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Abstract

We propose in this article a global understanding of, on the one hand,
the Homological Perturbation Theorem (HPT) and, on the other hand, of
Robin Forman’s theorems about the discrete vector fields (DVFs). Forman’s
theorems become a simple and clear consequence of the HPT. Above both
subjects the Homological Hexagonal Lemma, quite elementary.

1 Introduction.

The Homological Hexagonal Lemma is an elementary process consisting in
using the ordinary linear Gauss reduction in a homological context when
more or less large chain complexes are used to define homology groups.
Defining an object in general is not sufficient for having a computing process
of this object, in modern language for having an algorithm computing this
object. It happens the so-called Homological Perturbation Theorem1 (HPT)
has become an essential tool to obtain such algorithms, in particular when
the standard exact and spectral sequences in fact do not produce such an
algorithm. And the goal of this text is the following: the Homological
Perturbation Theorem is a direct consequence of our Homological Hexagonal
Lemma, combined with the invertibility of 1 +x when x is sufficiently small
in an appropriate context.

The Homological Hexagonal Lemma is roughly as follows. Let (CC∗, d∗)
be a chain complex where the differential admits a decomposition as clearly

∗This paper is written in honour of Tornike Kadeishvily, for his 70th birthday. An opportu-
nity to mention how we like Tornike’s mathematical style, a style unfortunately now so rarely
observed. To be compared with Eilenberg-MacLane’s one: precision, simplicity, completeness.
Devoted only to cardinal points of our vast domain of Algebraic Topology. Working together
was really a happy time.

1Previously often called the Basic Perturbation Lemma; become so important that now the
designation Homological Perturbation Theorem is preferred.
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explained in this diagram:

Cn−1

Bn−1

An−1

Cn

Bn

An

Cn+1

Bn+1

An+1

. . .

. . .

. . .

. . .ISO
ISO

CCn−1 CCn CCn+1

⊕

⊕

⊕

⊕

⊕

⊕

(1)
Every chain group CCn is a direct sum CCn = An ⊕ Bn ⊕ Cn, and

we assume the component dban : An → Bn−1 of dn : CCn → CCn−1 is an
isomorphism for every n. Then a homology equivalence is easily constructed
(CC∗, d∗)⇔ (C∗, d

cc
∗ + δ∗). In general, (C∗, d

cc
∗ ) is not a chain complex; the

homological hexagonal lemma says it is possible to modify dcc∗ to obtain a
chain complex (C∗, d

cc
∗ + δ∗) homologically equivalent to the original one

(CC∗, d∗).
Sometimes, the initial chain complex CC∗ is not of finite type, while

(C∗, d
cc
∗ + δ∗) is of finite type. The non-finiteness of the initial complex

does not allow the topologist to have an algorithm computing its homology
groups. On the contrary, the finite type of C∗ automatically gives most
often an elementary algorithm. The computing problem of the homology
groups of (CC∗, d∗) is so solved.

The reader maybe wonders why the qualifier “hexagonal” for our lemma.
It is possible to reorganize the numerous arrows of the diagram (1) to see hid-
den hexagons, which hexagons will allow us to apply an Elementary Hexag-
onal Lemma, with a diagram having this time the form of a hexagon. And
the last lemma is a simple and direct consequence of the ordinary Gauss
reduction process for the linear systems, the reduction process taught in
every secondary school.

The homological hexagonal lemma so becomes the main component of
the organization of homological algebra called Constructive Homological Al-
gebra [9]. Two predominant tools are then used:

• The Homological Perturbation Theorem;

• The Discrete Vector Fields technology;

and these tools are direct consequences of our hexagonal lemma.
The statement of the Homological Perturbation Theorem has clearly the

form of an Implicit Function Theorem, but the mysterious series used in
the proofs, see for example the series (I) in [11, p. 27], are not presented
as coming from some sort of implicit function theorem. We will see the
homological hexagonal lemma fills this gap, giving a so simple understanding
of the Perturbation Theorem that it is a little amazing this description
does not seem to have yet been presented. Understanding the Perturbation
Theorem so amounts to knowing that the inverse of 1 +x is 1−x+x2− · · ·
as soon as x is nilpotent or, in a topological context, when |x| < 1.
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2 Homological Reductions.

2.1 Definitions.

Definition 1 — A chain complex C∗ = (C∗, d∗) = (Cn, dn)n∈Z is a collec-
tion of abelian groups Cn, often called chain groups, indexed by the integers
n ∈ Z, and of differentials dn : Cn → Cn−1 satisfying dn−1dn = 0 for n ∈ Z,
or more simply d2 = 0. [1]♣

The groups of n-cycles Zn(C∗), n-boundaries Bn(C∗) and n-homology
classes Hn(C∗) are defined as:

Zn(C∗) = ker dn (2)

Bn(C∗) = im dn+1 (3)

Hn(C∗) = Zn(C∗)/Bn(C∗) (4)

Definition 2 — If (Ĉ∗, d̂∗) and (C∗, d∗) are chain complexes, a reduction ρ:

(Ĉ∗, d̂∗) (C∗, d∗)
f

g
hρ = (f, g, h) = (5)

is a collection of maps f = (fn : Ĉn → Cn)n, g = (gn : Cn → Ĉn)n and
h = (hn : Ĉn → Ĉn+1) satisfying the relations:

dnfn = fn−1d̂n (6)

d̂ngn = gn−1dn (7)

fngn = idCn (8)

dn+1hn + hn−1d̂n + gnfn = id
Ĉn

(9)

fnhn−1 = 0 (10)

hngn = 0 (11)

hn+1hn = 0 (12)

[2]♣

A reduction ρ as in (5) can be denoted ρ = (f, g, h) : Ĉ∗ ⇒⇒ C∗ or even
simply ρ : Ĉ∗ ⇒⇒ C∗.

The relations (6) and (7) express the maps f and g are compatible with
the differentials, they are chain complex morphisms. The equation (8) as-
serts the chain complex C∗ is isomorphic to the subcomplex g(C∗) ⊂ Ĉ∗.
The next equation expresses h is a homotopy operator between gf and
id
Ĉ∗

. Finally the three last equations imply Ĉ∗ = (im g)⊕ (ker f ∩ kerh)⊕
(ker f ∩ker d). Also d|(ker f ∩kerh) and h|(ker f ∩ker d) are inverse isomor-
phisms between their respective domains, ker f ∩ kerh = imh on one hand,
ker f ∩ ker d = ker f ∩ im d on the other hand, as clearly displayed by the
diagram of Figure 1.

