Effective Homology

of

Koszul Complexes

```
<TnPr <Tni
End of computing.

;; Clock -> 2002-01-17, 19h 25m 36s.
Computing the boundary of the generator 19 (dimension 7) :
<TnPr <TnPr S3 <<Abar>>> End of computing.

Homology in dimension 6 :

Component Z/12Z
---done---
```

;; Clock -> 2002-01-17, 19h 27m 15s

;; Cloc Computing

Plan

- 1. Tor $^{A}(M,k)$
- 2. A reduction solves a homological problem.
- 3. Basic Perturbation Lemma.
- 4. Effective Homology.
- 5. Cone construction and BPL.
- 6. SES_2 and SES_3 theorems.
- 7. Effective Tor $^{A}(A/I, k)$.
- 8. Aramova-Herzog bicomplex + Effective Homology

 \mapsto Minimal Resolution.

 $k= ext{commutative field.} \qquad A= ext{commutative k-algebra.} \ x_1,\ldots,x_m\in A. \qquad M=A ext{-module.}$

<u>Definition</u>: The Koszul complex $K_A(M; x_1, ..., x_m)$ is a chain complex K_* of A-modules with:

$$K_n := M \otimes_k \wedge^n k^m$$

A generator of K_n is denoted by $m \delta x_{i_1} \cdots \delta x_{i_n}$.

 $egin{aligned} ext{Differential:} & d: K_n
ightarrow K_{n-1}: \ & m \; \delta x_{i_1} \; \cdots \; \delta x_{i_n} \; \mapsto \; + \; m x_{i_1} \; \delta x_{i_2} \cdots \delta x_{i_n} \ & - \; m x_{i_2} \; \delta x_{i_1} \; \delta x_{i_3} \cdots \delta x_{i_n} \ & + \; \cdots \ & + \; (-1)^{n-1} \; m x_{i_n} \; \delta x_{i_1} \; \delta x_{i_2} \cdots \delta x_{i_{n-1}} \end{aligned}$

"Geometrical" interpretation of Koszul complexes.

Principal case:

$$K_A(A;x_1,\ldots) = A \otimes_t \wedge k^m \ (\sim ext{total space})$$
 $A = ext{structural algebra} \ (\sim ext{structural group});$
 $\wedge k^m = ext{base coalgebra} \ (\sim ext{base space});$
 $t = ext{twisting cochain } (\sim ext{twisting function});$

General case:

$$K_A(M;x_1,\ldots) = M \otimes_A (A \otimes_t \wedge k^m)$$

= Fibration associated to $M \otimes_A A \to M$.

Particular case: $A = k[x_1, \dots, x_m]$.

$$K(A; x_1, \ldots, x_m) =: K(A) := A \otimes_t \wedge k^m$$

$$= \text{canonical Koszul complex of } A \text{ is } \text{acyclic}.$$

$$K(A)$$
 acyclic $\Leftrightarrow K(A) =$ universal fibration of A
 $\Leftrightarrow K(A) = A$ -resolution of k :

$$0 \leftarrow k \leftarrow A \leftarrow A \otimes k^m \leftarrow A \otimes \wedge^2 k^m \leftarrow \dots$$

 $\Rightarrow K(A) = \text{possible tool to compute Tor }^{A}(M, k).$

<u>Definition</u>: M and N = A-modules $\Rightarrow \text{Tor }^A(M, N) = ???$

Let $R_A(M)$ be an A-resolution of M,

 $R_A(N)$ an A-resolution of N.

$$H_*(R_A(M)\otimes_A N)=:\operatorname{Tor}^A(M,N):=H_*(M\otimes_A R_A(N)).$$

Standard method computing Tor $^{A}(M, k)$:

- 1. Compute an A-resolution $R_A(M)$ of M of A-finite type. (Syzygies)
- $2. \Rightarrow R_A(M) \otimes_A k =$ Chain complex of finite dimensional k-vector spaces.
- $3. \Rightarrow H_*(R_A(M) \otimes_A k) = \operatorname{Tor}^A(M,k) =$ elementary computation.

```
Drawbacks: 1) R_A(M) = \text{sygyzies} \Rightarrow \text{not so easy.}
2) It happens \text{Tor }^A(M,k) := H_*(M \otimes_A R_A(k))
can be much more interesting!!
```

Theorem (Serre): $\mathcal{S} = \operatorname{PDE}$ local system in $0 \in k^m$. $I_{\mathcal{S}} = \operatorname{canonical}$ ideal associated to \mathcal{S} .

