Effective Homology

of

Koszul Complexes

End of compu

;: Clock -> 2882-61-17, 19h 25m 36s.
Computing the boundary of the generator 19 {dimension 7} :

<TnPr <TnPr <TnPr 353 <<{Abar[2 51][2 51]>>> <<Abar>>> <<{Abar>>>
End of computing.

Homology in dimension 6 :

Component 27122

---done---

;s Clock -> 2@882-81-17, 19h 27m 1
Francis Sergeraert, Institut Fourier, Grenoble, France
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Plan

. Tor 4(M, k)

A reduction solves a homological problem.

Basic Perturbation Lemma.
Effective Homology.

Cone construction and BPL.
SES,; and SES; theorems.
Effective Tor 4(A/I, k).

Aramova-Herzog bicomplex 4+ Effective Homology

— Minimal Resolution.



k = commutative field. A = commutative k-algebra.

T1yee.y Ty € A. M = A-module.

Definition: The Koszul complex K y(M;xq,...,x,) is a

chain complex K, of A-modules with:
K, := M Qi AN"E™

A generator of K, is denoted by m dx;, - -+ dz; .
Differential: d : K,, — K, :
m 0x;, +++ 0x;, — + mx; 0T, 0x;,
— mx;, 0T, 0x;y - 0x;,
4+ ..

+ (=) mx;, 0xi, 0xiy -+ 0x;



“Geometrical” interpretation of Koszul complexes.

Principal case:

Ka(A;xq,...) = AR ANE™ (~ total space)
A = structural algebra (~ structural group);
Ak™ = base coalgebra (~ base space);
t = twisting cochain (~ twisting function);

General case:

KA(M;CED. . .) = M ®A (A ®t /\km)
— Fibration associated to M ®4 A — M.



Particular case: A = k[x1,...,Ty)].

K(A;x1y...,xm) =: K(A) := A Qs AE™

— canonical Koszul complex of A is acyclic.

K (A) acyclic & K(A) = universal fibration of A
< K(A) = A-resolution of k:

0—k—A— AQKk™ — AR N*E™ — ...

= K(A) = possible tool to compute Tor 4 (M, k).



Definition: M and N = A-modules = Tor 4(M,N) = 77?7

Let R4(M) be an A-resolution of M,
RA(N) an A-resolution of V.

H,(Ry(M)®4 N) =: Tor4(M,N) := H,(M ®4 Rs(N)).

Standard method computing Tor 4 (M, k):
1. Compute an A-resolution R4(M) of M of A-finite type.
(Syzygies)
2. > RA(M) Ra k =

Chain complex of finite dimensional k-vector spaces.

3. = H.(Ra(M) ®a k) = Tor 4(M, k) =

elementary computation.



Drawbacks: 1) Rj(M) = sygyzies = not so easy.
2) It happens Tor 4(M, k) := H.(M ® 4, Ra(k))

can be much more interesting !!

Theorem (Serre): § = PDE local system in 0 € k™.

Is = canonical ideal associated to S.

Then S involutive < Tor 4(Is, k), = 0.

But the theorem comes

from the explicit examination of I ® 4 Ra(k).

Using this theorem needs a complete solution

for the ‘homological problem‘

of I ®A RA(k)



Solving the homological problem for a chain complex C,

<> You must be able to:

1. Determine the isomorphism class of H;(C,) for arbitrary € Z.

2. Produce a map p : H;(C,) — C;

giving a representant for every homology class.
3. Determine whether an arbitrary chain ¢ € Cj is a cycle.

4. Compute, given an arbitrary cycle z € Z; = ker(d; : C; — C;_1),
its homology class z € H;(C,).

5. Compute, given a cycle z € Z; known as a boundary (zZ = 0),

a boundary-premimage ¢ € C;11 (d;+1(c) = 2).



Definition: A (homological) reduction is a diagram:

P | h CA'*%C*

with:
1. 6’* and C, = chain complexes.
2. f and g = chain complex morphisms.
3. h = homotopy operator (degree +1).
4. fg = idc, and dgh + hdg + gf = idg, .

5. fh =0, hg = 0 and hh = 0.
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Let p :

hCé*%C*

Frequently:

AN

be a reduction.

1. C, is a locally effective chain complex:

its homology groups are unreachable.

2. C' is an effective chain complex:

its homology groups are computable.

3. The reduction p is an entire description of

the homological nature of 6'*

4. Any homological problem in 6’* is solvable

thanks to the information provided by p.

