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1 Introduction.

Infinity and effectiveness are two concepts which seem to belong to two very
distinct worlds. Is it possible to think of infinity in terms of effectiveness? The
infinite is an abstract notion and thus appears beyond the reach of any effective
approach, by which we mean one that can be translated into a concrete reality.
Against this superficial impression, in this article, we will argue that effectiveness
does not have to be sacrificed at the outset of an undertaking in which the infinite
plays an essential role. This pursuit leads to many questions and answers (!) and
is very exciting indeed.

Mathematicians’ ability to deal effectively with problems in which the infinite
plays, in one form or another, an essential role, intimidates some and has earned
them an air of sorcery. It can’t be denied that this prowess has its place among
the finest human achievements. The fame of several mathematicians can be at-
tached directly to how they advanced our understanding of the infinite: Leibniz
and Newton (infinitesimal calculus), Cantor (infinite sets), Cauchy (infinitesimal
analysis), Hilbert (spaces of infinite dimension), Gdel (incompleteness), Robinson
(nonstandard analysis).

Compared to the world of his mathematician colleague, superficial reflection
might suggest that the computer scientist lives in a world more peaceful and less
esoteric. The computer scientist works with machines (concrete or theoretical) that
are in essence finite. Such machines can only work with programs, represented as
finite texts, over necessarily finite data, for a finite time. But this view is not
correct, and it is so for a variety of reasons. Perhaps the simplest reason is to
point out that infinity is not studied by mathematicians for pleasure alone, but also
because, very often, it is a powerful modeling tool. An example that immediately

∗Initial French text published in the French journal Images des Mathématiques, 1990, vol.76,
pp. 71-81.
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comes to mind is a numerical calculation: note that without an error estimation it
is generally of little interest. However, most of the time such an estimation can be
done conveniently only by means of differential calculus or the use of the infinitely
small. On the opposite side, the infinitely large, we can point, for example, to
the studies of algorithmic complexity, whose practical interest goes without saying
and that are often based on asymptotic methods.

In this article, we want to study a link between infinity and programming of
an entirely different nature, the functional link. It is a rather subtle link, the
description of which, however, is of extraordinary simplicity. It is so extraordinary
that there is no reason to beat around the bush; let us describe it at once.

A program is a finite object. In a specific instance, it will be represented by a
piece of text, which is nothing but a finite sequence of characters, drawn from a
finite alphabet, possibly the set of ASCII characters. Such a program may work
on some given data (input) and return a result (output). Take for example a
program P that computes the square of a positive integer. It is capable of working
on every integer n ∈ N, and we immediately have our link: P is finite while the
set N of the integers on which P can work is not. In general, if P is a program,
let I(P ) (I for input) denote the set of data on which it can work. The program
P is inherently finite whereas I(P ) can very well be infinite.

Thus, by this sleight of hand, we’ve brought together the finite universe of
ordinary objects with the mathematicians’ realm, a people used to “infinite mon-
sters”. It may seem that this is a mere philosophical consideration and without
real interest. The purpose of this article is to convince you otherwise.

It is organized as follows. We begin with the elementary example of a good
program for calculating the chromatic number of a graph, which is well known to
graph theorists and uses the functional point of view. It will be carefully described
in order to isolate and highlight the problems of programming and effectiveness
that are encountered in this kind of situation. It is hoped that the nature of
the method and the difficulties to be anticipated will be well understood. It will
then be time to examine the state of computer science in this matter. We will
see that it is quite excellent: today’s computer scientists have just what we need
(lambda calculus, functional languages) so that we can work on these issues in
the best conditions. The machine construction of the loop-space functor, which
is very easy to describe, will give a good example of the available programming
capabilities. Once the right viewpoint is adopted and the right tools are available,
rather simple programs, which require no more than student level skills, can be
used to build highly infinite spaces, in a blink of an eye, on a machine. These
spaces are convenient to play to the gallery, but they do not serve only that:
although infinite, Jean-Pierre Serre invented them around 1950 to solve problems
of a finite nature (homotopy groups of spheres). We have similar intentions. In the
last section, we will give the reader an idea of the substantial theoretical results
already obtained in algebraic topology and a description of the beautiful field of
work now open to programming to all who want to apply these methods concretely
on a machine.
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Section 2 gives readers not accustomed to computer science a more precise
description of the possibly infinite nature of the set I(P ). The basic approach to
infinity using the functional method has often been used: Cauchy’s approach to
infinitesimal analysis is of this kind and is the subject of Section 3.

2 Concerning the non-finiteness of the input set.

In the introduction, we have considered the program which assigns to an integer its
square . Thus, if the program were presented with the integer 97, it should return
9409. To write such a program is straightforward in any language, for example on
a calculator programmable in Basic.

We denote by I(P ) the set of data that the program accepts as inputs. In the
example of the square calculation, the set I(P ) is the set N of the integers, which
is known to be infinite.

This statement might raise the suspicion of a reader who is used to doing
practical work on a computer. The assertion that the set I(P ) is infinite may
indeed suggest that its author is unaware of the real constraints in the use of
such machines. On a Basic calculator, for example, an integer can only be used
if it is smaller than a certain integer defined by the engineer who conceived this
calculator. Often it is something like 231 or 1010, so that the number of integers on
which our example program is actually capable of working is really finite, and our
critic is in the right. And this kind of constraint is present in most programming
languages.

This difficulty, however, can be circumvented by programs known to work in
multiprecision. These programs use the following technique: Suppose that our
machine only accepts integers smaller than 1010. Let us call an integer smaller
than b = 105 (b for base) a small integer. If n is an arbitrary integer, we can always
write it, and moreover in only one way, in the form n = apb

p + ap−1b
p−1 + · · ·+ a0,

where the ai’s are small integers. This amounts to cutting the decimal notation
of n into five digit slices. It is also the base b = 105 notation of n. It is then easy to
see that the analogous notation of the square n2 of n can be determined by means
of a succession of operations on small integers alone, and hence on our calculator.
Technically, we will represent n as an array of small integers and the result n2

will come out in a similar form. The rest is technique of index manipulations,
elementary operations on small integers and carried numbers.