Then \mathcal{S} involutive $\Leftrightarrow \operatorname{Tor}^A(I_{\mathcal{S}}, k)_+ = 0$.

But the theorem comes

from the explicit examination of $I \otimes_A R_A(k)$.

Using this theorem needs a complete solution

for the homological problem of $I \otimes_A R_A(k)$.

Solving the homological problem for a chain complex C_* \Leftrightarrow You must be able to:

- 1. Determine the isomorphism class of $H_i(C_*)$ for arbitrary $i \in \mathbb{Z}$.
- 2. Produce a map $ho: H_i(C_*) o C_i$ giving a representant for every homology class.
- 3. Determine whether an arbitrary chain $c \in C_i$ is a cycle.
- 4. Compute, given an arbitrary cycle $z \in Z_i = \ker(d_i: C_i \to C_{i-1}),$ its homology class $\overline{z} \in H_i(C_*).$
- 5. Compute, given a cycle $z \in Z_i$ known as a boundary $(\overline{z} = 0)$, a boundary-premimage $c \in C_{i+1}$ $(d_{i+1}(c) = z)$.

<u>Definition</u>: A (homological) reduction is a diagram:

$$ho: \widehat{C}_* \stackrel{g}{\longleftarrow} C_*$$

with:

- 1. \hat{C}_* and C_* = chain complexes.
- 2. f and g = chain complex morphisms.
- 3. h = homotopy operator (degree +1).
- $4. \ fg = \operatorname{id}_{C_*} \text{ and } d_{\widehat{C}}h + hd_{\widehat{C}} + gf = \operatorname{id}_{\widehat{C}_*}.$
- 5. fh = 0, hg = 0 and hh = 0.

$$egin{aligned} A_* = \ker f \cap \ker h & B_* = \ker f \cap \ker d & C_*' = \operatorname{im} g \end{aligned}$$
 $\widehat{C}_* = A_* \oplus B_* \operatorname{exact} \oplus C_*' \cong C_*$

Let
$$\rho: h \longrightarrow \widehat{C}_* \stackrel{g}{\longleftarrow} C_*$$
 be a reduction.

Frequently:

1. \widehat{C}_* is a locally effective chain complex:

its homology groups are unreachable.

2. C is an effective chain complex:

its homology groups are computable.

- 3. The reduction ho is an entire description of the homological nature of \widehat{C}_* .
- 4. Any homological problem in \widehat{C}_* is solvable thanks to the information provided by ρ .

$$ho: \widehat{C}_* \stackrel{g}{\longleftarrow} C_*$$

- 1. What is $H_n(\widehat{C}_*)$? Solution: Compute $H_n(C_*)$.
- 2. Let $x \in \widehat{C}_n$. Is x a cycle? Solution: Compute $d_{\widehat{C}_x}(x)$.
- 3. Let $x, x' \in \widehat{C}_n$ be cycles. Are they homologous? Solution: Look whether f(x) and f(x') are homologous.
- 4. Let $x, x' \in \widehat{C}_n$ be homologous cycles.

Find
$$y \in \widehat{C}_{n+1}$$
 satisfying $dy = x - x'$?

Solution:

- (a) Find $z \in C_{n+1}$ satisfying dz = f(x) f(x').
- (b) y = g(z) + h(x x').

<u>Definition</u>: (C_*, d) = given chain complex.

A perturbation $\delta\colon C_* \to C_{*-1}$ is an operator of degree -1 satisfying $(d+\delta)^2=0$ (\Leftrightarrow $(d\delta+\delta d+\delta^2)=0$): $(C_*,d)+(\delta)\mapsto (C_*,d+\delta).$

Problem: Let $\rho: h(\widehat{C}_*, \widehat{d}) \xrightarrow{g} (C_*, d)$ be a given reduction and $\widehat{\delta}$ a perturbation of \widehat{d} .