10



11

P | hC é*%c*

1. What is H,(C,)? Solution: Compute H,(C,).
2. Let € C,. Is = a cycle? Solution: Compute ds ().

3. Let x,x’ € 6’n be cycles. Are they homologous?

Solution: Look whether f(x) and f(x’) are homologous.

4. Let x,x’ € CA’n be homologous cycles.
Find y € én—l—l satisfying dy = © — x'?
Solution:
(a) Find z € C,,.1 satisfying dz = f(x) — f(z').

(b) y = g(2) + h(x — x').
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Definition: (C,,d) = given chain complex.

A perturbation d: Cy — C,_1 is an operator of degree -1
satisfying (d + §)? = 0 (< (dd + dd + §%) = 0):
(Cs,d) + (0) — (Ci,d + 9).

Problem: Let p : | n(C,,d) % (Cs,d) | be a given reduc-

tion and & a perturbation of d.

How to determine a new reduction:

7 ?C(CAZ'*,C?—I- @%(C*,?)

describing in the same way the homology of

the chain complex with the perturbed differential?




Basic Perturbation “Lemma” (BPL):

Given: fl |g

o C, Dd

C. Dd

C. 3

satisfying:

1.6isa perturbation of the differential c?,

2. The operator h o S is pointwise nilpotent.

Then a general algorithm BPL constructs:

hton C C, D d+o

W C, Dd

fH

C., Dd

AN

BPL

C. i

f+oy

g"‘dg

C. :) d+04

13



Proof:

¢ = S (—1)i(hd)" and v := 3 °°,(—1)i(6h)’ are defined.

Then:

.5(1
05f
®J,

.5h

= fo(idg + ¢)g = f(idg + ¥)dg
= 11

= ¢g

:= ¢h = hip

is the solution.

QED

14



Definition: A (strong chain-) equivalence ¢ : C, &> D,

Lp )
is a pair of reductions C, & F, = D,:

th C_ FE, 42
/7 N\
15 10
5%

Normal form problem 77

More structure often necessary in C,.

15



Definition:

tuple:

with:

An

object with effective homology

X =|X,C,(X),EC,,¢

X 1s a 4-

1. X = an arbitrary object (simplicial set, simplicial group,

differential graded algebra, ...)

2. C,(X) = the chain complex “traditionally” associated

to X to define the homology groups H,(X).

3. EC, = some effective chain complex.

4. ¢ = some equivalence C,(X) m%; EC,.

16
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Main result of effective homology:

Meta-theorem: Let Xi,,..., X, be a collection of objects with
effective homology and ¢ be a reasonable con-
struction process:

D (Xisseoos Xng) — X,
Then there exists a version with effective ho-

mology ¢rm:

¢EH: (Xlac*(Xl)vECI*v €1 X’na C*(Xn)aECn*aen)

-
.
.

-

— [X,C.(X), EC,, ¢

The process is ‘perfectly stable

and can be again used with X for further calculations.



Typical example of PBL application: the SES, Theorem.

Definition: The algebraic cone construction:

Ingredients: two chain complexes C,, D,

and a chain-complex morphism ¢ : C, «— D,.

Result: a chain complex A, = Cone(¢) defined by:

d® [0
A, =C,® D, _ di = | 1 /
q q qg—1 q 0 _dé)_l

18



Geometrical interpretation.

¢ : X «+— Y = continuous map.

Cone(¢p) :=(X J[I(Y xI)) / ((Y x1) & (y,0) ~ ¢(y))

(Y xI)/(Y x1)

Y {
\

o @)~ o)

\
Ld oy

19



SES,; Theorem: A general algorithm C'R can be produced:

Input: o é* ¢ é; D W
! lg f"lg’
C. C’
Output: r < Cone(¢)
f// g/l

Cone(fog’)




21

Proof: 1. Particular case ¢p = 0: trivial (direct sums).

f g f/ gl




Proof: 2. Install the actual ¢. The reduction is nomore valid.

h C 6’* ¢ 6’4 b B
f g f, gl
c.- 0 Cr

21
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Proof: 3. Apply the Basic Perturbation Lemma:

hoh'
~ / d) Al b /
hog’
fllg > Ry
foh'
C*/ f¢g, Ci
d ¢ d fog' f foh g —hog’ h hoh'
0 —d 0 —d 0 f 0 g 0 —h
D D F G H

QED.



Why the terminology SES; theorem?

A morphism ¢ : A, «+— B, produces

an effective |S hort

E

xact |Slequence of chain complexes:

P

A,

i

Cone(¢) B,

and the SES, theorem is an algorithm:

[Reduction(A.) + Reduction(B,)] — Reduction(Cone(g))



P

Notation: p: C, = C, & p: hCé’*%C* .