In other words, the “big” complex Ĉ∗ is the direct sum of the subcom-
plex C ′∗, isomorphic to the “small” one C∗, and the subcomplex A∗ ⊕ B∗.
This chain complex is acyclic, provided with the so-called Hodge decompo-
sition defined by d and h restricted to this subcomplex: A∗ = h(A∗ ⊕ B∗),
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{· · ·

{· · ·

{· · ·

{· · ·

{· · ·

Cp−1

C ′p−1

Bp−1

Ap−1

Ĉp−1

Cp

C ′p

Bp

Ap

Ĉp

Cp+1

C ′p+1

Bp+1

Ap+1

Ĉp+1

· · · } = C∗

· · · } = C ′∗

· · · } = B∗

· · · } = A∗

· · · } = Ĉ∗
h

d

h

d

h

d

h

d

d

h

∼=
d

h

∼=
d

h

∼=
d

h

∼=

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

d

d

d

d

d

d

d

d

f ∼= g f ∼= g f ∼= g f ∼= g

A∗ = ker f ∩ kerh C ′∗ = im g B∗ = ker f ∩ ker d

(13)

Figure 1: Reduction Diagram

B∗ = d(A∗ ⊕ B∗), and (dh + hd)|A∗⊕B∗ = idA∗⊕B∗ . Of course, A∗ and B∗
are not subcomplexes of Ĉ∗.

The main interest of such a reduction is the following: the “big” chain
complex Ĉ∗ could be the chain complex naturally defining the homology
groups of some object. The “small” one C∗ can then be sufficiently small
to make easy the calculation of its homology groups. The chain complex
A∗ ⊕ B∗ being acyclic, the homology groups of Ĉ∗ and C∗ are canonically
isomorphic, so that the calculation of the homology groups of C∗ produces
also the homology groups of Ĉ∗. In situations where the chain complex Ĉ∗
is “too big”, in particular when it is not of finite type, this can be the only
available solution to reach the homology groups of Ĉ∗.

Two typical examples. The Eilenberg-MacLane space K(Z/2, 4) is of
finite type, but not of “small type”. The standard model of this space
is a simplicial set with for example the next numbers n̂i of simplices in
dimensions 7-9:

n̂7 = 34359509614 (14)

n̂8 = 1180591620442534312297 (15)

n̂9 = 85070591730234605240519066638188154620 (16)

The chain complex Ĉ∗(K(Z/2, 4)) defining the homology groups of
K(Z/2, 4) is a free Z-complex with the same numbers of generators in de-
grees 7, 8 and 9. Using the incidence relations between these simplices,
no computer can compute H8K(Z/2, 4), even if you use the now standard
implementations of sparse matrices.

Yet, the method designed by Eilenberg and MacLane in [3] produces a
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free Z-complex C∗ with ni generators in degree i:

n7 = 4 (17)

n8 = 8 (18)

n9 = 15 (19)

with the same homology groups, groups which can be calculated in a small
fraction of second. The “standard” simplicial model of K(Z/2, 4) is minimal
in the sense of Kan [6, §9] and cannot be replaced by a smaller one in
Constructive Algebraic Topology. It happens the methods described here
around the Homological Perturbation Theorem produce a reduction between
Ĉ∗(K(Z/2, 4)) and C∗, the key point to produce a version of K(Z/2, 4) with
effective homology.

Another example is still more striking, the case of K(Z, 1). The “min-
imal” model of this space has an infinite number of simplices in any posi-
tive dimension. Again, Eilenberg and MacLane exhibited in [3] a reduction
(called contraction in [3]) between the chain complex Ĉ∗(K(Z, 1)), not at all
of finite type, and a very small chain complex C∗ with only one generator
in dimensions 0 and 1 and no generator at all in higher dimensions. Also
such a reduction is essential in Constructive Algebraic Topology.

2.2 The Homological Perturbation Theorem.

The Homological Perturbation Theorem is the heart of our subject. Let:

ρ = (f, g, h) : (Ĉ∗, d̂)⇒⇒ (C∗, d) (20)

be a (homological) reduction. It can happen a new differential d̂+ δ̂ is to be
considered on the graded module Ĉ∗: a perturbation δ̂ is added to the initial
differential d̂; this makes sense only if the differential condition (d̂+ δ̂)2 = 0
is again satisfied. Then the naive reduction:

ρ = (f, g, h) : (Ĉ∗, d̂+ δ̂) ⇒⇒ (C∗, d) (21)

is in general no longer valid, no reason the components f , g and h remain
compatible with the new differential d̂+ δ̂.

But sometimes, when a nilpotency condition is satisfied, a relatively sim-
ple process produces a new valid reduction. The initial homotopy h has de-
gree +1, the perturbation δ̂ has degree −1, the composition hδ̂ has degree 0;
the nilpotency condition is satisfied if for every x ∈ Ĉ∗, the iterated image
(hδ̂)nx(x) is null for some nx large enough, which nx may depend on x.

Theorem 3 (Homological Perturbation Theorem, HPT) — Let:

ρ = (f, g, h) : (Ĉ∗, d̂)⇒⇒ (C∗, d) (22)

be a reduction, and δ̂ a coherent perturbation of the differential d̂ satisfying
the nilpotency condition as explained above. Then a simple process produces
a new reduction:

ρ′ = (f ′, g′, h′) : (Ĉ∗, d̂+ δ̂)⇒⇒ (C∗, d+ δ). (23)
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The Homological Perturbation Theorem is known for a long time. A par-
ticular case was implicitly used by Eilenberg and MacLane in their seminal
works on the. . . Eilenberg-MacLane spaces, in particular when they handle
their contractions; for example the series used in the proof of Theorem 12.1
of [3] is to be compared to the series (56) of the Perturbation Theorem as
described here.

It is generally explained the HPT is due to Michael Barratt, unpublished.
The first detailed and explicit construction of the new reduction is in the
thesis memoir of Shih Weishu [11] prepared under the direction of Henri
Cartan. Later, Ronnie Brown [1] gave to Shih’s result the “abstract” form
stated above. The presentation given here reduces (!) this theorem to the
elementary Gauss reduction process in linear algebra and the invertibility of
1+x when |x| < 1, allowing in particular easy extensions to various contexts
involving topological vector spaces.

As explained in the previous section, a reduction Ĉ∗ ⇒⇒ C∗ is often
used to describe the homological nature of the big complex Ĉ∗ thanks to
the small complex C∗. Therefore, in the framework of the HPT’s statement
above, if the homological nature of (Ĉ∗, d̂) is known thanks to some reduction
Ĉ∗ ⇒⇒ C∗, an analogous description for the different object (Ĉ∗, d̂+ δ̂) can
often be obtained with the HPT which produces a new reduction with the
same small graded module C∗ but provided with a different differential d+δ.
The size of C∗ being unchanged, the computation of the homology groups
of (C∗, d+ δ) is roughly the same as for (C∗, d).

In Shih’s paper [11], the initial big complex was the chain complex of a
trivial product of simplicial sets, and the final big complex was the chain
complex of a twisted product: in a simplicial framework, this implies only
the differential of the (big) chain complex is changed. It was then proved
that, under quite general hypotheses, the involved perturbation satisfies
the nilpotency condition; starting from the homology of the trivial product
known thanks to the Künneth theorem, the HPT produces a description
of the homology of the twisted product. It is Cartan-Shih’s version of the
Serre spectral sequence.

