Constructive Homological Algebra VI.

Constructive Spectral Sequences

```
Computing
<TnPr <Tn
End of computing.

;; Clock -> 2002-01-17, 19h 25m 36s.
Computing the boundary of the generator 19 (dimension 7) :
<TnPr <TnPr <TnPr S3 <<Abar[2 S1][2 S1]>>> <<Abar>>> End of computing.

Homology in dimension 6 :

Component Z/12Z
---done---
;; Clock -> 2002-01-17, 19h 27m 15s
```

;; Cloc

Francis Sergeraert, Institut Fourier, Grenoble, France Genova Summer School, 2006

$$igl[F \hookrightarrow F imes_{ au} B o B igr]$$

Key tools for effective spectral sequences in topology:

• Eilenberg-Zilber theorem.

$$C_*(F imes B) \overset{ ilde{???}}{\longleftrightarrow} C_*(F) \otimes C_*(B)$$

• Twisted Eilenberg-Zilber theorem.

$$C_*(F imes_ au B) \overset{ ext{???}}{\longleftrightarrow} C_*(F) \otimes_{ ext{???}} C_*(B)$$

Eilenberg-Zilber theorem.

∃ (almost) canonical reduction:

$$m{EZ_{F,B}} = (f,g,h): C_*(F imes B) ext{ \ggg } C_*(F)\otimes C_*(B)$$

- f = Alexander-Whitney map (linear complexity).
- g = Eilenberg-MacLane map = Decomposition $\Delta^p \times \Delta^q$ in simplices (exponential complexity).
- h = Shih Weishu map (exponential complexity).

Particular case $F = B = \Delta^7$.

Eilenberg-Zilber reduction

$$C_*(\Delta^7 imes\Delta^7) ext{ } ext$$

\boldsymbol{n}	×⋙⊗		n	×⇒≫⊗		\boldsymbol{n}	×⇒≫⊗	
0	64	64	5	759,752	11,424	10	1,475,208	-
1	1,232	448	6	1,549,936	12,868	11	673,134	
2	11,872	1,680	7	2,360,501	11,440	12	208,824	
3	69,524	4,256	8	2,703,512	8,008	13	39,468	
4	272,944	9,527	9	2,322,180	4,368	14	3,432	

n	×⋙⊗					
10	1,475,208	1,820				
11	673,134	560				
12	208,824	120				
13	39,468	16				
14	3,432	1				

Comparison between $C_*(F \times B)$ and $C_*(F \times_{\tau} B)$?

- Same simplices \Rightarrow Same underlying graded modules.
- Different incidence relations \Rightarrow Differential perturbation.

 \Rightarrow Basic perturbation lemma can be applied.

Theorem (Edgar Brown + Shih Weishu):

$$\exists (f,g,h): C_*(F imes_{\overline{ au}}B) \implies C_*(F) \otimes_{\overline{[t]}}\! C_*(B)$$

for t = some algebraic tensor product twist.

Example 1. Effective homology version of

the Serre spectral sequence.

$$egin{aligned} F &= (F,\ C_*(F),\ EC_*^F,\ arepsilon^F) \ + \ B &= (B,\ C_*(B),\ EC_*^B,\ arepsilon^B) \ + \ au : B &
ightarrow F \ &\downarrow \psi \ \psi \ \psi \ \psi \ \text{Serre}_{EH} \ &E &= F imes_{ au} B = (E,\ C_*(E),\ EC^E,\ arepsilon^E) \end{aligned}$$

Proof.