It is thus possible, even on a modest calculator, to calculate the square of
quite substantial integers, including ones with hundreds of digits. What has just
been described was invented long ago by our ancestors, when they understood
the surprising possibilities of writing numbers in any base, 10 for example. They
realized that the same method, or shall we say program, can be used to multiply
two integers admitting any number of digits! It is strictly the same phenomenon
that has just been described, except that the base is 105 instead of 10, but this
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does not change the case. And it is thanks to this that the usual multiplication
table does not need to go beyond 9× 9 = 81. Multiprecision computing software
is now becoming more widespread. It is even integrated in some languages (Lisp)
and can be found in most formal computational systems.

But our astute critic might try another argument. Of course, we are now able
to multiply arbitrarily large integers, but there remains a limitation, that of the
amount of available memory in the machine. The critic is right. If, for example,
each small integer occupies a memory cell, then the largest integer that can be
stored in the machine in an array of small integers will be N = 105M − 1, where
M is the number of available memory cells. If an integer is greater than N , it is
impossible to enter it in the machine and a fortiori to calculate the square.

However, this limitation can be overcome by expandable memory machines,
which can carry out the following operations. In a first step, a program is written,
for example, a program that works on multiprecision integers. Then the program is
called upon to perform a certain task. It is then possible to determine the amount
of memory needed for this particular use. If need be, the memory can be extended
before the computation gets underway. We see that, in this sense, our program
can work on any integer.

The critic may shrug his shoulders one last time: If the number of memory
cells required for a calculation is greater than the number of atoms of our galaxy,
it is going to be a long wait for the necessary memory extensions, which would be
already difficult for much smaller extensions. Be that as it may, the theoretician
is satisfied with this fact: potentially his program is able to work on an integer of
any size.

The term theorist, which has just been used, is sometimes a little pejorative: the
appellation of theorist often designates a person especially incapable of practical
realizations! In this article, we will convince the reader that these theoretical
considerations of programs with potential infinities are, on the contrary, capable
of quite concrete applications! Since we speak here of theory, we cannot fail to
recall that this type of an extensible memory machine was perfectly modeled by the
English mathematician Turing, well before the very existence of the word computer.
Turing had invented his model to respond negatively to Hilbert’s conjecture of a
universal algorithm for solving mathematical problems. Knowing that Turing’s
work played an essential role in the genesis of modern computing, we have a
good argument to use against those who still have doubts about the interest of
fundamental research. For more on these questions, we highly recommend “Allen
Turing, the enigma” by Andrew Hodges (Simon & Schuster, 1983). A French
translation was published in 1987 under the title “Alan Turing ou l’nigme de
l’intelligence” at the Bibliothque Scientifique Payot.
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3 The Cauchy solution for infinitesimal analysis.

The functional trick, an application of which is the topic of this article, has been
known for a long time. It is, for example, the essential tool of the modern for-
malization of the infinitesimal analysis, usually attributed to Cauchy. According
to Bourbaki, Elements of the History of Mathematics(Masson, 1984), he was the
first who succeeded in giving infinitesimal analysis a sufficiently precise form so
that it could be turned into a usable textbook, which is an excellent criterion. Of
course, the reality is more complex and the work of Cauchy is culmination of a
long and difficult gestation to which many predecessors contributed in an essential
way. See Bourbaki (op. cit.). In any case, Cauchy explained how to articulate the
demonstrations of infinitesimal analysis using quantities very traditionally denoted
ε and η (or δ) since Weierstrass, which can take more or less arbitrary values, but
whose interdependence is essential. Usually, ε is arbitrary and, given such an ε,
one must be able to demonstrate the existence of an η verifying such and such a
property. For example, a function f : R → R is continuous at x0 ∈ R if for all
ε > 0 one can prove the existence of an η > 0 such that if |x − x0| < η, then
|f(x)− f(x0)| < ε.

The words “given” and “able” were emphasized deliberately to point out that
this is exactly as in the situation of a program specification. To press once more
and drive home the point, one could say that the demonstration of the continuity
of the function f at x0 is nothing but a program admitting as input a real ε strictly
positive and returning as output another real η strictly positive that satisfies the
indicated property. The continuity of f at x0 is thus equivalent to the existence
of a function µ : R+ → R+ (R+ denotes the set of strictly positive real numbers)
such that if |x − x0| < η then |f(x) − f(x0) < ε|. A function µ which has this
property is called a continuity module for f at x0. Logicians say that if, moreover,
µ is recursive, then f is effectively continuous.

It has been rather time consuming to relate in two ways essentially the same
thing, in order to emphasize different viewpoints, each having its own interest. We
can see that there is a fairly canonical correspondence between the logical point
of view of using quantifiers (∀ε, ∃η . . .) and the functional point of view which
affirms the existence of one function such that any argument of that function and
the corresponding value satisfy a certain property.

It will be noted that in all that precedes neither the word infinite nor any of
its derivatives is pronounced! A question might be raised as to “what happens”
infinitely close to x0. The fact that x is very close to x0 is only of secondary
interest. What is essential is that the examination of a finite number of x’s close
to x0 will never be sufficient to reach a conclusion regarding the continuity of at x0.
Such an assertion must be proven for an infinity of values of x. Cauchy resolved
this formidable and essential difficulty through a functional turn: he replaced the
examination of an infinity of x’s and their properties with an assertion about a
single function, the function µ. Yet Cauchy preferred to use a logical formulation
(for all ε there exists an η such that . . . ), which is equivalent, but which precisely
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serves us well because this formulation underlines a crucial aspect of the case.
The adjective “able” was highlighted above to draw attention to the fact that the
infinite is reached by means of an affirmation on the potential aspect of work: if
you give me a strictly positive ε, then I would be able to produce an η such that
a certain property is verified.