3 The Homological Hexagonal Lemma.

3.1 Elementary Hexagonal Lemma.

Given rational numbers a, b, ε, ϕ, ψ, β, we could study the linear system:

εx+ ϕy = a (24)

ψx+ βy = b (25)

If ε is invertible, that is, 6= 0 in the rational case, we could subtract from
the equation (25) the product of the equation (24) by ψε−1, obtaining:

(β − ψε−1ϕ)y = (b− ψε−1a) (26)

The discussion of the linear system is then easy, depending only on the
nature of the coefficient (β − ψε−1ϕ).
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This is taught in every secondary school, but rarely presented there as a
homological reduction. Our linear system can be encapsulated in this chain
complex:

Ĉ0 = 0

Q Q

Q Q

0 = Ĉ3Ĉ1 Ĉ2

0

0

×ε

×β

×ψ

×ϕ

0

0

(27)

Except Ĉ1 = Q2 = Ĉ2, the other chain groups are null. An arrow labelled
for example ×ε is the multiplication of the argument by ε: (×ε)(x) = εx.
Discussing our linear system is nothing but studying the homological nature
of our chain complex between Ĉ2 and Ĉ1: the differential between these
chain groups is the square matrix with coefficients ε, ϕ, ψ, β acting on a
vector (x, y) with a value:(

a
b

)
=

(
ε ϕ
ψ β

)(
x
y

)
(28)

The Euler characteristic is 0, so that only three possibilities: H1 = H2 =
0 or Q or Q2. If ε is invertible, the value Q2 for the homology groups is
excluded, and there remain the possibilities 0 if (β − ψε−1ϕ) is invertible
and Q otherwise.

Let us detail which happens when ε is invertible. The homological nature
of the situation can be described by the following (homological) reduction,
where the only non-trivial component of the homotopy is the top arrow
×ε−1.

Ĉ0 = 0

Q Q

Q Q

0 = Ĉ3Ĉ1 Ĉ2

C0 = 0 Q Q 0 = C3

0

0

×ε

×ε−1

×β

×ψ

×ϕ

0

0

0 β − ψε−1ϕ 0

(−ψε−1 1)

(
0
1

)
(0 1)

(
−ε−1ϕ

1

)
(29)

In fact, this reduction is better understood as the composition of two
reductions, one being only a change of basis, the second one being an obvious
reduction provided by a diagonal matrix. An opportunity to mention the
composition of two reductions is a reduction.

Proposition 4 — Let ρ = (f, g, h) : A∗ ⇒⇒ B∗ and ρ′ = (f ′, g′, h′) : B∗ ⇒⇒
C∗ be two reductions. Then:

ρ′ρ := (f ′f, gg′, h+ gh′f) : A∗ ⇒⇒ C∗

is a reduction.
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♣[4] Exercise. [4]♣
The linear equations (28), taking account of the invertibility of ε, have

been in fact solved by a change of basis in Q2. In other words, the matrix
equation: (

ε ϕ
ψ β

)(
x
y

)
=

(
a
b

)
(30)

can be rewritten:(
1 0

−ψε−1 1

)(
ε ϕ
ψ β

)(
1 −ε−1ϕ
0 1

)
︸ ︷︷ ︸

(
1 ε−1ϕ
0 1

)(
x
y

)
︸ ︷︷ ︸ =

(
1 0

−ψε−1 1

)(
a
b

)
︸ ︷︷ ︸ (31)

that is: (
ε 0
0 β − ψε−1ϕ

)(
x+ ε−1ϕy

y

)
=

(
a

−ψε−1a+ b

)
(32)

This matrix computation can also be viewed as a particular sort of “re-
duction”, namely an isomorphism between chain complexes described by
the diagram:

Q2

Q2

Q2

Q2(
ε ϕ
ψ β

)

(
ε 0
0 β − ψε−1ϕ

)
(

1 0
ψε−1 1

)(
1 0

ψε−1 1

) (
1 −ε−1ϕ
0 1

)(
1 ε−1ϕ
0 1

)
0 0 (33)

with a null homotopy, not displayed.
Now, taking advantage of the diagonal form of the lower matrix, we may

define the simple reduction:

Q

Q2

Q

Q2(
ε 0
0 β − ψε−1ϕ

)

(
β − ψε−1ϕ

)
(0 1)

(
0
1

)
(0 1)

(
0
1

)

(
ε−1 0

0 0

)

0 0 (34)

where the only non-trivial homotopy is at the top of the diagram, allowed
thanks to the invertibility of ε.

Composing the two last reductions as explained in Proposition 4 gives
the reduction:
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Q

Q2

Q

Q2(
ε ϕ
ψ β

)

(
β − ψε−1ϕ

)
(−ψε−1 1)

(
0
1

)
(0 1)

(
−ε−1ϕ

1

)
0 0

(
ε−1 0

0 0

)

(35)

which is nothing but a slightly different rewriting of the reduction (29).
Instead of this simple context with the groups Q and Q2, exactly the same

work: change of basis combined with an elementary reduction of a diagonal
matrix, leads to the elementary “hexagonal lemma”. In the figure above,
you may replace the lefthand (resp. righthand) 0 by a chain group Cn−2

(resp. Cn+1) of some chain complex C∗, the upper Q2’s by An−1⊕Bn−1 and
An⊕Bn, and the lower Q’s by Bn−1 and Bn, all these objects being modules,
the upper ones being decomposed in direct sums Cn−1 = An−1 ⊕Bn−1 and
Cn = An ⊕ Bn. The matrices then become maps between chain groups
“decomposed by blocks”. Producing the diagram:

Cn−2 Bn−1 Bn Cn+1

Cn−2 ⊕ ⊕ Cn+1

Bn−1

An−1

Bn

An

α

β
γ

δ
ε

ηψ

ϕ

(id) (id) (id) (id)

α β − ψε−1ϕ γ

(−ψε−1 id)

(
0
id

)
(0 id)

(
−ε−1ϕ

id

)

ε−1

(36)

Let us notice in particular that for example α(β−ψε−1ϕ) = αβ−αψε−1ϕ =
αβ + δεε−1ϕ (for αψ + δε = 0, think of the differential starting from An)
= αβ + δϕ = 0, so that the lower object is again a chain complex. We have
proved:

Proposition 5 (Elementary Hexagonal Lemma) — Let (C∗, d∗)be a
chain complex where the chain groups of index (n−1) and n are decomposed
Ci = Ai⊕Bi for i = n−1, n, the differentials di for i = n−1, n, n+1, being
decomposed as described in the upper part of the diagram (36). We assume
the component ε : An → An−1 is invertible. Then the chain complex C∗ can
be canonically reduced over the same chain complex, except An−1 and An
are removed, and the differential d′n : Bn → Bn−1 is d′n = β − ψε−1ϕ. [5]♣

Important: notice the maps α and γ are not modified, this will be es-
sential to recursively apply this proposition.
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3.2 Homological Hexagonal Lemma.

