Constructive Homological Algebra VI.

Constructive Spectral Sequences

End of compu

;: Clock -> 2882-61-17, 19h 25m 36s.
Computing the boundary of the generator 19 {dimension 7} :
<TnPr <TnPr <TnPr 353 <<{Abar[2 51][2 51]>>> <<Abar>>> <<{Abar>>>

End of computing.
Homology in dimension 6 :
Component 27122

---done---
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|F — F x, B — B]

Key tools for effective spectral sequences in topology:

e Filenberg-Zilber theorem.

77

C.(F X B) — C,(F) Q C.(B)

e Twisted Eilenberg-Zilber theorem.

PP?
C.(F X, B) & C,(F) ®2: C.(B)




Eilenberg-Zilber theorem.

3 (almost) canonical reduction:

e f = Alexander-Whitney map (linear complexity).

e g = Eilenberg-MacLane map
— Decomposition AP X A9 in simplices

(exponential complexity).

e h = Shih Weishu map (exponential complexity).



Particular case F = B = A7 .

Eilenberg-Zilber reduction

C.(AT x AT) = CM(AT) ® C,Y (A7)

n X=>Q n X =R n X=®

0 64 64 || 5| 759,752 | 11,424 |[10]1,475,208 | 1,820
1| 1,232 448 || 61,549,936 | 12,868 ||11| 673,134 | 560
2| 11,872 | 1,680 || 72,360,501 | 11,440 || 12| 208,824 | 120
3| 69,524 [4,256| 82,703,512 | 8,008 || 13| 39,468 | 16

4|272,944 19,527 |19 |2,322,180| 4,368 || 14 3,432 1




Comparison between C,(FxXB) and C,(Fx,.B) ?

e Same simplices = Same underlying graded modules.

e Different incidence relations = Differential perturbation.

= Basic perturbation lemma can be applied.

Theorem (Edgar Brown + Shih Weishu):

A(f,9,h) : C(Fx7B) = C«(F)®;Cs«(B)

for £ = some algebraic tensor product twist.



Example 1. Effective homology version of

the Serre spectral sequence.

F = (F, C.(F), ECF, F)
+ B = (B, C.(B), ECE, £P)
+ 7:B—- F

44 U 4§ Serregn
E=Fx,B=(E, C,(E), ECF, £F)

(Serre + G. Hirsch + H. Cartan + Shih W.
+ Szczarba + Ronnie Brown + J. Rubio + FS)



Proof.

id EZ
C.(F x B) &= C.(F x B) = C.,F ® C.B

K ~ ~ X
C,FRC,B&&=CFCBE= ECFR ECE

U Serrepn

Shih
C.(F x, B) 4= C.(F x, B) 2% C.F ®, C.B

EPL BPL
C.F ®; C,B 2= CF ., CB = ECF @, ECB

+ Composition of equivalences — O.K.



Serre’s canonical loop space fibration.

I:=10,1]
P(X,x*) :=C([L,0]; [X,*]) =: PX
Q(X, *) := C([1,0,1]; [ X, *,x]) =: QX

=> Canonical “fibration”:

X —- PX — X

Combinatorial Kan version = Genuine principal fibration:

GXH[EPX:GX XTX]—>X



Similar algebraic fibration.

[C = coalgebra] 4+ [M + N = C-comodules]
= Cobar®(M, N).

Particular case: Cobar®(C,Z) = Z.

= Algebraic fibration:

Cobar®(Z,7Z) —  Cobar®(C,7Z) — C

|
Cobar®(Z,7) ®; C

— Algebraic translation of:

GX — GX x, X — X (simplicial)
X — PX — X (topological)



Example 2:

Julio Rubio’s solution of Adams’ problem.

X = (X, C.(X), ECX, &%)

NN

Eil.-Mooregg

QX = (2X, C.(2X), ECHX, %)

—> Trivial iteration now available.



Proof (Step 0):

Three algebraic versions for the path space Serre fibration:

QX — PX — X.

C.(GX) C.(GX) Cobar®*)(7Z, 7))
1 ! !
C.(GX X, X) | |CL,(GX) @ Ci(X)| | Cobar™X)(C,(X),7)
! ! !
C.(X) C.(X) C.(X)
Simplicial Mixed Algebraic

where GX = Kan model for the loop space 2.X.