This is a situation similar to a famous sketch on clairvoyance with Pierre Dac
and Francis Blanche1: the mathematician is content to say “If you give me an ε,
then I will find an η such that . . . Yes, I could do that!” Of course, unlike Pierre
Dac, the mathematician argues and demonstrates why he could do it, but never
actually does it!

Everyone knows how difficult it is for beginners to understand and learn ε–
η methods. For comparison, let us look at the difficulty of a proof using the
functional method. To demonstrate the continuity of f at x0, we must construct
a module of continuity, a function with real arguments and values. Let us study
the proof of the continuity of f 2 where f is assumed to be continuous. As far as
a continuity modulus is concerned, if µ : R+ → R+ is a continuity modulus of f
at x0, the function µ′(ε) := min(µ(1), µ(ε/(2|f(x0)|+ 1))) is a continuity modulus
for f 2 at x0 and it follows that the continuity of f at x0 implies the continuity
of f 2 at the same point. Here, a new difficulty emerges, which stems precisely
from the fact that the proof is about constructing a function whose argument (µ)
and the value (µ′) are themselves functions. Pedagogically, can the distinction
between argument and value of a function (argument and/or value being in turn
functions) be more convenient than the distinction between universal quantifier
and existential quantifier? It will be noted that the tree-like structure of the
various arguments and values can be followed easily in the functional formalism
while the logical formalism requires a relatively sophisticated conversion algorithm.
We should also remember the distance still to be traveled to arrive at effective
calculations on a machine. Here the functional method is obviously superior. The
question of functions whose arguments and/or values are functions themselves
plays a crucial role in this article, which is the reason why this complement to our
explanations of infinitesimal analysis has been deemed useful.

4 The chromatic number of a graph.

A graph is a pair (V,E) where V is a finite set, the set of the vertices of the graph,
and where E is a subset of V ×V , the set of pairs of vertices connected by an edge.
Given a set of colors c1, c2, . . . , cp, we are looking to obtain a good coloring of the
graph, that is to say, to assign one color to each vertex, so that any two vertices
connected by an edge are of distinct colors. We denote v1, v2, . . . , vn the vertices of
the graph and d1, d2, . . . , dn the colors that are attributed to them. The condition
of good coloring can then be expressed as follows: if a pair (vi, vj) is an element of
A, then di 6= dj. This condition is rather restrictive, and if we don’t have enough

1https://www.youtube.com/results?search query=pierre+dac+francis+blanche
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colors, in other words if p is too small, we cannot find a good coloring. The smallest
integer p for which a good coloring of the graph G with p colors can be obtained is
called the chromatic number of G. This number has raised and always continues
to raise a lot of interest. The famous four color problem is whether four colors are
sufficient for any planar graph.

An interesting programming challenge might be to ask for a program whose
input is a graph and whose output is its chromatic number. The simplest if not
most simplistic method is the following: A coloring (perhaps erroneous) with p
colors of the graph G is a sequence (d1, . . . , dn) of colors chosen from c1, . . . , cp.
There are exactly pn such colorings. All these colorings can be tested, one after
another, until either one finds a suitable coloring with p colors or all combinations
are exhausted without finding a single good coloring. In the first case, the chro-
matic number is ≤ p, in the second it must be > p. We start with p = 1, then
p = 2, and so on. The first satisfactory integer p we find is the chromatic number
sought.

This naive program demonstrates the computability of the chromatic number,
but it would be so ruinous in computing time that certainly nobody would ever
actually use this idea. However, it can be improved as follows: Let us take a
subgraphG′ ofG containing a certain number of vertices ofG and all corresponding
edges, and suppose we have found a good coloring with p colors of G′. Add to G′

a vertex of G which was missing from G′ and all corresponding edges: We obtain
a graph G′′ that we can attempt to color using the coloring already found for G′,
and by giving the new vertex one of the colors considered so that the condition
on the vertices of G′′ is satisfied. There are usually several ways to do this. If an
attempt succeeds we continue likewise by adding a vertex and edges to obtain the
graph G′′′. . . If it fails, we try another possibility for the last vertex of G′′ and so on.
If none of these tests is successful, the coloring of G′ cannot be extended and we
have to find another good coloring of G′ by changing the color of its lastest vertex,
the one that finished defining G′, and retry the recurrence with this new coloring...
If a good coloring of G with p colors exists, it can be obtained by this process. Here
again we start with p = 1, then p = 2, etc., until a sufficient integer is found, which
is the chromatic number sought. This method, which is more cunning than the
naive method, is well known to computer scientists as backtracking or the method
of trial and error. It requires a little skill to be programmed. See in this regard
chapter 3 of the excellent book of Niklaus Wirth, Algorithms + data structures =
programs (Prentice Hall, 1976).

This method, although better than the naive method, is still far too slow
for practical use with more complex graphs. It turns out that graph theorists
discovered another method of an entirely different nature. Already in the preceding
methods we tried a recurrence to determine if the number p is sufficient. In this
context, the following question is natural: Given a graph G, let’s remove a vertex
and the corresponding edges to obtain a somewhat simpler graph G′, and let
us suppose that we know the chromatic number of G′. Is it possible to deduce
the chromatic number of G, given this information? Unfortunately, the answer
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is negative: the examination of some simple graphs shows that there can be no
direct relation between the chromatic numbers of the graphs G′ and G, and a
simple recursion based on the number of vertices of a graph cannot be obtained in
this way.

Unless the “chromatic number” information is replaced by other, considerably
richer, information. This is a phenomenon which seems a little paradoxical but
is quite frequent in mathematics, where one succeeds by first finding the solution
to a problem which appears more difficult, before solving the “simpler” problem.
Let us associate with a graph G the function χG : N → N which assigns to an
integer p the number of good colorings of G with p colors. This function contains
the chromatic number as a by-product : the chromatic number of G is the smallest
integer p such that χG(p) 6= 0. Once the function χG is known, it is easy to find
this integer because this function is necessarily a polynomial that will be called
the chromatic polynomial of G.