Theorem 6 (Homological Hexagonal Lemma) — Let (CC∗, d∗) be a
chain complex where every chain group is decomposed in a direct sum CCn =
An ⊕ Bn ⊕ Cn. Every boundary matrix dn : CCn → CCn−1 can then be
decomposed by blocks:

dn =

 daan dabn dacn

dban dbbn dbcn
dcan dcbn dccn

 (37)

We assume every morphism dban : An → Bn−1 is an isomorphism. Then a
canonical reduction can be defined:

ρ = (f, g, h) : (CC∗, d∗)⇒⇒ (C∗, d
′
∗) (38)

for an appropriate differential d′∗

The starting situation is as follows:

Cn−1

Bn−1

An−1

Cn

Bn

An

Cn+1

Bn+1

An+1

. . .

. . .

. . .

. . .ISO
ISO

CCn−1 CCn CCn+1

⊕

⊕

⊕

⊕

⊕

⊕

(39)
where the bold arrows are assumed to be isomorphisms. Then the initial
chain complex can be reduced in a smaller one where the An and Bn com-
ponents are removed, but the maps dccn : Cn → Cn−1 are in general to be
replaced by other ones d′n : Cn → Cn−1, defining a chain complex. Notice
the initial dccn ’s in general are not a differential on C∗.
♣[6] Considering the situation between the indices -1 an 2 :

C−1

B−1

A−1

C0

B0

A0

C1

B1

A1

C2

B2

A2

ISO ISO ISO

CC−1 CC0 CC1 CC2

⊕

⊕

⊕

⊕

⊕

⊕

(40)
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we can view this diagram as a particular case of the diagram (36) modified
by these substitutions:

Cn−2 7→ A−1 ⊕B−1 ⊕ C−1

An−1 7→ B0

Bn−1 7→ A0 ⊕ C0

An 7→ A1

Bn 7→ B1 ⊕ C1

Cn+1 7→ A2 ⊕B2 ⊕ C2

(41)

In particular the arrow ε : An → An−1 of (36) becomes the arrow dba1 :
A1 → B0 which is an isomorphism. Proposition 5 can be applied, producing
a reduction of the initial chain complex on the next one, the components
A1 and B0 being removed. Also the map dcc1 : C1 → C0 is to be replaced by
d′1 = dcc1 − dca1 (dba1 )−1dbc1 . We obtain this diagram:

C−1

B−1

A−1

C2

B2

A2

C0

A0

C1

B1ISO

ISO

d′1

(42)

Let us recall the comment after the statement of Proposition 5: the
maps outside the critical indices, 0 and 1 in this case, are not modified in
the reduction process. In particular the maps between A2 and B1, also
between A0 and B−1 are not modified: they remain isomorphisms. So that
we can again apply Proposition 5 for example between the indices 1 and 2,
this time with the substitutions:

Cn−2 7→ A0 ⊕ C0

An−1 7→ B1

Bn−1 7→ C1

An 7→ A2

Bn 7→ B2 ⊕ C2

Cn+1 7→ A3 ⊕B3 ⊕ C3

(43)

The components B1 and A2 are removed and we obtain a new reduced chain
complex:

C−1

B−1

A−1

C3

B3

A3

C0

A0

C1

C2

B2ISO

ISO

(44)
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We can continue in the same way, removing the components A3 and B2,
A4 and B3, and so on, and on the lefthand side, the components A0 and B−1,
A−1 and B−2, etc. Continuing in this way, all the An and Bn components
are removed, letting only the Cn components. [6]♣

The details of the final reduction are analogous in any degree and given
in the figure below between the degrees 5 and 4.

C4

B4

A4

C5

B5

A5

⊕

⊕

⊕

⊕

· · ·

· · ·
· · ·
· · ·

· · ·

· · ·
· · ·
· · ·

d
ba
5

d5 =

 daa5 dab5 dac5

dba5 dbb5 dbc5
dca5 dcb5 dcc5



h4 =

0 (dba5 )−1 0
0 0 0
0 0 0



CC4 CC5
d5

h4

C4 C5
d′5 = dcc5 − dca5 (dba5 )−1dbc5

g5 =

−(dba5 )−1dbc5
0
id

f5 =
(
0 −dca6 (dba6 )−1 id

)
g4 = · · ·f4 = · · ·

(45)

Taking account of the orientation of the arrows, and of the fact that only
the arrows dban are invertible, the non-trivial component in d′n, (resp. fn, gn)
is obtained by the following recipe: look for the unique path between the
starting point and the arrival point, and change the sign. For example, for
the non-trivial component dcan (dban )−1dbcn of d′n, you observe the only non-
trivial path between Cn and Cn−1 consists in going first from Cn to Bn−1

following dbcn , then in going back to An following (dban )−1, and finally in going
to Cn−1 following dcan .

Only one non-null component in hn−1, deduced from the invertible com-
ponent of dn.

4 Homological Perturbation Theorem.

♣[3] This section is devoted to the proof of Theorem 3.
We start with a reduction:

ρ = (f, g, h) : Ĉ∗ ⇒⇒ C∗ (46)

Figure 1 also known as “equation” (13) gives in detail the organization
of such a reduction. As it was already done before, we detail which happens
between the degrees 4 and 5, only which is relevant. The orientation of the
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diagram is changed to save some space.

A4

A5

B4

B5

C4

C5

C4

C5

⊕

⊕

⊕

⊕

dcc5 d5∼= dba5hab4

Ĉ4 =

Ĉ5 =

d̂5

g5 =

0
0
1



f4 =
(
0 0 1

)

d̂5 =

 0 0 0
dba5 0 0
0 0 dcc5

 h4 =

0 hab4 = (dba5 )−1 0
0 0 0
0 0 0


(47)

This is the initial situation. Now we introduce a perturbation δ̂∗ of the
differential d̂∗ of Ĉ∗.

A4

A5

B4

B5

C4

C5

C4

C5

⊕

⊕

⊕

⊕

dcc5 d5∼= dba5hab4

Ĉ4 =

Ĉ5 =

d̂5

g5 =

0
0
1



f4 =
(
0 0 1

)
δ̂5

(48)

This perturbation δ̂ has arbitrary components:

δ̂n =

δ̂aan δ̂abn δ̂acn
δ̂ban δ̂bbn δ̂bcn
δ̂can δ̂cbn δ̂ccn

 (49)

except the differential condition (d̂n−1+δ̂n−1)(d̂n+δ̂n) = 0 must be satisfied.
Question: could we apply the homological hexagonal lemma, that is,

Theorem 6, to obtain a reduction for the new “big” chain complex (Ĉ∗, d̂∗+
δ̂∗) ?

The answer is simple: if the new components (d̂ + δ̂)ban = dban + δ̂ban are
invertible, then the homological hexagonal lemma may be applied. But
dban + δ̂ban = dban (id +(dban )−1δ̂ban ) = dban (id +habn−1δ̂

ba
n ) and the last expression

is invertible if and only if id +habn−1δ̂
ba
n is invertible.

It is exactly here that we are in a situation where an implicit function
theorem can be applied, under the most elementary form: in an appropriate
context, if a is invertible, and if a′ is sufficiently small, then a + a′ is also
invertible. Here id is invertible and we have to work with the “size” of
habn−1δ̂

ba
n to obtain the invertibility of id +habn−1δ̂

ba
n .

