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“General” topological spaces

cannot be directly installed in a computer.

A combinatorial translation is necessary.

Main methods:

1. Simplicial complexes.

2. Simplicial sets.

Warning: Simplicial sets more complex (!)

but more powerful than simplicial complexes.



2

Simplicial complex K = (V, S) where:

1. V = set = set of vertices of K;

2. S ∈ P(Pf
∗ (V )) (= set of simplices) satisfying:

(a) σ ∈ S ⇒ σ = non-empty finite set of vertices;

(b) {v} ∈ S for all v ∈ V ;

(c) {(σ ∈ S) and (∅ 6= σ′ ⊂ σ)} ⇒ (σ′ ∈ S).

Notes:

1. V may be infinite (⇒ S infinite).

2. ∀σ ∈ S, σ is finite.
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Example:

V = {0, 1, 2, 3, 4, 5, 6}

S =


{0}, {1}, {2}, {3}, {4}, {5}, {6},
{0, 1}, {0, 2}, {0, 3}, {1, 2}, {1, 3}, {2, 3}, {3, 4},
{4, 5}, {4, 6}, {5, 6}, {0, 1, 2}, {4, 5, 6}


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Disadvantages of simplicial complexes.

Example: 2-sphere :

Needs 4 vertices, 6 edges, 4 triangles.

The simplicial set model needs only

1 vertex + 1 “triangle”

but an infinite number of degenerate simplices. . .

Product?

∆1 ×∆1 = I × I?

In general, constructions are difficult

with simplicial complexes.

???−→
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Main differences between:

Simplicial complexes
???←→ Simplicial Sets

In a simplicial set:

1. A simplex is not defined by its vertices:

Own existence + relations with smaller simplices.

X = {X0
oo //
ww ''zz $$

X1
oo //
ww ''zz $$

X2
oo //
ww ((

X3
oo // · · ·}
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Examples: two different edges can have same vertices:

• •

Several faces (ends) can be the same:

•
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2. Simplices can be degenerate = more or less “collapsed”.

•0 1•// oo
=⇒ 0 • 1
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Example:

The minimal description as simplicial complex

of the two-sphere S2

needs: 4 vertices + 6 edges + 4 triangles:
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But the minimal description of the two-sphere
as a simplicial set

needs: 1 vertex + 1 triangle.

•
N

•
0

•
2

•
1

// oo
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Note N is not a vertex.
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Other example = Real Projective Plane = P 2(R).

Minimal triangulation = 6 vertices + 15 edges + 10 triangles.
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Minimal presentation of P 2R as a simplicial set =

1 vertex + 1 edge + 1 triangle.

•

•

•

•

•

•
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Support for the notion of simplicial set: The ∆ category.

Objects: 0 = {0}, 1 = {0, 1}, . . . , m = {0, 1, . . . , m}, . . .

Morphisms:

∆(m, n) = {α : m↗ n st (k ≤ `⇒ α(k) ≤ α(`))}.

Definition: A simplicial set is

a contravariant functor X : ∆→ Sets.

X(m) = Xm = {m-simplices} of X.

X(α : m→ n) = Xα =

{Incidence relations of type α between Xm and Xn}.
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Product construction for simplicial sets.

X = ({Xm}, {Xα}), Y = ({Ym}, {Yα}) two simplicial sets.

Z = X × Y = ???

Simple and natural definition:

Z = X × Y defined by Z = ({Zm}, {Zα}) with:

Zm = Xm × Ym

If ∆(n, m) 3 α : n↗ m:

Zα: Xm × Ym
Xα×Yα−→ Xn × Yn
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Example:

This natural product:

automatically constructs

the “right” triangulation of I × I.

=⇒
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Twisted Products

Ingredients:

B = base space = simplical set

F = fibre space = simplicial set

G = structural group = simplicial group

τ : B → G = twisting function

Result: E = F × τ B

⇒ Fibration:

F � � // [E = F × τ B] // B

Main point: twist τ = modifier of incidence relations

in F ×B.
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Example 1: B = S1, G = Z, τ 1(s1) = 00 ∈ G0

⇒ B ×τ G = S1 × Z = trivial product.

In particular ∂0(s1, τ (s1).k1) = (∗, k0).

Example 2: B = S1, G = Z, τ ′1(s1) = 10 ∈ G0

⇒ B ×τ G = S1 × Z = twisted product.

Now ∂0(s1, k1) = (∗, τ ′(s1).k0) = (∗, (k + 1)0).
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Daniel Kan’s fantastic work (∼ 1960− 1980).

Every “standard” natural topological construction process

has a translation in the simplicial world.

Frequently the translation is even “better”.

Typical example. The loop space construction in ordinary

topology gives only an H-space (= group up to homotopy).

Kan’s loop space construction produces a genuine simplicial

group, playing an essential role in Algebraic Topology.

Conclusion: Simplicial world = Paradise! ???
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Translation process: Topology → Algebra

X 7−→ C∗(X)

⇒ C∗(X) = chain complex canonically associated to X.

Cm(X) := Z[Xm] and d(σ) :=
∑m

i=0(−1)m∂m
i (σ).

Hm(X) := Hm(C∗(X)).

“Equivalent” version: CND
∗ (X) with:

CND
m (X) := Z[XND

m ] and d(σ) :=
∑m

i=0(−1)m∂m
i (σ mod ND).

HND
m (X) := Hm(CND

∗ (X))
thr
= Hm(X).
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General work style in Algebraic Topology.

Main problem = Classification.

Main invariants = Homology groups.

X given. H∗(X) = ???

Game rule: Please find a fibration:

F ↪→ E → B

where X = F or E or B

and where the homology of both other terms is known.

Then use the fibration !
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Main tools: (F ↪→ E → B)

Serre spectral sequence:

H∗(B; H∗(F ))⇒ H∗(E)

Eilenberg-Moore spectral sequence I:

CobarH∗(B)(H∗(E), Z)⇒ H∗(F )

Eilenberg-Moore spectral sequence II:

BarH∗(G)(H∗(E), H∗(F ))⇒ H∗(F )

But these spectal sequences are not algorithms!
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Example. π6S
3 = ???.

Solution (Serre). Consider 7 fibrations:

(EM2-SS) K(Z, 1) ↪→ ∗ → K(Z, 2)

(EM2-SS) K(Z2, 1) ↪→ ∗ → K(Z2, 2)

(EM2-SS) K(Z2, 2) ↪→ ∗ → K(Z2, 3)

(EM2-SS) K(Z2, 3) ↪→ ∗ → K(Z2, 4)

(S-SS) K(Z, 2) ↪→ X4 → S3

(S-SS) K(Z2, 3) ↪→ X5 → X4

(S-SS) K(Z2, 4) ↪→ X6 → X5

Solution: π6(S
3) = H6(X6)
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Effective Homology gives

effective versions

of Serre and Eilenberg-Moore spectral sequences.

⇒ Basic Algebraic Topology

is within range of Symbolic Computation.
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The END
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