$$egin{aligned} C_*(F imes B) & \stackrel{ ext{id}}{
ot} C_*(F imes B) & \stackrel{EZ}{\implies} C_*F\otimes C_*B \ & \stackrel{\otimes}{\longleftarrow} \widehat{C}^F\otimes \widehat{C}^B & \stackrel{\otimes}{\implies} EC^F\otimes EC^B \end{aligned}$$

$$\downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow$$
 Serre_{EH}

$$C_*(F imes_ au B) \stackrel{ ext{id}}{ ext{$\sec EPL$}} C_*(F imes_ au B) \stackrel{ ext{Shih}}{ ext{$
ightharpoonup$}} C_*F\otimes_t C_*B$$
 $C_*F\otimes_t C_*B \stackrel{EPL}{ ext{$
ightharpoonup$}} \widehat{C}^F\otimes_{t'}\widehat{C}^B \stackrel{BPL}{ ext{$
ightharpoonup$}} EC^F\otimes_{t''} EC^B$

+ Composition of equivalences \Longrightarrow O.K.

Serre's canonical loop space fibration.

$$egin{aligned} I &:= [0,1] \ P(X,*) := \mathcal{C}([I,0];[X,*]) =: PX \ \Omega(X,*) := \mathcal{C}([I,0,1];[X,*,*]) =: \Omega X \end{aligned}$$

⇒ Canonical "fibration":

$$\Omega X \hookrightarrow PX \longrightarrow X$$

Combinatorial Kan version \Rightarrow Genuine principal fibration:

$$GX \hookrightarrow [E_{PX} = GX \times_{\tau} X] \longrightarrow X$$

Similar algebraic fibration.

$$[C = \text{coalgebra}] + [M + N = C\text{-comodules}]$$

 $\Rightarrow \text{Cobar}^C(M, N).$

Particular case: Cobar^C $(C, \mathbb{Z}) \Longrightarrow \mathbb{Z}$.

 \Rightarrow Algebraic fibration:

= Algebraic translation of:

$$GX \hookrightarrow GX imes_{ au} X o X \qquad ext{(simplicial)} \ \Omega X \hookrightarrow PX o X \qquad ext{(topological)}$$

Example 2:

Julio Rubio's solution of Adams' problem.

$$X = (X, \ C_*(X), \ EC_*^X, \ arepsilon^X)$$
 $ext{Eil.-Moore}_{EH}$ $ext{}$ ex

⇒ Trivial iteration now available.

Proof (Step 0):

Three algebraic versions for the path space Serre fibration: $\Omega X \hookrightarrow PX \to X$.

where GX = Kan model for the loop space ΩX .

Proof (Step 1):

$$C_*(GX imes X) \stackrel{EZ}{\Longrightarrow} C_*(GX)\otimes C_*(X)$$

 $BPL_1 \Rightarrow$

$$lacksquare L_*(GX imes_ au X) \stackrel{
m Shih}{\Longrightarrow} C_*(GX)\otimes_t C_*(X)$$

 $GX \times_{\tau} X$ contractible \Rightarrow

$$\clubsuit_2$$

$$C_*(GX imes_{ au} X) \ggg \mathbb{Z}$$

$$\clubsuit_1 + \clubsuit_2 \Rightarrow$$

$$C_*(GX)\otimes_t C_*(X) \overset{H}{\Longrightarrow} \mathbb{Z}$$

Proof (Step 2):

Proof (Step 3):

$$\mathrm{Step} \ 1 \Rightarrow \ \ C_*(GX) \otimes_t C_*(X) \overset{H}{\Longrightarrow} \mathbb{Z} \ \ \Rightarrow$$

$$egin{aligned} \operatorname{Cobar}^{C_*(X)}(C_*(GX)\otimes_t C_*(X),\mathbb{Z}) & \Longrightarrow \ & \Longrightarrow \operatorname{Cobar}^{C_*(X)}(\mathbb{Z},\mathbb{Z}) \end{aligned}$$

for the $trivial C_*(X)$ -comodule structure, but

 $BPL_3 \Rightarrow$

$$egin{aligned} \operatorname{Cobar}^{C_*(X)}(C_*(GX)\otimes_t C_*(X),\mathbb{Z}) & \Longrightarrow \ & \Longrightarrow \operatorname{Cobar}^{C_*(X)}(\mathbb{Z},\mathbb{Z}) \end{aligned}$$

for the canonical $C_*(X)$ -comodule structure.