In a purely algebraic context, it is enough to ask for the (pointwise)
nilpotency of habn−1δ̂

ba
n . That is, if for every x ∈ An there exists a νx such

13



that (habn−1δ̂
ba
n )νx(x) = 0 then we obtain:

(id +habn−1δ̂
ba
n )−1 =

∞∑
i=0

(−1)i
(
habn−1δ̂

ba
n

)i
(50)

Finally:

(dban + δ̂ban )−1 =

( ∞∑
i=0

(
habn−1δ̂

ba
n

)i)
= habn−1 − habn−1δ̂

ba
n h

ab
n−1 + habn−1δ̂

ba
n h

ab
n−1δ̂

ba
n h

ab
n−1 + · · ·

(51)

The form obtained here for the (pointwise) nilpotency condition is useful,
even often easier than the one which is given in the common statement of
the HPT as in Theorem 3. How to obtain the last one?

The map hn−1 is very particular:

hn−1 =

0 habn−1 0
0 0 0
0 0 0

 (52)

while δ̂n is almost arbitrary, see formula (49). So that:

hn−1δ̂n =

habn−1δ̂
ba
n habn−1δ̂

bb
n habn−1δ̂

bc
n

0 0 0
0 0 0

 (53)

and the nilpotency condition is satisfied for habn−1δ̂
ba
n if and only if it is

satisfied for hn−1δ̂n.
We mentioned in the comments of the diagram (45) the essential role

played in the final formulas for the obtained reduction by the inverse term
(dba5 )−1. Let us compute:

(dban + δ̂ban )−1 = (id +(dban )−1δ̂ban )−1(dban )−1 = (id +habn−1δ̂
ba
n )−1habn−1

= habn−1

∞∑
i=0

(−1)i
(
δ̂ban h

ab
n−1

)i (54)

Using the formula:0 h 0
0 0 0
0 0 0

α β γ
δ ε ζ
η θ ι

0 h 0
0 0 0
0 0 0

 =

0 hδh 0
0 0 0
0 0 0

 (55)

we see the critical term obtained at (54) is nothing but the unique non-null
term at position 2-1 in the 3-3 matrix:

h′n−1 = hn−1

∞∑
i=0

(−1)i(δ̂nhn−1)i (56)

We so obtain the usual formula for the homotopy operator h′ of the new
reduction obtained after perturbation:

h′ = h

∞∑
i=0

(−1)i(δ̂h)i (57)

14



It is then convenient to introduce:

ϕ =
∞∑
i=0

(−1)i(δ̂h)i ψ =
∞∑
i=0

(−1)i(hδ̂)i (58)

and continuing the same sort of analysis, using the detailed formulas given
at (45), we obtain the new reduction:

ρ′ = (f ′, g′, h′) : (Ĉ∗, d̂∗ + δ̂∗)⇒⇒ (C∗, d∗ + δ∗) (59)

where:

h′ = hϕ = ψh (60)

f ′ = fϕ (61)

g′ = ψg (62)

δ = f δ̂ψg = fϕδ̂g (63)

formulas which are so simple and so “canonical” they are not difficult to
remember by heart. In particular fψ = ϕg = 0, while ϕf , ψf , gϕ and gψ
do not make sense, and the formulas (61) and (62) are the only possible.
Also, in the formula (60) (resp. (63)), it is natural to “privilege” h (resp. δ̂)
and again no other choice. [3]♣

The last formulas are elegant, but we must mention the understanding
of the homological perturbation theorem given by the diagrams (45), (47)
and (48) is much better. We will see a striking illustration when studying
Forman’s theorems about this notion of Discrete Vector Field (DVF). In
fact it is when the author studied the DVFs and Forman’s point of view
that the presentation given here of the HPT became obvious.

Possible or even likely that one or several of our predecessors, Eilenberg,
MacLane, Barratt, Cartan, Shih, . . . , had such a presentation in mind, but
it is a pity it was not made available.

Let us notice also that in a topological context, slighter hypotheses could
be considered. For example, if our chain complexes are made of Banach
vector spaces, then ||habn−1δ̂

ba
n || < 1 is enough to ensure the convergence of

the series (50): we so obtain the topological versions of the Perturbation
Homological Theorem given in [2]. In case of Fréchet spaces provided with
collections of norms, the smoothing process à la Nash-Moser-Schwartz as
explained in [10] may sometimes produce the same result.

5 Discrete Vector Fields.

This section gives the main definitions around the notion of Discrete vector
Field (DVF), due to Robin Forman, see [5].

From now on, all the chain groups of our chain complexes are R-free
modules with respect to a commutative unitary ground ring R.

Definition 7 — A cellular complex is a chain complex C∗ = (C∗, d∗, β∗)
where every βn is a distinguished R-basis of the corresponding Cn.
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The most standard examples come from combinatorial topology, where
the objects of βn are made of n-dimensional (geometrical) cells put together
according to some or other process. Think for example of the simplicial
complexes, the simplicial sets, the cubical sets, the CW -complexes, . . . The
chain complex defining the homology of such a combinatorial object is made
of free R-modules provided with the distinguished bases made of the con-
stituent cells. Also, in commutative algebra, many chain complexes are
made of vector spaces based for example on monomials, elements of Gröbner
bases, . . . But the “abstract” notion of cellular chain complex as given in
the above definition is sufficient and convenient.

Important: We do not assume the chain complex C∗ is of finite type, in
other words, the basis βn can be non-finite, frequent in constructive homo-
logical algebra, in particular in constructive algebraic topology.

Definition 8 — Let C∗ = (C∗, d∗, β∗) be a cellular complex. An element
c ∈ βn is called an n-cell, or a cell of dimension n. We always assume
βm ∩ βn = ∅ if m 6= n, so that the dimension dim(c) of a cell c is an integer
unambiguously defined.

Definition 9 Let C∗ = (C∗, d∗, β∗) be a cellular complex. The cell c′ is a
face of the cell c if dim(c′) = dim(c) − 1 and the coefficient of c′ in dc is
non-null. It is a regular face of c it this coefficient is invertible in the ring R.

In particular, if R = Z, then this coefficient for a regular cell must be
±1. If the ground ring R is a field, any face is a regular face.

Definition 10 — Let C∗ be a cellular chain complex. A (discrete) vector v
is a pair v = (σ, τ) made of a cell τ and of a regular face σ of τ . Then σ is
called the source of the vector v, and τ is its target.

In a geometrical context, you could think of a vector v = (σ, τ) as a
usual “secondary school vector” drawn from the “center” of the cell σ, the
source cell, up to the “center” of the cell τ , the target cell. For example, in
a square of a cubical complex:

σ • τ (64)

but in fact our discrete vector is the “abstract” pair of cells (σ, τ), here of
dimensions 1 and 2, nothing else; in particular the cell σ is a regular face of
the cell τ : with the most tempting orientations of these cells, −σ appears
in dτ and -1 is invertible in any unitary ring.