How to determine a new reduction:

$$?: |? \subset (\widehat{C}_*, \widehat{d} + \widehat{\delta}) \stackrel{?}{ \rightleftharpoons ?} (C_*, ?)$$

describing in the same way the homology of
the chain complex with the perturbed differential?

Basic Perturbation "Lemma" (BPL):

Given: $\begin{pmatrix} h & \widehat{C}_* & \widehat{d} \\ f & g \\ C_* & d \end{pmatrix} + \hat{C}_* & \widehat{\delta}$ satisfying:

- 1. $\hat{\delta}$ is a perturbation of the differential \hat{d} ;
- 2. The operator $h \circ \hat{\delta}$ is pointwise nilpotent.

Then a general algorithm BPL constructs:

Proof:

$$\phi := \sum_{i=1}^{\infty} (-1)^i (h \widehat{\delta})^i$$
 and $\psi := \sum_{i=1}^{\infty} (-1)^i (\widehat{\delta}h)^i$ are defined.

Then:

$$ullet \delta_d := f \widehat{\delta}(\operatorname{id}_{\widehat{C}} + \phi)g = f(\operatorname{id}_{\widehat{C}} + \psi)\widehat{\delta}g$$
 $ullet \delta_f := f \psi$
 $ullet \delta_g := \phi g$
 $ullet \delta_h := \phi h = h \psi$

is the solution.

Definition: A (strong chain-) equivalence $\varepsilon: C_* \iff D_*$ is a pair of reductions $C_* \iff E_* \implies D_*$:

Normal form problem ??

More structure often necessary in C_* .

<u>Definition</u>: An <u>object with effective homology</u> X is a 4-tuple:

$$X = X, C_*(X), EC_*, arepsilon$$

with:

- 1. X = an arbitrary object (simplicial set, simplicial group, differential graded algebra, ...)
- 2. $C_*(X)$ = the chain complex "traditionally" associated to X to define the homology groups $H_*(X)$.
- 3. EC_* = some effective chain complex.
- 4. $\varepsilon = \text{some equivalence } C_*(X) \iff^{\varepsilon} EC_*.$

Main result of effective homology:

Meta-theorem: Let X_{1*}, \ldots, X_{n*} be a collection of objects with effective homology and ϕ be a reasonable construction process:

$$\phi:(X_{1*},\ldots,X_{n*})\mapsto X_*.$$

Then there exists a version with effective homology ϕ_{EH} :

$$\phi_{EH}$$
: $(X_1, C_*(X_1), EC_{1*}, arepsilon_1, \ldots, [X_n, C_*(X_n), EC_{n*}, arepsilon_n)$ $\mapsto [X, C_*(X), EC_*, arepsilon_n]$

The process is perfectly stable and can be again used with X for further calculations.

Typical example of PBL application: the SES₂ Theorem.

<u>Definition</u>: The algebraic cone construction:

Ingredients: two chain complexes C_* , D_*

and a chain-complex morphism $\phi: C_* \leftarrow D_*$.

Result: a chain complex $A_* = \text{Cone}(\phi)$ defined by:

$$A_q = C_q \oplus D_{q-1} \qquad d_q^A = egin{bmatrix} d_q^C & \phi_q \ 0 & -d_{q-1}^D \end{bmatrix}$$

Geometrical interpretation.