Proof (Step 1):

EZ
C.(GX X X) = C,(GX) ® C,(X)
BPL, =
Shih
GX X, X contractible =
& C.(GX X, X) =5 7

&, + & = .
Ci(GX)®:Ci(X) = Z
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Proof (Step 2):

Cobar®X)(C,(X),Z) = 7Z

Ca(GX)® —] =

Cobar®X)(C,(GX) ® C.(X),7) = C,(GX)

BPL,; =

Cobar®™)(C,(GX) ®; C.(X),Z) = C.(GX)

|

Key object

12
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Proof (Step 3):

H
Step 1 = C.(GX) ®:Cu(X) =72 =

Cobar®X)(C,(GX) ®; C.(X),Z) =
=5 Cobar®X)(7,7)

for the trivial C(X)-comodule structure, but

BPL; =

Cobar®¥)(C,(GX) ®; C.(X),Z) =
= Cobar®X)(7, 7)

for the canonical C,(X)-comodule structure.



Proof (Step 4):

Step 2 =
Cobar®X)(C,(GX) ®; C.(X),7) = C.(GX)

Step-3 =
Cobar®X)(C,(GX) ®; C.(X),Z) =
=5 Cobar®X)(z, 7)

Step-2 + Step-3 =

C.(GX) &= Cobar®™X)(7,7)

14



Proof (Step-5):

=

C.(X) &= CX = ECX

Cobar®X)(7,7) «= Cobar®> (Z,7) = Cobar?°+ (Z,7)

for the trivial coalgebra structures

=

EPL - BPL
Cobar®(X)(7,7) &= CobarC:kX(Z, 7) 35>4C0barEC§(Z,Z)

for the right (A..-) coalgebra structure

=

Cobar®X)(7,7) «=s Cobar?Cs (Z,7).

15



Proof (Step-6):

Step-4 =
C.(GX) &= Cobar®*)(7,7)

Step-5 =
Cobar®(X)(7,7) &= Cobar?°+ (Z,7)

Step-4 + Step-5 + Composition of equivalences =

C.(GX) &= CobarZ: (7,7)

Q.E.D.

16



= Very simple solution of ‘Adam’s problem | :

Indefinite| iteration| of the Cobar construction 7?77

X = (X,C.(X), ECX,eX)
“U’ QEH
QX = (2X,C.(QX), ECHX, 0X)
‘U’ QEH
QX = (92X, C,(Q2X), ECTX,c7X)
‘U’ QEH
PPX = (93X, C.(Q3X), EC?X, 7X)
‘U’ QEH
04X = i‘Cobar”(EC’f)

17



Example of CA-Spectral Sequence.

Computation of the homotopy groups of So PR =
— Infinite real projective space stunted at dimension 2

:= P®R/PR,

SO C Sl C Sz C S3 C . o o C SOO
PRCPRCP*RCP3RC:--CP>*R
Elementary: Hy = Z = my = /Z = consider the fibration:
K(Z,1) — [X3:= K(Z,1) X; SePR] — S3P*R

H,(X3)= 777

18



Beginning of the Serre spectral sequence.

H.(K(7Z,1)) =(Z2,7,0,0,...(1-periodic))
H,(S;P*R) = (2,0,Z,72,0,Z5,0,...(2-periodic))

= Ef,* (page 2) :

H; = 777
Note the non-trivial extension problem:

0—-%Z— 777 - Zo — 0

automatically solved by Kenzo.

19



Simplex diagram for the generator s37 of H3(Xj3).

s31 s32

9o

s21 S22

o

02

01

*
= s37 = two 3-cells glued along their boundary = 3-sphere.

QED.



s31

s21

s22
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Gunnar Carlsson 4+ James Milgram,

in “Handbook of Algebraic Topology”, 1995:

“Stable Homotopy and Iterated Loop Spaces”

In Section 5 we showed that for a connected CW complex
with no one cells one may produce a CW complex, with
cell complex given as the free monoid on generating cells,
each one in one dimension less than the corresponding cell
of X, which is homotopy equivalent to 2X. To go further
one should study similar models for double loop spaces, and

more generally for iterated loop spaces. cee /e

22



...

In principle

this i1s direct. Assume X has no 2-cells for

1 < ¢ < n then we can iterate the Adams-Hilton construction

of Section 5 and obtain a cell complex which represents 2" X.

However, the question of determining the boundaries| of

the cells

is very difficult| as we already saw with Adam’s so-

lution of the problem in the special case that X is a simplicial

complex with sk;(X) collapsed to a point. It is possible to

extend Adams’ analysis to 22X, but as we will see there

will be

severe difficulties

with extending it to higher loop

spaces except in the case where X = X"Y.

23



The END

End of compu

;: Clock -> 2882-61-17, 19h 25m 36s.
Computing the boundary of the generator 19 {dimension 7} :
<TnPr <TnPr <TnPr 353 <<{Abar[2 51][2 51]>>> <<Abar>>> <<{Abar>>>

End of computing.

Homology in dimension 6 :
Component 27122

---done---
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