,1 ⊗ 1A

of H3 ⊗ A. Kenzo chooses g(h3,1) = x2 dx1.dx3.dx4 − x1 dx2.dx3.dx4 and:

∂′(g ⊗ 1A)(h3,1 ⊗ 1A) = x2 dx3.dx4 ⊗ x1

−x1 dx3.dx4 ⊗ x2

+(−x2 dx1.dx4 + x1 dx2.dx4)⊗ x3

+(x2 dx1.dx3 − x1 dx2.dx3)⊗ x4

Kenzo is a little luckier than Aramova and Herzog, for he had chosen:

g(h2,1) = −x2 dx1.dx3 + x1 dx2.dx3

g(h2,2) = −x1 dx3.dx4

g(h2,3) = −x2 dx1.dx4 + x1 dx2.dx4

g(h2,4) = −x2 dx3.dx4

which is enough to imply:

d(h3,1) = −h2,1 ⊗ x4 + h2,2 ⊗ x2 + h2,3 ⊗ x3 − h2,4 ⊗ x1

that is, except for legal minor differences, directly the same result as Aramova and
Herzog.

Let us now force Kenzo to choose Aramova and Herzog’s representants for the
homology classes of H2. This amounts to replacing the component g in degree 2 by
another one g′ = g + dα for α a map α : H2 → Ksz3(A/I) chosen to give the new
representants. The cycle −x2 dx1.dxi +x1 dx2.dxi (i = 3 or 4) is homologous to the
cycle −xi dx1.dx2 (sign error in [1]) thanks to the boundary preimage dx1.dx2.dxi.
So that we transform Kenzo’s choices to Aramova and Herzog’s choices by taking
α(h2,1) = −dx1.dx2.dx3, α(h2,3) = −dx1.dx2.dx4 and α(h2,i) = 0 for i = 2 or 4.

The component f of the reduction does not change, but the homotopy h2

must be replaced by h′2 = h2(id − dαf2). Repeating the same computation, tak-
ing account of g3 = g′3, now the homotopy term (h′2 ⊗ idA)∂′(g3 ⊗ idA)(h3,1) =
dx1.dx2.dx4 ⊗ x3 − dx1.dx2.dx3 ⊗ dx4 is not null, so that we must continue the
expansion of the series (Σ). We find:

−∂′(h′2 ⊗ idA)∂′(g ⊗ idA)(h3,1) = −dx2.dx4 ⊗ x1x3 + dx1.dx4 ⊗ x2x3

+dx2.dx3 ⊗ x1x4 − dx1.dx3 ⊗ x2x4

but applying f or h′ to the lefthand factors of the tensor products this time gives 0
and the final result is the same: Aramova-Herzog’s conclusion is so justified; the
possible pure nature of the looked-for resolution, known in advance after examining
the Koszul cycles, may also be used to cancel the examination of the critical
homotopy operator, but we will see our method can be applied in much more
general situations, even in a non-homogeneous situation. In more complicated
situations, the result could have been different: “the” minimal resolution is unique
only up to chain-complex isomorphism and this set of isomorphisms is very large.
In this particular case, many triangular perturbations can for example be applied
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to the simple expression found for d(h3,1) without changing its intrinsic nature,
and in parallel the same for “the” effective homology of the Koszul complex.

Another comment is also necessary. After all, any (correct) choice for the
representants g(h2,i) is possible, so that why it would not be possible to prefer
Kenzo’s choices to the initial unfortunate choices by Aramova and Herzog? The
point is the following: a resolution is not only made of isomorphism classes of the
boundary maps, you must make these maps fit to each other in such a way there
is equality between appropriate kernels and images. So that when you change the
cycles representing the homology classes during the computation of the component
d3 of the resolution for example, then the computation of d2 could also be modified.

Second Aramova-Herzog example.