 $\phi: X \leftarrow Y = \text{continuous map.}$

$$\operatorname{Cone}(\phi) := (X \ \coprod \ (Y \times I)) \ / \ ((Y \times 1) \ \& \ (y, 0) \sim \phi(y))$$

SES_2 Theorem: A general algorithm CR can be produced:

Input:

Output:

<u>Proof</u>: 1. Particular case $\phi = 0$: trivial (direct sums).

$$egin{bmatrix} \widehat{d} & 0 \ 0 & -\widehat{d'} \end{bmatrix} egin{bmatrix} d & 0 \ 0 & -d' \end{bmatrix} egin{bmatrix} f & 0 \ 0 & f' \end{bmatrix} egin{bmatrix} g & 0 \ 0 & g' \end{bmatrix} egin{bmatrix} h & 0 \ 0 & -h' \end{bmatrix}$$
 \widehat{D} D F G H

<u>Proof</u>: 2. Install the actual ϕ . The reduction is nomore valid.

$$egin{bmatrix} \widehat{d} & \phi \ 0 & -\widehat{d'} \end{bmatrix} egin{bmatrix} d & 0 \ 0 & -d' \end{bmatrix} egin{bmatrix} f & 0 \ 0 & f' \end{bmatrix} egin{bmatrix} g & 0 \ 0 & g' \end{bmatrix} egin{bmatrix} h & 0 \ 0 & -h' \end{bmatrix}$$

Proof: 3. Apply the Basic Perturbation Lemma:

$$egin{bmatrix} \widehat{d} & \phi \ 0 & -\widehat{d'} \end{bmatrix} egin{bmatrix} d & f\phi g' \ 0 & -d' \end{bmatrix} egin{bmatrix} f & f\phi h' \ 0 & f' \end{bmatrix} egin{bmatrix} g & -h\phi g' \ 0 & g' \end{bmatrix} egin{bmatrix} h & h\phi h' \ 0 & -h' \end{bmatrix} \ \widehat{D} & D & F & G & H \end{pmatrix}$$

QED.

Why the terminology SES_2 theorem?

A morphism $\phi: A_* \leftarrow B_*$ produces an effective Short Exact Sequence of chain complexes:

$$0 \longrightarrow A_* \stackrel{\rho}{\longrightarrow} \operatorname{Cone}(\phi) \stackrel{\sigma}{\longrightarrow} B_* \longrightarrow 0$$

and the SES₂ theorem is an algorithm:

$$[\operatorname{Reduction}(A_*) + \operatorname{Reduction}(B_*)] \mapsto \operatorname{Reduction}(\operatorname{Cone}(\phi))$$

Theorem (Easy Basic Perturbation Lemma):

$$oxed{
ho:(\widehat{C}_*,\widehat{d}) \ggg(C_*,d)} + oxed{\delta:C_*
ightarrow C_{*-1} = ext{perturbation of } d}$$

$$\mapsto \left|
ho' : (\widehat{C}_*, \widehat{d} + \widehat{\delta})
ight. \Longrightarrow (C_*, d + \delta)
ight|.$$

Proof:
$$(\widehat{C}_*, \widehat{d}) = (A_*, \widehat{d}) \oplus (C'_*, d')$$
 with $(C'_*, d') \cong (C, d)$.

Copy into (C'_*, d') the perturbation $\delta \mapsto (C'_*, d' + \delta')$.

Solution
$$= \rho : ((A_*, \widehat{d}) \oplus (C'_*, d' + \delta')) \Longrightarrow (C_*, d + \delta).$$

 $\overline{\mathbf{QED}}$

Cone-Equivalence Theorem:

A general algorithm *CE* can be produced:

Output:

SES₃ Theorem:

Let $(A, i, \rho, B, j, \sigma, C)$ be

an effective short exact sequence of chain-complexes:

$$0 \longrightarrow A_* \xrightarrow{\rho} B_* \xrightarrow{\sigma} C_* \longrightarrow 0$$

where:

- 1. The i and j arrows are chain complex morphisms.
- 2. The ρ and σ arrows are graded module morphisms.
- $3. \ \mathrm{id}_{A_*} = \rho \circ i \ \ ; \ \ \mathrm{id}_{B_*} = i \circ \rho + \sigma \circ j \ \ ; \ \ \mathrm{id}_{C_*} = j \circ \sigma.$

Then an algorithm constructs a canonical reduction:

Cone
$$(i) \Longrightarrow C_*$$

from the data.