We thus seek to deduce the chromatic polynomial of G from chromatic poly-
nomials of graphs immediately simpler than G. If the graph G has no edges (in
which case it is only a set of n unconnected vertices), then any coloring is a good
coloring of G, so that χG(p) = pn, and χG is therefore already a polynomial. Oth-
erwise the graph has at least one edge, for example, between the vertices v1 and
v2. From the graph G, two other graphs G1 and G2, can be derived: The first,
G1, is obtained simply by deleting the edge between v1 and v2. The second, G2, is
obtained by contracting that same edge and converting its two ends into a single
vertex of the graph G2. We note that if v1 and v2 both were connected by edges
to the vertex vk, then the two old edges would be replaced by only one edge in
the new graph.

G G1 G2
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v1 v1

v2 v2v3 v3 v3

v4 v4 v4

χG(p) =

p4 − 5p3 + 8p2 − 4p

χG1(p) =

p4 − 4p3 + 5p2 − 2p

χG2(p) =

p3 − 3p2 + 2p

χG = χG1 − χG2

Consider a good coloring of G1. If the two vertices v1 and v2 have the same
color, a good coloring of G2 is derived by “collapsing”, however, the corresponding
coloring of G is not good. Conversely, if v1 and v2 have different colors, a good
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coloring of G can be derived, but it is no longer possible to derive a coloring of
G2 therefrom. It is easy to see that any good coloring of G and G2 could be
obtained in this way. If p is the number of colors, it follows immediately that
χG(p) = χG1(p) − χG2(p) or, if this is true for any integer p, χG = χG1 − χG2 ,
which is a relationship between polynomials, and the desired recurrence relation
is obtained. We already deduce, by induction, that the chromatic polynomial. . .
is indeed a polynomial! Once this is understood, it is a child’s play to derive a
recursive program for calculating χG given G. The chromatic number of G can
then be obtained as a by-product. This last program, which is based on a simple
recurrence, is considerably better than the one described previously.

But it may be time to return to our subject, infinity and effectiveness. What
is the relationship with our graph problem? It has been emphasized that the chro-
matic polynomial information is much richer than the chromatic number informa-
tion: in a certain way it contains an infinityof information since this polynomial is
defined for any number of colors p. Of course, this infinity of information cannot
be described as such. The functional trick is used. Rather than considering the
set of all pairs (p, χG(p)), we prefer to consider the function χG. For a bourbak-
ist mathematician there is no difference since he defines a function as a set of
argument-value pairs! But for a computer scientist it is quite different, because
she can code this infinity of couples as a polynomial and thus in the form of a finite
sequence of coefficients and exponents, which can be stored in a machine! This
polynomial can be considered as a program, a finite text, capable, if asked, of giving
a response, a value, whatever integer (here a number of colors) is communicated
to it. This general scheme only works well because one is able to write and use
programs that admit polynomials (programs) as input and provide as output an-
other polynomial (program). This is necessary when using the recurrence formula.
This kind of work is easy for polynomials but a little more difficult for algorithms
of a more general nature which will be examined later.

If this phenomenon and its solution have been described so carefully, it is
because they are closely related to what will be described in the last section of
this paper about a very active but more esoteric field of research, that of algebraic
topology : The two problems (and their solutions) are indeed of identical natures.

5 The manipulation of functional objects in a

machine.

The preceding sections can be summarized as follows: an apparently infinite object
can sometimes be coded in the form of a finite text which represents a certain
function. The example of the chromatic polynomial shows, however, that this
trick is truly productive only if means are available to calculate other functional
codings. Let us clarify this point!

In the example of the chromatic polynomial we looked at functions whose do-
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main and range are the set N of the (non-negative) integers. As it turns out, these
functions are in fact polynomials. This allows us to write – it would be better to
say encode – them in the form of a finite text which consists of signs, coefficients,
and of an insignificant letter (for example, x), and of exponents. By very simple
conventions it is possible to represent such a polynomial, for example, as an ASCII
string. The chromatic polynomial program must then be able to determine the
difference polynomial of two given polynomials, in order to exploit the recurrence
formula described earlier. More precisely, one must be able to write in the pro-
gramming language used a two arguments function (the two representations of
polynomials), which returns a representation of the difference polynomial. This is
a simple exercise regardless of the programming language.

It is easy because our functions are very special: they are polynomial functions.
This exercise becomes much more difficult if one wants to handle functions of any
kind. The first question is one of coding : How can one encode, in the form of a
finite string, any function whose domain and range is the set N of integers? The
alphabet is finite, the set of these strings is enumerable, whereas, on the contrary,
the set of functions N → N has the cardinality of the continuum! Whatever the
ingenuity of the writing system, it will only be possible to code a subset of all of
these functions.

Which functions should be selected? How should they be written? How can one
write a program which relates, for example, the texts of two such functions to the
text of the difference function? It turns out that logicians, well before computer
scientists and computer science, had given much thought to these questions. A
good set of functions to select is the set of recursive functions, which, by a certain
measure, is a very small subset of the set of all functions. But, in a certain sense,
they are the only ones that are interesting! Various methods have been devised
to represent them. They have all been demonstrated to be equivalent in terms of
their capabilities.

One of the most interesting representations is lambda calculus. Luckily, the
previous issue of Images de Mathématiques contained an excellent article by Michel
Parigot entitled “Proofs and programs: mathematics as programming language”,
where he explained, among other things, lambda calculus. See in particular the
section lambda calculus as a machine language and section 2 normalization and
lambda calculus. Readers who don’t have time and energy to refer to Parigot’s
article might be satisfied with the indications given in section 6 of the present
article.

Unlike the Turing machine which ritually appears at the beginning of every
theoretical computer course, the lambda calculus was almost forgotten at the be-
ginning of this half-century. It first reappeared in the research of the American
computer scientist McCarthy who created the Lisp language at the end of the
fifties of the last century. This programming language, which began out of simple
curiosity and without the possibility of concrete applications worthy of the name,
is in effect directly inspired by lambda calculus. Like any formal mathematics,
lambda calculus rapidly produces terms whose length is such that it rules out any
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practical use: very quickly, this length exceeds for example the number of atoms of
our galaxy! McCarthy reflected on methods (essentially the use of symbols as ab-
breviations) which would make it possible to overcome this difficulty. It was a long
and difficult task. Sixty years later it is clear that in its current version, Common
Lisp, it is one of the most powerful programming languages available! For exam-
ple, the best formal computing systems such as Macsyma, Reduce, Scratchpad,
etc, software of a very high complexity, are all based on Lisp.