On one hand it is significantly simpler than the first one: the concerned module
is a k-vector space of finite dimension 3, so that any computation is elementary.
On another hand it is a little harder: the interesting differential to be constructed
is quadratic. Note in particular it was not obvious in the previous example to
obtain the effective homology: the concerned module was a k-vector space of
infinite dimension, but the standard methods of effective homology know how to
overcome such a problem; in fact they were invented exactly to overcome such a
problem, see [5].

The underlying ground ring now is A = k[x1, x2] and we consider the module
M = <x1, x2 >/<x2

1, x
2
2 >. The module M is a k-vector space of dimension 3. The

Koszul complex is of dimension 3 in degrees 0 and 2, of dimension 6 in degree 1.
The simplest form of the effective homology is well described by this figure.

Ksz0(M) = k3 Ksz1(M) = k6 Ksz2(M) = k3

R1 x1 dx255

uukkkkkkkkkkkkkkkk −x1 dx1.dx255

uukkkkkkkkkkkkkk
x2 dx1.dx255

uukkkkkkkkkkkkkk

R2 x1x2 x1x2 dx1

x1x2 dx2

R3 x1 x2 dx1 − x1 dx2 x1x2 dx1.dx2

x2 x1 dx1

x2 dx2

Each column corresponds to a component of the Koszul complex and the (al-
most) canonical basis is shared in boundary preimages, cycles homologous to zero,
and homology classes, each homology class being represented by a cycle not at all
homologous to zero. The effective homology:

ρ = h 5555 55 Ksz(M)
f

//H
goo
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is read on the figure as follows. The map g consists in representing the homol-
ogy classes by the cycles listed on the bottom row R3. The map f is the inverse
projection which forgets the basis vectors of the rows R1 and R2. The differen-
tials and the homotopy operator h are simultaneously represented by bidirectional
arrows. The chosen supplementary of the homology groups – in fact of the repre-
senting cycles – are shared in two components (R1 and R2) isomorphic through the
differential in the decreasing direction, through the homotopy operator in the in-
creasing direction. This diagram expresses in a very detailed way the Betti numers
are (2, 3, 1).

The chain complex H is [0 ← k2 ← k3 ← k ← 0] with null differentials. We
have to install the right differential on H ⊗ A. With the same notations as in
the previous section, the differential d2 of the minimal resolution is obtained by a
unique non-null term of the series (Σ) following the path:

h2,1

(g2 ⊗ idA) 7→ x1x2 dx1.dx2

∂′ 7→ x1x2 dx2 ⊗ x1 − x1x2 dx1 ⊗ x2

−(h1 ⊗ idA) 7→ −x2 dx1.dx2 ⊗ x1 − x1 dx1.dx2 ⊗ x2

∂′ 7→ −x2 dx2 ⊗ x2
1 + (x2 dx1 − x1 dx2)⊗ x1x2 + x1 dx1 ⊗ x2

2

(f1 ⊗ idA) 7→ −h1,3 ⊗ x2
1 − h1,1 ⊗ x1x2 + h1,2 ⊗ x2

2,

that is, the same result as in [1], except innocent sign changes and permutations.
All the other terms produced by the series (Σ) are null.

The “path” described above makes also obvious the nilpotency argument which
guarantees the convergence of the series (Σ): in M ⊗∧V ⊗A, the central term ∧V
“inhales” the monomials from the lefthand factor M and partly “exhales” them
to the righthand side after some processing, giving back also something on the
lefthand side but with a strictly inferior degree. After a finite number of steps,
certainly nothing anymore on the lefthand side. This is particularly clear in the
homogeneous case, a little more dificult but interesting in the general case: the
Groebner monomial orders again play an important role here.

You see in fact the nature of this example is essentially the same as for our
initial “minimal non-trivial” example.

The favourite Kreuzer-Robbiano example.