Definition 11 — Let C∗ be a cellular chain complex. Then a Discrete Vec-
tor Field (DVF) in C∗ is a collection V = {vi}i∈I = {(σi, τi)}i∈I of (discrete)
vectors satisfying the following property: the family of sets {{σi, τi}}i∈I is
pairwise disjoint.
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In other words, {σi, τi} ∩ {σj , τj} = ∅ for i 6= j. The dimensions of the σi’s
and τi’s are arbitrary, except that dim(σi) = dim(τi)− 1 for every i; but for
i 6= j, dim(σi) 6= dim(σj) is possible (and frequent).

The common didactic example is the square annulus provided with the
vector field described on this figure:

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

C∗ = (65)

It is a small cubical complex with 16 vertices, 24 edges and 8 squares.
Our vector field is made of 15 vectors having a vertex as source, and 8 vectors
having as source an edge. Only two cells are neither source nor target.

Definition 12 — If V = {(σi, τi)} is a discrete vector field in a cellular
chain complex C∗, then a critical cell χ is a cell χ 6∈ ∪i{σi, τi}.

Therefore a partition ∪nβn = S
∐
T
∐
K is defined: S is the set of the

source cells, T is the set of the target cells and K is the set of the critical
cells. The dimensions of these cells are arbitrary, except that for every
source cell σ ∈ S of dimension n, there corresponds a target cell τ ∈ T of
dimension n+1. The dimensions of the remaining cells, the critical cells, are
arbitrary. These sets T , S and K are the disjoint unions of the homogeneous
components Tn, Sn and Kn for n ∈ Z.

Definition 13 — Let V be a DVF on a cellular chain complex C∗. Let T ,
S and K the sets of target, source and critical cells, as just defined above.
Then the source map s : T → S (resp. the target map t : S → T ) is defined
by s(τ) = σ (resp. t(σ) = τ) if (σ, τ) is a vector of V . These maps have
homogeneous componentss sn : Tn → Sn−1 and tn−1 : Sn−1 → Tn which are
inverse of each other.

We are not concerned in this text by the ordinary vector fields of differ-
ential analysis, which allows us to call a discrete vector field more simply as
a vector field.

Definition 14 — Let C∗ be a cellular chain complex and σ some (n− 1)-
cell and τ some n-cell. Then the incidence number ε(σ, τ) of σ with respect
to τ is the coefficient of σ in dτ .

The cell σ is a face of τ if ε(σ, τ) 6= 0, a regular face if ε(σ, τ) is invertible
in the ground ring R.

Such a vector field defines a differential and also a codifferential on the
underlying complex.
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Definition 15 — Let V = {(σi, τi)}i be a vector field on the cellular chain
complex C∗. Then the differential dV : C∗ → C∗−1 (resp. the codifferential
d′V : C∗ → C∗+1) is defined as follows: if τi is the target cell of the vector
(σi, τi), then dV (τi) = ε(σi, τi)σi (resp. d′V (τi) = 0); if σi is the source cell
of the vector (σi, τi), then d′V (σi) = ε(σi, τi)

−1τi (resp. dV (σi) = 0); finally,
if χ is a critical cell, then dV (χ) = d′V (χ) = 0.

We recall an incidence number ε(σi, τi) associated to a vector (σi, τi) ∈ V
is necessarily R-invertible: the cell σi is a regular face of τi. These differential
and codifferential are some sorts of linear extensions of s : T → S and
t : S → T , taking account of the incidence numbers.

In a sense, the differential dV consists in keeping from the original dif-
ferential d of C∗ only the terms corresponding to vectors, taking account
of the incidence numbers. The codifferential d′V is more or less the “same”
but with the “reverse” orientation, possible because of the nature of the
vector field. In particular, if σ is a source cell (resp. τ a target cell), then
dV d

′
V (σ) = σ (resp. d′V dV τ = τ).
There is an obvious notion of target graded module RT = ⊕τ∈TRτ and

of source graded module RS = ⊕σ∈SRσ; they are graded submodules of C∗
but not subcomplexes. Then dV : RT → RS and d′V : RS → RT are inverse
R-isomorphisms. An analogous critical graded module RK may be defined.
The homogeneous components of dimension n of these graded modules are
denoted by RTn, RSn and RKn, so that Cn = RTn ⊕RSn ⊕RKn.

The reader probably guesses that we arrive at a situation where the
homological hexagonal lemma again could be applied. But another techni-
cality is necessary. An extra condition is required, our vector field must be
admissible, a property depending on the dynamical structure of the vector
field.

Definition 16 — Let V = {(σi, τi)}i be a vector field in a cellular chain
complex C∗. A V -path, or simply a path, is a sequence (vj)1≤j≤m =
((σij , τij ))1≤j≤m of vectors satisfying the following property: for every
j < m, σij+1 is a face of τij different from σij . The length of such a path is
m.

In other words, following a path consists in playing the following game.
You choose a vector, and you look for a face of the target cell of this vector
which is the source of another vector, in general several choices are possible,
or maybe no choice. For example, for the vector field defined at (65), three
possible paths are drawn below, with respective lengths 3, 4 and 2.
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•

•

•

•

•

C∗ =

•

••
(66)

The targets of all the vectors of a path have the same dimension. In the
figure above, this dimension is 2 for two of them, 1 for the third one.
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Definition 17 — Let V be a vector field in a cellular chain complex C∗.
This vector field is admissible if for every source cell σ, the length of every
path starting from σ is bounded by some integer λσ.

For the vector field (65), the maximal length of a path is 6, so that this
vector field is admissible. If a circular path is possible, the vector field is
not admissible, the simplest example being the boundary of a triangle with
the circular vector field.

•

•

•

(67)

Most users of these notions do not consider the case of cellular complexes
not of finite type, and the requirement of non-circularity is then enough.
In more general complexes, there could exist a non-circular path, but with
infinite length. For example the cubical complex of the intervals [i−1, i] ⊂ R
for i ∈ Z can be provided with the vector field {([i−1], [i−1, i])}i∈Z, making
possible a path starting for example from 1 with an arbitrary length. Such
a vector field is not admissible.

•0 •1 •2 •3• • • •• ∞ (68)

6 Forman’s theorems for the discrete vec-

tor fields.

♣[20] We show in this section how an admissible discrete vector field V
on a cellular chain complex (C∗, d∗, β∗) generates a canonical reduction of
(C∗, d∗) on (K∗, d

kk
∗ + δ∗) for an appropriate complement δ∗.

As explained in the previous section the vector field decomposes every
chain group Cn = RTn⊕RSn⊕RKn. The differential dn : Cn → Cn−1 may
be written “by blocks”:

dn =

 dttn dtsn dtkn
dstn dssn dskn
dktn dksn dkkn

 (69)

A superscript ab means the component of domain Bn and of codomain An−1

is considered, with A and B being RT , RS or RK.
The keypoint is the following: the admissibility of the vector field implies

the component dstn is invertible, making it possible to apply the homological
hexagonal lemma.

The admissibility is necessary to ensure this invertibility. In the case of
the triangle with the circular vector field, the boundary matrix in dimen-
sion 1 could be:

d1 = dst1 =

 1 0 −1
−1 1 0

0 −1 1

 (70)
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not invertible. While for the example (68) of the real line and the vector
field without any critical cell, the boundary matrix could be d1([i− 1, i]) =
dst1 ([i − 1, i]) = [i] − [i − 1]. So that an inverse image of [0] should be for
example −[0, 1]− [1, 2]− [2, 3]− · · · with an infinite (!) number of terms, in
fact illegal in C1.