Since Lisp is directly inspired by lambda calculus, it can easily, during the
execution of a program, create programs which in turn are able to work on other
programs to create others. . . This opens possibilities that are quite inaccessible to
ordinary programming Pascal-like languages (Fortran, Ada, C, etc.). And these
are precisely the capabilities that one needs to solve the problems of processing
functional code objects that are considered here.

For example, the Lisp function which, given two functions on Z with values
in Z, returns the difference function, is written quite simply:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(setf sub-functions
#’(lambda (f g)

#’(lambda (n) (- (funcall f n) (funcall g n)))))
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The program text can be read as follows: The function sub-functions requires two
arguments f and g (two functions) and maps them to the function which, given
an integer n, assigns to it the difference of the two integers obtained by applying f

and g to n. Here, we shall not attempt to explain the presence of the “cabalistic”
signs # and ’. They allow for certain optimizations and scope of identifiers, and
are not available in ordinary languages, but we won’t discuss them here.

In the following sequence of Lisp expressions:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(setf f1 #’(lambda (x) (* x 3)))
(setf f2 #’(lambda (x) (* x x)))
(setf f3
(funcall sub-functions f-1 f-2))

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

the function f1(x) = 3x and the function f2(x) = x2 are defined, and then, from
the codes of these functions, Lisp constructs the code of the difference function
f3 = f1 − f2.

One can continue indefinitely in the same spirit and write, for example, a
function whose argument is a binary operator on the integers. This function will
return the function which is capable of working on pairs of functions N → N
according to the operator in question:

11



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(setf create-op-function
#’(lambda (operator)

#’(lambda (f g)
#’(lambda (n)

(funcall operator (funcall f n) (funcall g n))))))
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

which one can read as: “will provide the function which, with two functions f
and g, will associate the function which, to n, . . . ”. And instead of defining our
function sub-functions as above, we could simply obtain the same result by:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(setf sub-functions (funcall create-op-function #’-))
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6 The lambda calculus.

In the world of lambda calculus there are only functions, as opposed to ordinary
programming, where, in particular in courses for beginners (think of the perfo-
rated cards of yesteryear), the program (some text) is carefully distinguished from
the data (another text, on which the program must work). In lambda calculus
there exist only functions which can serve interchangeably as programs or data. A
mechanism, the reduction (described briefly in the article by M. Parigot), defines
by what process the coupling of two functions, the first considered as a program,
the second as data, sets in motion a theoretical machine which eventually pro-
duces a result (again a function) to be considered as the result of the program
function working on the data function. It can also happen that the machine turns
indefinitely in which case the result is indefinite.

A lambda calculus function is a text written in an entirely ordinary alphabet
which consists of letters and some ad hoc signs, and obeys a few simple rules (a
grammar). One can, if you like, consider such a text as a program written in the
lambda calculus language. This uniformity of nature, any object is a function,
requires some acrobatics when dealing with ordinary data such as an integer. The
lambda calculus trick consists in coding an integer as the function that assigns to
any function f the function:

f ◦ f ◦ f ◦ · · · ◦ f︸ ︷︷ ︸
n

It may seem overly complicated to encode an object as simple as an integer.
Still, it is perfectly possible to program any recursive function in lambda calculus.
In section 2 of the article by M. Parigot, the realization of the addition of 2 and 2
in lambda calculus is explained in great detail!

The interest in lambda calculus stems from the fact that, as a programming
language, programs capable of working on programs as input while producing
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programs as output can be written in it.

The story of lambda calculus is rather curious. It was conceived and developed
by the logicians of the 1930s to formalize the algorithmic aspect of mathematics
in a sufficiently simple manner, and thus allowing to formulate a negative answer
to Hilbert’s conjecture regarding the existence of a universal algorithm capable of
solving all mathematical problems. The proof is inspired by Gdel’s incompleteness
theorem and requires the admission of statements that can work on themselves.
In terms of algorithms, it is necessary to consider programs capable of working on
themselves. But this is obviously impossible if, in the programming environment,
one carefully separates programs and data!

Church’s solution was to create an ingenious algorithmic model with only pro-
grams: this is the lambda calculus. Church thus contradicted Hilbert’s conjecture.
Turing reached the same conclusion by constructing instead an algorithmic model
(Turing machine) where a program is nothing but data! Thus Turing discovered
the very notion and the theoretical realization of a universal machine, which is the
foundation of modern computer science. It can also be shown that Church’s and
Turing’s solutions are equivalent.

7 Complexes simpliciaux.

It is hoped that the preceding section will have reassured the reader as to the
possibilities of processing functional objects in a machine, even during program
execution. In this section, we explain how it is possible to use the functional trick
to encode geometric objects that can be quite monstrous. Playing with monsters
in a machine is not, however, a goal in itself, and the few monsters exhibited in
this section actually have no real interest. In the next section, we will explain how
the same methods allow us to work on machines with highly infinite and really
useful spaces (at least for mathematicians!). The example of loop spaces, which is
easy to understand, is ideal to illustrate our purpose.

Let us first explain what a simplicial complex is. The definition is combina-
torial, but there is a geometrical object associated with any simplicial complex,
the one we want to model by the combinatorial definition: a simplicial complex
K is a pair K = (V, S) where V is any set, the set of vertices of K, and S is a
set of finite subsets of V , the set of simplices of K. These data must satisfy the
following conditions:

1) If v is a vertex of K, in other words, if v ∈ V , then {v} ∈ S;

2) If s is a simplex of K, in other words, if s ∈ S, and if s′ ⊂ s, then s′ ∈ S:
any sub-simplex of K is again a simplex of K.