Proof:

1. Cancel all the differentials.

Then an obvious reduction is obtained:

$$ho igcoplus [A_*,0] \stackrel{i}{
ightarrow} [B_*,0] \stackrel{\sigma}{
ightarrow} [C_*,0]$$

- 2. Reinstall the differentials of A_* and B_* .
- 3. To be interpreted

as a perturbation of the differential of Cone(i).

4. Apply BPL.

$$ho igchip [A_*,d_A] \stackrel{i}{
ightarrow} [B_*,d_B] \stackrel{\sigma-
ho d_B \sigma}{ } [C_*,d_C]$$

QED

Corollary: Same data:

$$0 \longrightarrow A_* \xrightarrow{\rho} B_* \xrightarrow{\sigma} C_* \longrightarrow 0$$

$$+ A_* \stackrel{\varepsilon_A}{\longleftrightarrow} EA_*$$
 and $B_* \stackrel{\varepsilon_B}{\longleftrightarrow} EB_*$ with effective homology.

Then an algorithm constructs $\varepsilon_C: C_* \not \iff EC_*$.

Proof:

$$C_* \not \equiv \operatorname{Cone}(i) \not \equiv \widehat{\operatorname{Cone}(i)} \not \equiv E\operatorname{Cone}(i)$$

+ Composition of reductions.

QED.

Previous results \Rightarrow

A simple algorithm computes

the effective homology of $K(A/\langle g_1,\ldots,g_n\rangle)$.

Typical simple example.

$$I=<\!x-t^3,y-t^5\!>\subset A=\mathbb{Q}[x,y,t].$$

How to compute $H_*(K(A/I)) = H_*(K(A/I; x, y, t))$?

Step 1: Compute a Groebner basis for *I*.

Choose a coherent monomial order,

for example DegRevLex = DRL.

$$\Rightarrow$$
 Groebner $(I, \mathrm{DRL}) = \langle xt^2 - y, t^3 - x, x^2 - yt \rangle$.

Step 2: Consider $J = \langle x^2, xt^2, t^3 \rangle$ (Lex preferred here) = the associated monomial ideal.

- Then: 1. The \mathbb{Q} -vector spaces A/I and A/J are canonically isomorphic.
 - 2. $\Rightarrow K(A/I)$ and K(A/J) are graded \mathbb{Q} -vector spaces canonically isomorphic, but with non-compatible differentials:

$$d_{K(A/J)}(t^2\delta x)=0 \hspace{0.2cm} ; \hspace{0.2cm} d_{K(A/I)}(t^2\delta x)= extbf{\emph{y}}.$$

- Plan: 1. Compute $H_*(K(A/J))$.
 - 2. Apply BPL to deduce $H_*(K(A/I))$.

How to compute $H_*(A/\langle x^2, xt^2, t^3 \rangle)$?

Recursive process about the number of generators.

Relation between $H_*(A/\langle x^2, xt^2, t^3 \rangle)$ and $H_*(A/\langle xt^2, t^3 \rangle)$?

Exact sequence of A-modules:

$$0
ightarrow rac{A}{< t^2 >}
ightarrow rac{A}{< xt^2, t^3 >}
ightarrow rac{A}{< x^2, xt^2, t^3 >}
ightarrow 0$$

Remark: $\langle t^2 \rangle = \langle xt^2, t^3 \rangle : x^2 = \{a \in A \text{ st } ax^2 \in \langle xt^2, t^3 \rangle \}.$

⇒ Exact sequence of chain complexes:

$$0 o K\!\!\left(\!rac{A}{<\!t^2>}\!
ight) \stackrel{ imes x^2}{ o} K\!\!\left(\!rac{A}{<\!xt^2,t^3>}
ight) \stackrel{
m pr}{ o} K\!\!\left(\!rac{A}{<\!x^2,xt^2,t^3>}
ight) o 0$$

$$\Rightarrow$$
 Effective homologies of $K(A/< t^2>)$ and $K(A/< xt^2, t^3>)$ give effective homology of $K(A/< x^2, xt^2, t^3>)$

What about the first step of the recursive process?