Let us consider now the general case of a cellular chain complex
(C∗, d∗, β∗) provided with an admissible vector field V = (σi, τi).

Definition 18 — Let τ be a target cell. The height †(τ) of τ is the maximal
length of a V -path starting from s(τ), or if you prefer, having (s(τ), τ) as
its first vector.

The cell τ being a target cell, the vector field V has a unique vector
(σ, τ) with σ = s(τ), see Definition 13.

In general, a target cell τ has four sorts of faces. A face can be the
source cell σ = s(τ) associated to the target cell τ via the map s; a face
can be another source cell σ′ 6= σ; a face can be another target cell τ ′ with
lower dimension – do not forget the dimensions of the target cells may be
non-constant, frequent; and finally a face can be a critical cell.

In the second case, let σ′ 6= σ be a source cell in the faces of τ which is
not the source of τ . Then the definition of a path implies a path using the
vector (σ, τ) may be extended by the vector (σ′, t(σ′)). This implies †(τ) ≥
†(t(σ′)) + 1. More precisely, there exists such a σ′ with †(τ) = †(t(σ′)) + 1.
If no σ′ of this sort at all, this means †(τ) = 1.

The next lemma will be useful, saying in fact a finite triangular matrix
with invertible terms on the diagonal is invertible; true also for an infinite
matrix when the non-diagonal part is poinwise nilpotent.

Lemma 19 — Let M and M ′ be R-modules provided with decompositions:

M = ⊕i∈NMi M ′ = ⊕i∈NM ′i (71)

Let f : M → M ′ be a linear map such that the “diagonal components” fi,i
are isomorphisms, and the subdiagonal terms fj,i are null for j > i. Then
f is an isomorphism.

♣[19] Let us denote M≤i := ⊕j≤iMj , andM<i := ⊕j<iMj and the same for
M ′≤i and M ′<i. Some components of f are:

f≤i,≤i : M≤i →M ′≤i

fi,i : Mi →M ′i

f<i,i : Mi →M ′<i

f<i,<i : M<i →M<i

(72)

The modules M and M ′ are inductive limits of M≤i and M ′≤i. Also f
is the inductive limit of f≤i,≤i and it is enough to prove the last one is an
isomorphism. Let x′ = x′i+x

′
<i be an element of M ′≤i; we look for a preimage

x = xi+x<i in M≤i. Then f≤i,≤i(x) = fi,i(xi)+f<i,i(xi)+f<i,<i(x<i). The
unique possible choice xi = f−1

i,i (x′i) leads after an elementary computation
to the equation:

f<i,<i(x<i) = x′<i − f<i,i(f−1
i,i (x′i)) (73)
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But f<i,<i = f≤i−1,≤i−1 and we may recursively assume the last one is an
isomorphism, giving the (unique) solution for x<i. [19]♣

With the notations above, if g = f−1, then the formula (73) implies the
following formulas:

gi,i := (fi,i)
−1

g<i,i := −g<i,<if<i,igi,i
(74)

are a recursive definition of g.
Let us return to our admissible vector field V on the cellular chain com-

plex C∗. Definition 18 allows us to divide RTn, the target submodule of
dimension n, as a direct sum:

RTn = ⊕i≥1RTn,i (75)

where RTn,i is generated by the target cells of Tn of height i, those cells
such as the maximal paths starting from this cell have length i. The same
for RSn−1, after having naturally extended to a source cell σ ∈ Sn−1 the
notion of height by †(σ) := †(t(σ)). Also the boundary component dstn has
a diagonal component defined by:

(dstn )i,i(τ) = ε(s(τ), τ)s(τ) (76)

if τ is an n-cell of height i. The comments after Definition 18 imply the
“matrix” dstn : ⊕i≥1RTn,i → ⊕i≥1RSn−1,i is triangular : if σ′ is a source cell
face of τ different from σ = s(τ), then †(σ′) < †(τ) = †(s(τ)) is satisfied.

You may notice that (dstn )i,i is nothing but the differential dV,n|RTn,i :
RTn,i → RSn−1,i given in Definition 15, a differential which is an isomor-
phism, so that Lemma 19 implies dstn is an isomorphism, and the homolog-
ical hexagonal theorem produces the next theorem, a rephrasing of both
Forman’s theorems about DVFs, a point detailed later. [20]♣

Theorem 20 (Robin Forman’s Theorems) — Let V be an admissible
discrete vector field on a cellular chain complex (C∗, d∗, β∗). Then this vector
field defines a canonical homological reduction:

ρV = (fV , gV , hV ) : (C∗, d∗)⇒⇒ (RK∗, d
kk
∗ + δ∗) (77)

The graded module RK∗ is the critical component of the decomposition
C∗ = RT∗⊕RS∗⊕RK∗ according to the nature target, source or critical of
the cells. The differential d∗ is so decomposed by blocks in 9 components,
dkk∗ being the one between RK∗ and RK∗−1.

You remark the nature of Forman’s theorems has a nature close to a
result of the HPT. Would it be possible to produce a different demonstration
thanks to the HPT? The answer is positive. This second proof of Theorem 20
is given now.
♣[20] ′ The initial differential of the cellular chain complex C∗ looks like:

K4

S4

T4

K5

S5

T5

⊕

⊕

⊕

⊕
(78)
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The previous proof was based on the invertibility of dstn : RTn → RSn−1,
allowing us to use the homological hexagonal lemma. Instead, let us consider
now the chain complex:

RK4

RS4

RT4

RK5

RS5

RT5

⊕

⊕

⊕

⊕
dV

(79)

where dV : RTn → RSn−1 of the figure is the only non-null component of
dV : Cn → Cn−1 of Definition 15: this differential is null, except between
the components RTn and RSn−1. It is essentially nothing but the vector
field V combined with the incidence numbers ε(σ, τ).

Compare to the Reduction Diagram, Figure 1. Here, the dV map is
invertible, the inverse being the codifferential d′V of Definition 15. So that
a very simple reduction appears:

ρ = (f, g, h) : (C∗, dV )⇒⇒ (RK∗, 0) (80)

The map f is the canonical projection f : C∗ → RK∗, the map g is the
canonical injection g : RK∗ → C∗ and finally the homotopy h is simply
(dV )−1 = d′V , null except from RSn−1 to RTn, also directly associated to
the vector field.