Let’s say for example:
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K1 = (V1, S1), avec :
V1 = {0,1,2,3,4,5}, et
S1 = {{},

{0},{1},{2},{3}, {4},{5},
{0,1},{0,2},{1,2},{2,3}, {3,4},{3,5},{4,5},
{0,1,2}}.

The complex has six vertices and fifteen simplices. The associated geometric object
can be represented as shown in the following figure:

•

•

• •

•

•

0

1

2 3

4

5

The triangle 012 is filled while the triangle 345 is hollow. The method of cor-
respondence between lists of vertices and simplices on the one hand and geometric
objects on the other hand is clear: the figure associated with a simplicial complex
has as many ”marked points” as there are vertices in the complex. Two marked
points are connected by a segment if the set of these two vertices is included in the
list of simplices. Three vertices underlie a full triangle, if all of all three vertices
appear in the list of simplices, etc. It can be shown that, by chosing a Euclidian
space of a sufficiently high dimension, one can always associate with a simplicial
complex, sometimes called an abstract simplicial complex, a geometrical object of
this nature, which is then called a geometric simplicial complex.

Here’s another example. With the abstract simplicial complex:

K2 = (V2, S2), avec :
V2 = {0,1,2,3}, et
S2 = {{},

{0},{1},{2},{3},
{0,1},{0,2},{0,3}, {1,2},{1,3},{2,3},
{0,1,2},{0,1,3}, {0,2,3},{1,2,3}},

we can associate the hollow tetrahedron:

• •
•

•

It is hollow because in the list of its simplices the simplex {0, 1, 2, 3} does not ap-
pear. Otherwise the associated geometrical object would have been a solid tetra-
hedron.
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A finite simplicial complex can easily be machine-coded as a list of simplices. In
fact, one could be content with the maximal simplices, the others being deducible.
Thus our first example of a simplicial complex could be coded:

((0 1 2) (2 3) (3 4) (3 5) (4 5))

While the hollow tetrahedron would be written:

((0 1 2) (0 1 3) (0 2 3) (1 2 3))

And the solid tetrahedron:

((0 1 2 3))

Nothing prevents us from considering infinite simplicial complexes. Consider,
for example, the complex K3 = (V3, S3) where V3 is the set of natural numbers
and S3 the set of all finite subsets of N.

K3 = (V3, S3), where :
V3 = {0,1,2,3,4,5,6,7,8,. . . }, and
S3 = {{},

{0},{1},{2},{3},{4},{5},{6},{7},. . .
{0,1},{0,2},{0,3},{0,4},{0,5},{0,6},. . .
{1,2},{1,3},{1,4},{1,5},{1,6},. . .
{2,3},{2,4},{2,5},{2,6},. . .
. . .
{0,1,2},{0,1,3},{0,1,4},{0,1,5},. . .
{0,2,3},. . .
. . .
{0,1,2,3},. . .
. . .
. . . }

The associated geometric object contains a segment for any pair of different
integers, a solid triangle for any triple of pairwise different integers, a solid tetra-
hedron for any quadruple of pairwise different integers, and so on. Obviously, such
an object cannot be represented in R3, but it is not difficult to define rigorously
a geometrical object in R∞ corresponding to the simplicial complex K3. Here’s
another example, which is somewhat of a sub-example of the preceding one: Take
K4 = (V4, S4) where V4 is again the set N of natural numbers, and S4 is the set of
subsets of N which contain at most two elements:
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K4 = (V4, S4), where :
V4 = {0,1,2,3,4,5,6,7,8,. . . }, and
S4 = {{},

{0},{1},{2},{3},{4},{5},{6},{7},. . .
{0,1},{0,2},{0,3},{0,4},{0,5},{0,6},. . .
{1,2},{1,3},{1,4},{1,5},{1,6},. . .
{2,3},{2,4},{2,5},{2,6},. . .
. . .
. . . }

This time the associated geometrical object will contain an infinity of segments,
but on the other hand no triangle, no tetrahedron, . . .

Of course, it is absolutely impossible to represent such simplicial complexes
using lists of simplices. Only lists of finite length can be represented in a machine,
and the lists which would be needed for the complexes K3 and K4 are infinite.
Given the preparations of the previous sections, the reader will probably guess
that we will use the functional trick to overcome this difficulty. How should we
proceed?

We may decide the functional coding for a simplicial complex is a function f
which can be applied to any list of machine objects and which returns true or false.
In addition, this function must satisfy the following condition: if f(l) = true and
l′ ⊂ l, then f(l′) = true. It is easy to associate a simplicial complex with such a
function f : let Vf be the set of objects v such that f({v}) = true, and Sf the set
of all lists for which f answers true. Then Kf = (Vf , Sf ) is a simplicial complex
called the simplicial complex associated with f . By this very simple process, the
simplicial complexes are functionally coded. Since the function f can potentially
work on an infinite number of objects (see section 2), nothing prevents us from
coding infinite simplicial complexes.

The various examples of complexes which have been given previously can be
coded in Lisp as follows:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(setf K1
#’(lambda (list)

(or (subsetp list ’(0 1 2))
(subsetp list ’(2 3))
(subsetp list ’(3 4))
(subsetp list ’(4 5))
(subsetp list ’(3 5)))))

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

If we interrogate K1 for the list (0 2), it will answer true, whereas it will answer
false for example for the list (0 3). The hollow tetrahedron might be coded like
this:
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(setf K2
#’(lambda (list)

(and (subsetp list ’(0 1 2 3))
(not (subsetp ’(0 1 2 3) list)))))

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

This requires that all elements of the argument list can be extracted from the
list (0 1 2 3), but all elements of the latter list must not appear at the same time.
If this last condition were removed, one would have the functional code of the full
tetrahedron. The functional code of the infinite complex K3 is not much longer.
It is even shorter:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(setf K3
#’(lambda (list)

(every #’integerp list)))
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

It is enough to check that every element of the list argument is an integer,
which, as we see, can easily be written.