Continuing in the same way \Rightarrow short exact sequence:

$$0 o K\!\!\left(rac{A}{<>}
ight) \stackrel{ imes t^2}{ o} K\!\!\left(rac{A}{<>}
ight) \stackrel{
m pr}{ o} K\!\!\left(rac{A}{< t^2>}
ight) o 0$$

 \Rightarrow

It is enough to know the effective homology of K(A).

Theorem: A multi-homogeneous reduction can be produced:

with all the maps \widehat{d} , d, f, g and h homogeneous with respect to a [x, y, t]-multi-grading.

Proof.

Multi-grading of $x^{\alpha}y^{\beta}t^{\gamma}$ δx $\delta t = [\alpha + 1, \beta, \gamma + 1]$

 \Rightarrow Koszul differential \hat{d} is multi-homogeneous.

 \Rightarrow Contraction h is multi-homogeneous.

The trivial morphisms f and g are trivially multi-homogeneous.

Easy complements of Effective Homology Theorems:

If every input is multi-homogeneous, then every output is multi-homogeneous.

Applying to the SES_3 theorem for:

$$0 o K(\mathbb{Q}[x,y,t]) \stackrel{ imes t^{f 2}}{ o} K(\mathbb{Q}[x,y,t]) \stackrel{
m pr}{ o} K\!\!\left(\!rac{\mathbb{Q}[x,y,t]}{ ext{$<$}t^2 >}
ight) o 0$$

Multiplication by $t^{2} \Rightarrow$ you must shift the multi-grading of the lefthand $K(\mathbb{Q}[x,y,t])$ to get $\times t^{2}$ multi-homogeneous:

$$ext{Multigrading}(x^{lpha}y^{eta}t^{\gamma}\,\,\delta x\,\,\delta t) = [lpha+1,eta,\gamma+1+ extbf{2}]$$

Intermediate result:

The SES_2 and SES_3 theorems produce an equivalence:

$$[K(A/J),d_J] \stackrel{
ho_\ell}{
lll} [\widehat{C}_*,d_t] \stackrel{
ho_r}{
lll} [\mathbb{Q}^6,d_{br}]$$

with:

 \bullet J = monomial ideal canonically associated

to the initial ideal:

$$I=<\!xt^2-y,t^3-x,x^2-yt>=<\!x-t^3,y-t^5>.$$

- $\hat{C}_* = \text{some chain-complex.}$
- $\mathbb{Q}^6 = \mathbb{Q}$ -chain complex of finite type.
- All the objects are multigraded.
- All the morphisms are multi-homogeneous.

$$[K(A/I), d_I] = [K(A/J), d_J + \delta_{I,J}]$$
:

"Same" graded module, only the differentials are different.

But J = monomial ideal Groebner-associated to I.

 \Rightarrow The perturbation $\delta_{I,J}$ strictly reduces the multigrading.

Example:

$$egin{array}{lll} d_J(t^2 \; \delta x) \; = \; 0 \ & \ d_I(t^2 \; \delta x) \; = \; y \; ext{ with } \; y \; ``<" \; t^2 \; \delta x. \end{array}$$

The perturbation recursively replaces

leading monomials by trailing terms.

Easy-BPL \Rightarrow

$$[K(A/J),d_J+\delta_{I,J}] \stackrel{
ho'_\ell}{
ot} [\widehat{C}_*,d_t+\delta'_{IJ}] \stackrel{
ho_r}{
ot} [\mathbb{Q}^6,d_{br}]$$

- Righthand homotopy operator h_r is multi-homogeneous.
- Perturbation δ'_{IJ} strictly reduces the multigrading.
- \Rightarrow Composition $h_r \circ \delta'_{IJ}$ is pointwise nilpotent.
- \Rightarrow BPL can be applied.

 \Rightarrow

$$[K(A/J),d_J+\delta_{I,J}] \stackrel{
ho'_\ell}{
otto } [\widehat{C}_*,d_t+\delta'_{IJ}] \stackrel{
ho''_r}{
ottom} [\mathbb{Q}^6,d_{br}+\delta''_{IJ}]$$

 \Rightarrow Effective homology of K(A/I) is obtained. QED.