Martin Kreuzer and Lorenzo Robbiano use a little more complicated toy exam-
ple in their book [4, Chapter 4], in fact close to the first Aramova-Herzog ex-
ample. Again the ring A = k[x1, x2, x3, x4] but the ideal is nomore monomial:
I = <x3

2 − x2
1x3, x1x

2
3 − x2

2x4, x
3
3 − x2x

2
4, x2x3 − x1x4>. It is a Groebner basis

for DegRevLex, so that step 1 of the algorithm is void, but the ideal is nomore
monomial and step 3 is not. Keeping the leading terms, we consider the close
ideal I ′ =<x3

2, x1x
2
3, x

3
3, x2x3>. It is a monomial ideal and the effective homol-

ogy of the Koszul complex Ksz(A/I ′) is easily computed; the Betti numbers are
(1, 4, 4, 1) and Kenzo gives for example as a generator of the 3-homology the cycle
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−x2
3 dx1.dx2.dx3. Applying the homological perturbation lemma to take account

of the difference between I and I ′ gives the effective homology of Ksz(A/I); the
new Betti numbers are certainly bounded by the previous ones, but in this simple
case, they are the same. The generator of the homology in dimension 3 is now
−x2

3 dx1.dx2.dx3 + x2x4 dx1.dx2.dx4− x1x3 dx1.dx3.dx4 + x2
2 dx2.dx3.dx4. There re-

mains to play the same game with the components f , g and h of the effective
homology, and also with the differential ∂′ of the Aramova-Herzog bicomplex, ex-
actly the same game as before, nothing more, to obtain the minimal resolution:

0←− A
d1←− A4 d2←− A4 d3←− A←− 0

with the matrices:

d1 =
[

x2
1x3 − x3

2,−x1x
2
3 + x2

2x4, x2x
2
4 − x3

3,−x1x4 + x2x3

]

d2 =


0 −x3 −x4 0
−x3 −x1 −x2 x4

x1 0 0 −x2

x2x4 −x2
2 −x1x3 −x2

3

 d3 =


−x2

−x4

x3

−x1


Another toy example.

Let us finally consider now the non-homogeneous ideal:

I = <t5−x, t3y−x2, t2y2−xz, t3z− y2, t2x− y, tx2− z, x3− ty2, y3−x2z, xy− tz>

This ideal seems more complicated than the previous one, but in a sense in fact
it is not. This ideal is obtained by applying the DegRevLex Groebner process to
I = <x−t5, y−t7, z−t11> and the simple arithmetic nature of the toric generators
allow us to expect a simple minimal resolution. But the program ignores this
expression of I and it is interesting to observe the result of its study: the minimal
resolution is in principle a machine to analyze the deep structure of an ideal or
module. Macaulay2’s resolution gives for A/I a resolution with Betti numbers
(1, 7, 11, 6, 1) which is not minimal4. On the contrary, Singulars mres computes the
minimal resolution, necessarily equivalent to ours; but to our knowledge, Singular
does not give any information about the connection between the homology of the
Koszul complex and this minimal resolution, in particular between the effective
character of the homology of the Koszul complex and the effective character of the
obtained resolution. No indication in [3] about these subjects. See [6] for details
about our point of view.

The approximate monomial module A/I ′ has Betti numbers (1, 9, 15, 8, 1). Ap-
plying the homological perturbation lemma between Ksz(A/I ′) and Ksz(A/I) gives
the effective homology of the last one. The Betti numbers are, surprise, (1, 3, 3, 1).
For example a generator for the 3-homology is −x2 dt.dx.dy + tx dt.dx.dz −

4But the writer of the part of this text is not at all a Macaulay2 expert; using the rich set of
Macaulay2 procedures, it is certainly possible to compute the minimal resolution.
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t4dt.dy.dz + dx.dy.dz. The same process as before using the Aramova-Herzog
bicomplex now describes a possible minimal resolution. The differentials can be:

d1 =
[
−t2x + y,−tx2 + z,−t5 + x

]
d2 =

 0 t5 − x tx2 − z
t5 − x 0 −tx2 + y
−tx2 + z −t2x + y 0


d3 =

 −t2x + y
tx2 − z
−t5 + x


With respect to the series (Σ), each term of degree k in the previous matrices

comes from a term of the series with i = k− 1. Here all the terms of the series are
null for i ≥ 5: in fact the degree corresponds to the number of applications of ∂′.
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