Theorem (Easy Basic Perturbation Lemma):

p: ((A:’*,J) =» (Cy,d)| +|0 : Cy, — C,_; = perturbation of d

— p/: (Cyyd + 0) = (C,,d+ 6).

Proof: (C,,d) = (A,,d) ® (C’,d') with (C’,d') = (C, d).
Copy into (C!, d’) the perturbation 6 ~— (C.,d" + ¢').
Solution = p : ((A,,d) @ (C/,d + ) = (C,,d + §).

QED

23



Cone-Equivalence Theorem:

A general algorithm C'E can be produced:

Input: | ,, - C W o C/
¢
Output: en” , Cone(lg ¢ bf") D rn”
ef//
eg// ,’,fl/

Cone(¢) Cone(rf g ¢ £f' 1g’)




25
SES; Theorem:
Let (A,¢,p,B,j,0,C) be
an effective short exact sequence of chain-complexes:

o

O > A* _ B* _— C* ’ O
) J
where:

1. The 7 and 3 arrows are chain complex morphisms.

2. The p and o arrows are |[graded module morphisms.

3.idy, = pot ; idp,=t0p+o0c03 ; idg, =j0o0.

Then an algorithm constructs a canonical reduction:
Cone (2) = C,

from the data.



Proof:

1. Cancel all the differentials.

26

Then an obvious reduction i1s obtained:

» < |[As, 0] 5 [B., 0]

g

[C+, 0]

J

2. Reinstall the differentials of A, and B..

3. To be interpreted

as a perturbation of the differential of Cone(z).

4. Apply BPL.

p

[A,, d4] - [Bs,ds]

o—pdpo

[C*a dC]

i
QED
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Corollary: Same data:

P .o
0—>A*—B — C, — 0
( N

+ A*@EA* and B*@EB* with effective homology.
Then an algorithm constructs e : C, &= EC..

Proof:
C, <= Cone (1) &= Cgle\(i) = ECone (1)

+ Composition of reductions.
QED.



Previous results =

A simple algorithm computes

the effective homology of K(A/<gi,...

7gn>)-

28



Typical simple example.

I=<z—t,y—t°> C A =Q[z,y,t].

How to compute H,(K(A/I)) = H. (K(A/I;x,y,t)) ?
Step 1: Compute a Groebner basis for I.

Choose a coherent monomial order,

for example DegRevLex = DRL.

= Groebner(I,DRL) =<zt? — y,t3 — x, x> — yt >.

Step 2: Consider J =< z?, xt?,t>> (Lex preferred here)

— the associated monomial ideal.

29



30

Then: 1. The Q-vector spaces A/I and A/J
are canonically isomorphic.
2. = K(A/I) and K(A/J) are
graded Q-vector spaces canonically isomorphic,

but with non-compatible differentials:

dia/5)(t8x) =0 5 dga/n(t?6x) = y.

Plan: 1. Compute H,.(K(A/J)).
2. Apply BPL to deduce H,(K(A/I)).



How to compute H,(A/<x?, xt*,t3>) ?
Recursive process about the number of generators.
Relation between H,(A/<x?, zt? t>>) and H,(A/<xt?,t3>) ?

Exact sequence of A-modules:
A 2 A pr A
5 5 — 0
<tz2> <xt?,t3> <ax?, xt?, t3>
Remark: <t’>=<zt’,t>>:2> = {a € A st ax® € <zt*,t>>}.

0 —

= Exact sequence of chain complexes:

A 2 A pr A
0 —- K — K — K — 0
<t2> <axt?,t3> <ax?, xt?, t3>

31



= Effective homologies of K(A/ <t*>>) and K(A/ < xt?,t3>)
give effective homology of K(A/ < x?, xt?,t3>)

What about the first step of the recursive process?

Continuing in the same way =- short exact sequence:
A th A pr A
O—-K|— | K|l — ) > K — 0
<> <> <t?>

It is enough to know the effective homology of K(A).

=



Theorem: A multi-homogeneous reduction can be produced:

nC K(Qx,y,t])

fl9

Q

—d

—d

with all the maps J, d, f, g and h ' homogeneous

with respect to a

[z, y, t]-multi-grading|.

33



Proof.
Multi-grading of z®y”t” dx 6t = [ + 1,3, ~ + 1]
= Koszul differential d is multi-homogeneous.

h(x“yPt §x 6t) =0

h(xz®yPt3 dx) = —x*yPt? dx ot
h(x%y?* éx) = —x*y3 dx oy
h(x>® 6x) =0

h(z®) = z? éx

= Contraction h is multi-homogeneous.