The Aramova-Herzog bicomplex AH(M).

$$AH(M) :=$$

$$M \otimes \wedge^3 \otimes A_0 \overset{\partial''}{\longrightarrow} M \otimes \wedge^2 \otimes A_1 \overset{\partial''}{\longrightarrow} M \otimes \wedge^1 \otimes A_2 \overset{\partial''}{\longrightarrow} M \otimes \wedge^0 \otimes A_3 \longrightarrow 0$$

$$\downarrow^{0'} \downarrow \qquad \downarrow^{0'} \downarrow \qquad \downarrow^{0'} \downarrow \qquad \downarrow^{0'} \downarrow$$

$$M \otimes \wedge^2 \otimes A_0 \overset{\partial''}{\longrightarrow} M \otimes \wedge^1 \otimes A_1 \overset{\partial''}{\longrightarrow} M \otimes \wedge^0 \otimes A_2 \longrightarrow 0$$

$$\downarrow^{0'} \downarrow \qquad \downarrow^{0'} \downarrow \qquad \downarrow^{0'} \downarrow$$

$$M \otimes \wedge^1 \otimes A_0 \overset{\partial''}{\longrightarrow} M \otimes \wedge^0 \otimes A_1 \longrightarrow 0$$

$$\downarrow^{0'} \downarrow \qquad \downarrow^{0'} \downarrow$$

$$M \otimes \wedge^0 \otimes A_0 \longrightarrow 0$$

$$\uparrow^{0'} \downarrow \qquad \downarrow^{0'} \downarrow$$

$$\downarrow^{0'} \downarrow \qquad \downarrow^{0'} \downarrow$$

$$\downarrow^{0'} \downarrow^{0'} \downarrow^{0'} \downarrow^{0'} \downarrow$$

$$\downarrow^{0'} \downarrow^{0'} \downarrow^{0'}$$

1. Horizontal reduction.

Every horizontal complex is a homogeneous component of $M \otimes_k K(A)$:

$$0 {\longrightarrow} M \otimes \wedge^3 \otimes A_0 \overset{\partial''}{\longrightarrow} M \otimes \wedge^2 \otimes A_1 \overset{\partial''}{\longrightarrow} M \otimes \wedge^1 \otimes A_2 \overset{\partial''}{\longrightarrow} M \otimes \wedge^0 \otimes A_3 {\longrightarrow} 0$$

But K(A) acyclic \Rightarrow every horizontal is 0-reducible.

Except the 0-horizontal = $M \otimes_k \wedge^0 \otimes_k S_0 = M$.

 $BPL \Rightarrow A$ canonical reduction is produced:

$$AH(M) \Longrightarrow M$$

2. Vertical reduction.

The *p*-vertical is $K(M) \otimes_k A_p$.

Let $K(M) \Longrightarrow H(K(M))$ be a reduction of K(M)over the complex made of the homology groups of K(M)and the null differential.

Applying this reduction to the p-vertical produces:

$$AH(M)_p \Longrightarrow H(K(M)) \otimes_k A_p$$

 $BPL \Rightarrow a canonical reduction is produced:$

$$AH(M) \Longrightarrow H(K(M)) \otimes_k A$$

\Rightarrow Equivalence:

$$H(K(M)) \underset{g_\ell}{\bigotimes_k} A \not \ll \underset{f_r}{\not \sim} AH(M) \not \Longrightarrow M$$

Then:

$$f_r \circ g_\ell : H(K(M)) \otimes_k A o M$$

is the looked-for resolution.

The END

```
Computing
<TnPr <Tn
End of computing.

;; Clock -> 2002-01-17, 19h 25m 36s.
Computing the boundary of the generator 19 (dimension 7) :
<TnPr <TnPr S3 <<Abar[2 S1][2 S1]>>> <<Abar>>> End of computing.

Homology in dimension 6 :

Component Z/12Z
---done---
```

;; Clock -> 2002-01-17, 19h 27m 15s

;; Cloc

Francis Sergeraert, Institut Fourier, Grenoble, France