Let us now reinstall the “right” differential d∗ of C∗. This amounts to
introducing a perturbation δ = d − dV . Applying the HPT requires the
pointwise nilpotency of hδ = d′V δ. It was observed in the HPT proof that
the invertibility of htsn−1δ

st is enough (in fact equivalent), see formula 50.
It is sufficient to examine this nilpotency property for the elements of

our preferred base of RTn, namely the target cells of dimension n. Let τ be
a target n-cell and σ = s(τ). Identifying a component of δst(τ) consists in
looking for a face of τ which is not the corresponding source cell σ = s(τ):

do not forget the perturbation is d − dV . Let σ′ be such a source cell.
Applying the homotopy operator h = d′V to this source cell σ consists in
considering the corresponding target cell t(σ′) = τ ′, taking account of the
incidence number; except this possible role of the incidence number, we are
beginning to extend the “path” started from (σ, τ) by (σ′, τ ′). Continuing
the iteration is the same game: how to extend the path ((σ, τ), (σ′, τ ′))? The
reader has already understood the nilpotency of htsn−1δ

st at τ is nothing but
the admissibility of the vector field at τ . The pointwise nilpotency htsn−1δ

st

is equivalent to the admissibility of the vector field for the vectors between
dimensions n− 1 and n.

The HPT may therefore be applied, producing the desired reduction.
[20]′♣

Both versions of the proof of Forman’s theorems are clearly equivalent,
the second one is just a rewriting of the first one using the available HPT.
But the second one is particularly convenient when programming. Let us
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examine the formulas (58-63). The formulas for ϕ and ψ can be recursively
rewritten:

ϕ = id−δ̂hϕ ψ = id−hδ̂ψ (81)

But it remains as usual to start the recursion. A terminal target cell τ is
a cell such that no other face in dτ among the source cells than σ = s(τ);
a path arriving at (σ, τ) cannot be extended further. A source cell σ is
terminal if t(σ) is terminal. Then the recursion starts with ϕ(σ) = σ (resp.
ψ(τ) = τ) when σ (resp. τ) is a terminal source cell (resp. terminal target
cell). Using the standard recursive methods of programming, computing
these maps ϕ and ψ is easy. From which all the components of the new
reduction are deduced by the formulas (60-63).

Playing again with the square annulus, we can illustrate the use of these
formulas.
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C∗ =

0 1 2 3

0

1

2

3

(82)

We use obvious coordinates allowing us to denote a vertex by two digits, for
example the only critical vertex is 00, an edge by two vertices, for example
the only critical edge is 12-22, and a square by two opposite vertices, for
example the only square having the vertex 00 is 00�11.

Starting from the initial “small” chain complex (RK∗, 0), after pertur-
bation, this chain complex after perturbation becomes (RK∗, dK) with:

dK = fδg − fδhδg + fδhδhδg − · · · (83)

for f : C∗ → RK∗ the canonical projection, g : RK∗ → C∗ the canonical
injection, h = d′V the codifferential and δ = d− dV the perturbation.

In this simple case, the differential dK is determined by the differential
of the unique critical 1-cell 12-22. Then g(12-22) = 12-22, followed by
δg(12-22) = 22 − 12 (for the orientation left to right). Applying h consists
in this case in “following a vector between dimensions 0 and 1” and then
applying δ gives the “other” vertex of the edge which is not the source cell
of the same vector. But finally we must apply f which is non-null for a
vertex only for the vertex 00.

Playing this game starting from the vertex 22 gives a non-null term
only if you apply four times δh, giving the vertex 00. The same with the
vertex 12 with three times δh. The signs will be opposite so that finally
dK = 0 again, but with a slightly different meaning: you must understand
the 0-face 22 of 12-22, being 22 “missing” in the critical complex, is to be
replaced by something else, following the indications given by the vector
field: “morally” the 0-face of 12-22 is +00, while the 1-face is -00, so that
finally dK(12− 22) = +00 +−00 = 0. An illustration of this state could be
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this one:

◦

◦

◦

◦

◦

◦

•

11

12

21

22

00 10 20

(84)

The hollow circles are not critical while the black one is critical. The vector
field is used to supply a boundary for the edge 12-22.

It is the right moment now to explain which is the exact relation between
the result obtained here by the HPT, or the homological hexagonal lemma
as you prefer, the exact relation with what we called Forman’s theorems.
By the way, which theorems? Forman’s paper [5] is a rare paper in today’s
mathematical landscape, simultaneously easily readable and full of simple
and yet new ideas, in particular new results. We are concerned here only
by the part of [5] devoted to the discrete vector fields, mainly the sections 6
to 8.

Let us examine with a little care the reduction provided by our Theo-
rem 20. This reduction is:

ρV = (fV , gV , hV ) : (C∗, d∗)⇒⇒ (RK∗, d
kk
∗ + δ∗) (85)

We are happy to obtain the new differential dkk∗ + δ∗ on the graded
module RK∗, having so the “right homology”, the homology defined by
(C∗, d∗). More precisely, a reduction C∗ ⇒⇒ RK∗ is produced. This implies
in particular the image gV (RK∗, d

kk
∗ + δ∗) in (C∗, d∗) is a chain complex

homologically equivalent to the last one. This image is called the Morse
complex CΦ

∗ in [5] and is the main subject of [5, Section 7], the homology
equivalence being Theorem 7.3 of this section.

Our small chain complex (RK∗, d
kk
∗ +δ∗) is the main goal of [5, Section 8],

please examine the first lines of this section when the author explains he will
obtain his Morse complex directly in terms of the critical cells. Our chain
complex (RK∗, d

kk
∗ +δ∗) is called M∗ in [5, Section 8], and the main property

of this chain complex is Theorem 8.2, where the map (8.1) in its statement
is our map gV .

By the way, what is the “Morse complex” in the case of our toy example,
the square annulus? The formula (62) becomes:

gV = ψg = g − hδg + hδgδg − · · · (86)

and playing the same game as above when computing the perturbation δ∗
to be applied to K∗, we obtain:

gV (00) = 00 (87)

gV (12-22) = (10-11) + (11-12) + (12-22) (88)

− (10-20)− (20-21)− (21-22)
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The unique 1-cell of the Morse complex is drawned below:

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

C∗ =

•

(89)

and it is geometrically obvious why its boundary is null. The unique 0-cell
of the Morse complex is also highlighted.

In this case, the vector field (65) produces a reduction:{
0← Z16 d1← Z24 d2← Z8 ← 0

}
⇒⇒
{

0← Z 0← Z← 0← 0
}

(90)

So that — surprise! —, the homology of the square annulus is isomorphic
to the homology of a circle.

7 Conclusion.

The understanding so simple given here of the HPT and of the DVF tech-
nology allowed the author and his collaborators to dramatically improve [8]
their computer programs concretely implementing Constructive Homological
Algebra. See [9] for this algorithmic organization of Homological Algebra.

As usual, new ideas solve pending problems, but also open new fields and
raise new interesting problems. For example the systematic use of DVFs
allowed us to define a totally new understanding of the Eilenberg-Zilber
theorem [7], more than 60 years after the original paper [4]. In particular
giving the final best implementation of the underlying homotopy operator.

The paper [8] explains how experimental evidences are produced by
the computer programs implementing Constructive Homological Algebra.
Opening new interesting and essential questions for the connections between
natural DVFs and underlying algebraic structures, for example the numer-
ous algebra and coalgebra structures of the chain complexes of Algebraic
Topology.
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letin des Sciences Mathématiques, 2002, vol. 126, pp. 389-412.
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