Proof (Step 4):

Step
$$2 \Rightarrow$$

$$\operatorname{Cobar}^{C_*(X)}(C_*(GX)\otimes_t C_*(X),\mathbb{Z}) imessim C_*(GX)$$

Step-3
$$\Rightarrow$$

$$\operatorname{Cobar}^{C_*(X)}(C_*(GX)\otimes_t C_*(X),\mathbb{Z})
Rightharpoons$$

$$\Longrightarrow$$
 $\operatorname{Cobar}^{C_*(X)}(\mathbb{Z},\mathbb{Z})$

$$Step-2 + Step-3 \Rightarrow$$

$$C_*(GX) \iff \operatorname{Cobar}^{C_*(X)}(\mathbb{Z},\mathbb{Z})$$

Proof (Step-5):

$$C_*(X) \not \iff \widehat{C}_*^X \not \Longrightarrow EC_*^X$$

 \Rightarrow

$$\operatorname{Cobar}^{C_*(X)}(\mathbb{Z},\mathbb{Z}) \not \iff \operatorname{Cobar}^{\widehat{C}_*^X}(\mathbb{Z},\mathbb{Z}) \not \Longrightarrow \operatorname{Cobar}^{EC_*^X}(\mathbb{Z},\mathbb{Z})$$

for the *trivial* coalgebra structures

 \Rightarrow

$$\operatorname{Cobar}^{C_*(X)}(\mathbb{Z},\mathbb{Z}) \overset{EPL}{
etlet} \operatorname{Cobar}^{\widehat{C}_*^X}(\mathbb{Z},\mathbb{Z}) \overset{BPL_4}{\Longrightarrow} \operatorname{Cobar}^{EC_*^X}(\mathbb{Z},\mathbb{Z})$$

for the right $(A_{\infty}$ -) coalgebra structure

$$\Rightarrow \qquad \operatorname{Cobar}^{C_*(X)}(\mathbb{Z},\mathbb{Z}) \not \Longleftrightarrow \operatorname{Cobar}^{EC_*^X}(\mathbb{Z},\mathbb{Z}).$$

Proof (Step-6):

Step-4
$$\Rightarrow$$

$$C_*(GX) \iff \operatorname{Cobar}^{C_*(X)}(\mathbb{Z},\mathbb{Z})$$

Step-5
$$\Rightarrow$$

$$\operatorname{Cobar}^{C_*(X)}(\mathbb{Z},\mathbb{Z}) \not \Longleftrightarrow \operatorname{Cobar}^{EC_*^X}(\mathbb{Z},\mathbb{Z})$$

Step-4 + Step-5 + Composition of equivalences \Rightarrow

$$C_*(GX) \iff \operatorname{Cobar}^{EC_*^X}(\mathbb{Z},\mathbb{Z})$$

Q.E.D.

⇒ Very simple solution of Adam's problem:

Indefinite iteration of the Cobar construction???

$$X = (X, C_*(X), EC_*^X, \varepsilon^X)$$
 $\psi \Omega_{EH}$
 $\Omega X = (\Omega X, C_*(\Omega X), EC_*^{\Omega X}, \varepsilon^{\Omega X})$
 $\psi \Omega_{EH}$
 $\Omega^2 X = (\Omega^2 X, C_*(\Omega^2 X), EC_*^{\Omega^2 X}, \varepsilon^{\Omega^2 X})$
 $\psi \Omega_{EH}$
 $\Omega^3 X = (\Omega^3 X, C_*(\Omega^3 X), EC_*^{\Omega^3 X}, \varepsilon^{\Omega^3 X})$
 $\psi \Omega_{EH}$
 $\Omega^4 X = \dots$

"Cobar" (EC_*^X)

Example of CA-Spectral Sequence.