Let K4 be the complex K3 with all the simplices of dimension > 1 removed.
Topologists call K4 the 1-skeleton of K3, and it can be functionally coded as
follows:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(setf K4
#’(lambda (list)

(and (every #’integerp list)
(< (length (remove-duplicates list))

3))))
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Indeed, this time it is necessary to verify additionally that the number of
different vertices in the list is less than 2.

This description of K4 as the 1-skeleton of K3 is a good opportunity to illustrate
some of the functional possibilities of Lisp: we would like to have a function to
which we pass two arguments, where the first argument is the functional code of
a simplicial complex K, and the second argument is a dimension d. We want this
function to produce a functional code of the d-skeleton of K, which is the new
simplicial complex obtained from K by removing all the simplices of dimension
> d. This is very easy:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(setf skeleton
#’(lambda (complexe dimension)

#’(lambda (list)
(and (funcall complexe list)

(< (length (remove-duplicates list))
(+ 2 dimension)))))

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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So that instead of getting tired from writing a functional code of K4, one could
have asked the Lisp machine to do it:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(setf K4 (funcall skeleton K3 1))
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

8 Constructing a loop space in a machine.

Let K = (V, S) be a simplicial complex and v0 one of its vertices, which will play
a particular role and which is called the base point of K. We assume that K
is connected, in other words, starting from the base point, any other vertex is
accessible by traveling along the edges of K. The loop space of (K, v0), which we
denote by Ω(K, v0), is another simplicial complex defined from K and v0, which
is always infinite (except when V = {v0}). This loop space plays a particularly
important role in algebraic topology: it was invented by Jean-Pierre Serre in the
early fifties and in a certain sense acts as the inverse space of K. This is not the
place to define in what sense, but it is the type of construction that allowed Jean-
Pierre Serre to advance the “state of the art” in Algebraic Topology (the homotopy
groups of the spheres), a contribution which earned him the Fields Medal.

It is not difficult to define the loop space and it gives a striking example of
the possibilities offered by functional coding methods. Since K = (V, S) is given,
as well as a vertex v0 of V , the complex Ω(K, v0), the loop space of (K, v0) is,
like every complex, defined by its set of vertices V ′ and its set of simplices S ′:
Ω(K, v0) = (V ′, S ′).

Let us first describe the set of vertices V ′. A vertex of Ω(K, v0) is a
loop of K based on v0, by which we mean an infinite sequence of vertices
(a0, a1, a2, . . . , ak−1, ak, . . .) satisfying the following conditions:

a) The first vertex of this sequence must be the base point v0 of K: a0 = v0;

b) There must be an integer n such that, if k ≥ n, then ak = v0;

c) For every integer k > 0, {ak−1, ak} is a simplex of K: {ak−1, ak} ∈ S (repe-
tition is permitted, in which case this simplex has only one element).

•v0 = a0 = a5 = a6 = · · ·

a1•
a2•

a3
•

a4
•

loop
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This sequence must be understood as a path on K, more precisely along the
edges of K. At time 0, we start from the base point: a0 = v0; at time 1, one
reaches the vertex a1 of K, which, to be legitimate, requires that {a0, a1} be a
simplex of K. Intuitively, between times 0 and 1, the loop runs along the edge
of K between a0 and a1. Similarly, between the instants k−1 and k, the loop runs
along the edge of K between ak−1 and ak, which requires that {ak−1, ak} belongs
to S. We also require that this journey be essentially finite, which is the role of
condition b): after a certain time n, the loop remains fixed at the base point v0
of K. For example, if K is the example complex K1 of the preceding section with
the base point v0 = 2, the following sequence λ = (2, 3, 4, 5, 3, 4, 5, 3, 2, 2, 2, . . .) is
an example of a vertex of Ω(K1, 2).

Thus the data of a single vertex of Ω(K, v0) requires several vertices and edges
of K. Let us now define the simplices of Ω(K, v0). For example, let λ = (a0, a1, . . .)
and λ′ = (a′0, a

′
1, . . .) be two vertices of Ω(K, v0). Under what circumstances is the

pair {λ, λ′} a simplex of Ω(K, v0)? The condition that must be satisfied is the
following:

For each integer k > 0, the set {ak−1, ak, a′k−1, a′k} (repetitions are
allowed) must be a simplex of K: {ak−1, ak, a′k−1, a′k} ∈ S.

The interpretation of this condition is not difficult. It requires that one be
able to define an intermediate path between the paths λ = (a0, a1, . . .) and λ′ =
(a′0, a

′
1, . . .). At the instant k ∈ N, this intermediate path should pass through the

middle of the segment [ak, a
′
k], which requires to be defined that {ak, a′k} belongs

to S.

Better, at instant k−1/2, the intermediate path must pass through the middle
of the segment [λ(k − 1/2), λ′(k − 1/2)], which is also the barycenter of the four
points λ(k − 1), λ(k), λ′(k − 1) and λ′(k), in other words ak−1, ak, a′(k − 1) and
a′(k). Therefore, for this barycentre to be defined, we ask that these four points
define a simplex of the complex K (repetitions are permitted). For example, for the
example complex K1 of the previous section, if we take λ = (2, 3, 4, 5, 3, 2, 2, 2, . . .)
and λ′ = (2, 3, 3, 4, 5, 3, 2, 2, . . .), this condition is not satisfied at time 3 since
{3, 4, 5} does not belong to S, and so {λ, λ′} is not a simplex of Ω(K1, 2). On
the other hand, if we take µ = (2, 0, 1, 2, 2, 2, . . .) and µ′ = (2, 2, 0, 1, 2, 2, . . .),
the condition is always satisfied, essentially because {0, 1, 2} belongs to S, and
therefore {µ, µ′} is an element of S ′: {µ, µ′} is a simplex of Ω(K1, 2).

More generally and in the same spirit, let λi = (ai0, a
i
1, a

i
2, . . .), 1 ≤ i ≤ m be

a family of loops in Ω(K, v0). This family will constitute a simplex of Ω(K, v0)
if and only if, for every integer k > 1, the family {a1k−1, a1k, a2k−1, a2k, . . . , amk−1, amk }
belongs to S, which, intuitively, makes it possible to define a barycentre path of
the paths λ1, . . . , λm.