The trivial morphisms f and g

are trivially multi-homogeneous.

34
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Easy complements of Effective Homology Theorems:

If every input is multi-homogeneous,

then every output is multi-homogeneous.

Applying to the SES3; theorem for:

xt‘ | pr Ly,
0 — K (Ul y.t) 5 K (ot % K(F2T) o

Multiplication by t@ = you must shift the multi-grading of
the lefthand K (Q[x,y,t]) to get xt@ multi-homogeneous:

Multigrading(z®y”t” dz 6t) = [a + 1,8,v + 1 + 2]



36

[2:2] :

K(A)[z,o,z] K(A/<t>) [1,0,2] = K(A) H;g],z] — K(A) ﬁztl)]:z]
X t2 X xt? ¢
[1:3] | o i

K(A)[z,(),o] K <t >)10,0,0] —— K(A){g;(l)],o] X (A)%(l):(l)]3]
pr /

K(A/<t*>)p00 — - K(A/

Iy
echcm(K (A/<z?, xt?,t°>)) =0 «— Q QP Q?—0
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Intermediate result:

The SES; and SES; theorems produce an equivalence:
Pe ~ Pr
[K(A/J),d;] &= [Cs,di] = [Q°, dy]

with:
e J = monomial ideal canonically associated

to the initial ideal:

I =<zt? —y,t3 —z, 2> —yt>=<zx — t3,y — t°>.
° 6’* = some chain-complex.
e Q% = Q-chain complex of finite type.
e All the objects are multigraded.

e All the morphisms are multi-homogeneous.
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[K(A/I),di] = [K(A/J);dy+ d1.]:

“Same” graded module, only the differentials are different.

But J = monomial ideal Groebner-associated to I.

=> The perturbation d; ; strictly reduces  the multigrading.

Example:

dJ(t2 5:13) =0

d;(t? dx) = y with y “<” t? §x.
The perturbation recursively replaces

leading monomials by trailing terms.



Easy-BPL =

Py
[K(A/J),ds + 61,] & [C.ydy + )] |

e Righthand homotopy operator h, is multi-homogeneous.

e Perturbation 4}, strictly reduces the multigrading.

= Composition h, o §7; is ‘pointwise nilpotent ||.

= BPL can be applied.
=

Py Py
[K(A/J)7 dJ _I_ 5I,J] K= [C*a dt + 5}J] === [Q67 db'r' ‘|— 5},J]

= Effective homology of K(A/I) is obtained. QED.

39



40
The Aramova-Herzog bicomplex AH (M).

AH(M) :=

v Y24 v Y24 v /77 v
MRINRA;LMINRQAL L MIAN R A2 MR AN ® Az —0

o’ o’ a'i l
MOINRA - LMIN@A,-L-M AN Q A, 0
o’ o’ l

8//

MAIN QR Ag——M QAN ® A; 0
o A, = kx4, y T | [P
M@ N ® Ag 0 AT = AIE™ = A9(m/m?)
0 M = A-module

Horizontal = M ® K(A),
Vertical = K(M) ® A, ® = O
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1. Horizontal reduction.

Every horizontal complex is a
homogeneous component of M ®; K(A):

0—MQNR A LM IAN2QRA-L-MIAN Q@ A 2-M Q@ A\° ® A3——0
But K(A) acyclic = every horizontal is 0-reducible.
Except the 0-horizontal = M ®; A° Qi So = M.

BPL = A canonical reduction is produced:

AH(M) = M



2. Vertical reduction.
The p-vertical is K(M) Qi A,.

Let K(M) = H(K(M)) be a reduction of K(M)
over the complex made of the homology groups of K (M)

and the null differential.

Applying this reduction to the p-vertical produces:
AH (M), =» H(K(M)) ®i Ap
BPL = a canonical reduction is produced:

AH(M) = H(K(M)) Qx A

42



= Equivalence:

HUK(M) @1 A = AHQM) 22 M

9 fr

Then:
froge: HK(M)) @ A — M

is the looked-for resolution.

43



The END

End of compu

;: Clock -> 2882-61-17, 19h 25m 36s.
Computing the boundary of the generator 19 {dimension 7} :
<TnPr <TnPr <TnPr 353 <<{Abar[2 51][2 51]>>> <<Abar>>> <<{Abar>>>

End of computing.

Homology in dimension 6 :
Component 27122

---done---

;s Clock -> 2@882-81-17, 19h 27m 1
Francis Sergeraert, Institut Fourier, Grenoble, France