Computation of the homotopy groups of $S_2P^{\infty}\mathbb{R} =$

= Infinite real projective space stunted at dimension 2 $:= P^{\infty}\mathbb{R}/P^{1}\mathbb{R}.$

$$S^0 \subset S^1 \subset S^2 \subset S^3 \subset \cdots \subset S^\infty$$
 $P^0\mathbb{R} \subset P^1\mathbb{R} \subset P^2\mathbb{R} \subset P^3\mathbb{R} \subset \cdots \subset P^\infty\mathbb{R}$

Elementary: $H_2 = \mathbb{Z} \Rightarrow \pi_2 = \mathbb{Z} \Rightarrow$ consider the fibration:

$$K(\mathbb{Z},1) \hookrightarrow [X_3 := K(\mathbb{Z},1) imes_{ au} S_2 P^{\infty} \mathbb{R}] o S_2 P^{\infty} \mathbb{R}$$
 $H_*(X_3) = ???$

Beginning of the Serre spectral sequence.

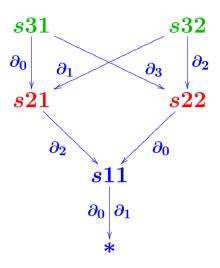
$$egin{aligned} H_*(K(\mathbb{Z},1)) &= (\mathbb{Z},\mathbb{Z},0,0,\ldots(ext{1-periodic})) \ H_*(S_2P^\infty\mathbb{R}) &= (\mathbb{Z},0,\mathbb{Z},\mathbb{Z}_2,0,\mathbb{Z}_2,0,\ldots(ext{2-periodic})) \ \end{aligned} \ \Rightarrow E_{*,*}^2 ext{ (page 2)}:$$

Note the non-trivial extension problem:

$$0 \to \mathbb{Z} \to ??? \to \mathbb{Z}_2 \to 0$$

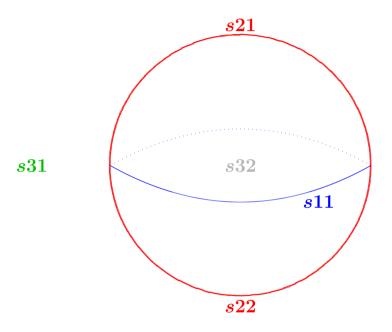
automatically solved by Kenzo.

Simplex diagram for the generator s3? of $H_3(X_3)$.



 \Rightarrow s3? = two 3-cells glued along their boundary = 3-sphere.

QED.



Gunnar Carlsson + James Milgram, in "Handbook of Algebraic Topology", 1995:

"Stable Homotopy and Iterated Loop Spaces"

In Section 5 we showed that for a connected CW complex with no one cells one may produce a CW complex, with cell complex given as the free monoid on generating cells, each one in one dimension less than the corresponding cell of X, which is homotopy equivalent to ΩX . To go further one should study similar models for double loop spaces, and more generally for iterated loop spaces. .../...

.../...

In principle this is direct. Assume X has no *i*-cells for $1 \le i \le n$ then we can iterate the Adams-Hilton construction of Section 5 and obtain a cell complex which represents $\Omega^n X$. However, the question of determining the boundaries of the cells is very difficult as we already saw with Adam's solution of the problem in the special case that X is a simplicial complex with $sk_1(X)$ collapsed to a point. It is possible to extend Adams' analysis to $\Omega^2 X$, but as we will see there will be severe difficulties with extending it to higher loop spaces except in the case where $X = \Sigma^n Y$.

The END

```
Computing
<TnPr <Tn
End of computing.

;; Clock -> 2002-01-17, 19h 25m 36s.
Computing the boundary of the generator 19 (dimension 7) :
<TnPr <TnPr <TnPr S3 <<Abar(2 S1)[2 S1]>>> <<Abar(3)>>> End of computing.

Homology in dimension 6 :

Component Z/12Z
---done---
```

;; Clock -> 2002-01-17, 19h 27m 15s

;; Cloc

Francis Sergeraert, Institut Fourier, Grenoble, France Genova Summer School, 2006