Let us now examine the possibility of constructing a function with two argu-
ments where the first argument is the functional code of a simplicial complex and
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the second argument is one of its vertices (the base point), and which returns the
functional code of its loop space. This last code must be able to work on lists and
must answer ‘yes’ or ‘no’ to the question: is this list a simplex of the loop space
complex? Each list element must be a vertex, which poses a bit of a problem,
because a vertex of the loop space has been defined as an infinite sequence. But
this problem is easy to overcome since condition b) ensures that, starting from a
certain rank, which might vary from one sequence to another, all the terms of this
sequence are equal to the base point. It is therefore sufficient that such a sequence
is represented in the form of a finite list, where all the missing terms are equal to
the base point. The test of the conditions to be satisfied in order for a list of lists
to represent (modulo this convention) a simplex of our loop space is then a small
program using inter alia the functional code of the original complex. The program
transformation of the functional code of a complex to the functional code of its
loop space can itself be implemented, for example, by the following program which
is shown only to satisfy the possible curiosity of the reader:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(setf loop-space
#’(lambda (K s0)

#’(lambda (ll)
(and (maplistp ll)

(let ((ll (transpose (complete ll s0))))
(essential-test K ll))))))

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The loop-space function uses various auxiliary list-processing functions
(maplistp, transpose, complete, essential-test) whose implementation is a rou-
tine programming exercise. As a result, a very modest microcomputer calculates
in less than one hundredth of a second the functional code of a loop space, a space
yet highly infinite!

9 Applications to algebraic topology.

In this last section, we describe very briefly the results that can be obtained from
this method of functional coding when applied to algebraic topology. The situation
is very similar to that which has been explained for the chromatic polynomial and
the parallelism is summarized in Table 1.

The object of the algebraic topology is to associate with (topological) spaces
algebraic objects capable of essentially measuring some of their properties. The
homology groups are a very important example of such an association, however,
their precise definition is too esoteric to be explained here. In a way, these groups
measure how perforated a space is. For example, topologists explain that the first
homology group of the Euclidean plane R2, denoted by H1(R2), is zero, whereas
if D is the unit disk of this plane, H1(R2−D) is not zero, which expresses the fact
that R2 −D is punctured. In the present case, this can be seen on the group H1

since the hole in question can be enclosed in a circle, an object of dimension 1. If
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Graphs Algebraic Topology

Graph G Simplicial set K

Chromatic number Ordinary homology

Known chromatic number NG Known ordinary homology H∗(K)

Simple construction of G′ from G Simple construction K ′ from K

NG′ = ??? H∗(K
′) = ???

Chromatic polynomial χG Effective homology EH∗(K)

The chromatic polynomial contains
an infinity of information

The effective homology contains an
infinity of information

Functionally coded information; on
a machine, this information appears
as a finite string of bits

Functionally coded information; on
a machine, this information appears
as a finite string of bits

The chromatic polynomial contains
the chromatic number as a by-
product

The effective homology contains the
ordinary homology as a by-product

Construction of G from G1, G2 Construction of K from K1, K2

Algorithm for NG from NG1 , NG2

Algorithme EH∗(K) from EH∗(K1),
EH∗(K2)

Table 1: Chromatic polynomial — Effective homology
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we did the same for the Euclidean space R3 and its unit ball B, it would be this
time the group H2 which would be nonzero, because the corresponding hole can be
enclosed in a sphere, a two-dimensional object. Algebraic topologists can define
very precisely these notions which produce, for a space K, the homology groups
Hn(K), for every positive integer n.

The calculation of the homology groups of many spaces of interest to topologists
is a difficult sport and remains a very active research topic today. It is this type
of calculation where functional coding methods have recently made significant
progress, very much as the chromatic polynomial method makes it possible to
simplify the calculation of the chromatic number. The parallel between the two
situations is fairly well summarized in Table 1.

There is, however, a slight difference in the case of algebraic topology: many
methods (exact sequences and spectral sequences in particular) had already been
developed by topologists, so that when we construct a space K from spaces K1 and
K2 whose homologies are known, we can glean at least some information about
the homology of K. Often we can even deduce the homology of K, but often these
methods prove insufficient.

The methods of effective homology, developed by the author in collaboration
with other researchers (see references at the end of the article), make it possible to
overcome the difficulties presented by the other methods. The constraints of this
article do not allow much more explanation. Let us say only that the objects with
effective homology contain, like a chromatic polynomial, an infinity of information,
but the functional trick nevertheless allows to manipulate them without any par-
ticular difficulty on theoretical and concrete machines. The classical methods of
algebraic topology are thus transformed into true algorithms that are capable of
computing the coveted groups.

Numerous computability results have already been obtained in this way, in
particular for the homology groups of iterated loop spaces. By implementing these
methods on concrete machines, it would be most interesting of course to calculate
the homology and homotopy groups that have hitherto resisted such attempts. A
lot of work is going on in this direction, specifically for the homology of iterated
loop spaces.

The wide field of research, which ranges from the purest mathematics (homo-
logical algebra and algebraic topology) to the very concrete problems of the real-
ization of algorithms on machines, is exciting. It also opens unexpected horizons
for researchers in complexity (what can we say about the complexity of algorithms
based on functional programming?) and parallel computation.

To learn more:

• Francis Sergeraert. Homologie effective, I et II. C. R. Acad Sc. Paris, Série I,
1987, vol. 304, pp 279-282 et 319-321.
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• Julio Rubio, Francis Sergeraert. Homologie effective et suites spectrales
d’Eilenberg-Moore. C. R. Acad. Sc. Paris, Série I, 1988, vol. 306, pp
723-726.

• Francis Sergeraert. The computability problem in algebraic topology.
Prépublication de l’Institut Fourier, no 119, 1988.

• Julio Rubio. Homologie effective des espaces de lacets itérés. Prépublication
de l’Institut Fourier, no 138, 1989.
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