Constructive Homological Algebra V.

Algebraic Topology background

 $::$ $C100$ Computing <TnPr <Tnl End of computing.

:: Clock -> 2002-01-17, 19h 25m 36s. Computing the boundary of the generator 19 (dimension 7) : End of computing.

Homology in dimension 6 :

Component Z/12Z

|---done---

;; Clock -> 2002-01-17, 19h 27m 15s

Francis Sergeraert, Institut Fourier, Grenoble, France Genova Summer School, 2006 "General" topological spaces

cannot be directly installed in a computer.

1

A combinatorial translation is necessary.

Main methods:

- 1. Simplicial complexes.
- 2. Simplicial sets.

Warning: Simplicial sets more complex (!) but more powerful than simplicial complexes. Simplicial complex $K = (V, S)$ where:

- 1. $V = set = set$ of vertices of K;
- $2. \; S \in \mathcal{P}(\mathcal{P}^f_*(V)) \; (= \text{set of simplices}) \; \text{satisfying:}$
	- (a) $\sigma \in S \Rightarrow \sigma =$ non-empty finite set of vertices;
	- (b) $\{v\} \in S$ for all $v \in V$;
	- (c) $\{(\sigma \in S) \text{ and } (\emptyset \neq \sigma' \subset \sigma)\}\Rightarrow (\sigma' \in S).$

Notes:

- 1. V may be infinite (\Rightarrow S infinite).
- 2. $\forall \sigma \in S$, σ is finite.

Example:

 $V = \{0, 1, 2, 3, 4, 5, 6\}$

 $\boldsymbol{S} =$ $\sqrt{ }$ \int $\overline{\mathcal{L}}$ $\{0\}, \{1\}, \{2\}, \{3\}, \{4\}, \{5\}, \{6\},$ $\{0,1\}, \{0,2\}, \{0,3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{3,4\},$ $\{4, 5\}, \{4, 6\}, \{5, 6\}, \{0, 1, 2\}, \{4, 5, 6\}$ \mathcal{L} $\overline{\mathcal{L}}$ \int Disadvantages of simplicial complexes.

Example: 2-sphere :

Needs 4 vertices, 6 edges, 4 triangles.

The simplicial set model needs only

1 vertex $+$ 1 "triangle"

but an infinite number of degenerate simplices...

 $\Delta^1 \times \Delta^1 = I \times I$?

Product?

In general, constructions are difficult

with simplicial complexes.

Main differences between:

 $Simplicial\hbox{ complexes}\stackrel{??}{\longleftrightarrow} Simplicial\hbox{ Sets}$

In a simplicial set:

1. A simplex is not defined by its vertices: Own existence + relations with smaller simplices.

$$
X = \{X_0 \xrightarrow{X_1} X_2 \xrightarrow{X_2} X_3 \xrightarrow{Y} \cdots\}
$$

Examples: two different edges can have same vertices:

Several faces (ends) can be the same:

2. Simplices can be degenerate = more or less "collapsed".

Example:

The minimal description as simplicial complex

of the two-sphere S^2

needs: 4 vertices $+ 6$ edges $+ 4$ triangles:

But the minimal description of the two-sphere as a simplicial set

needs: $1 \text{ vertex} + 1 \text{ triangle}$.

Note N is not a vertex.

Other example = Real Projective Plane = $P^2(\mathbb{R})$.

Minimal triangulation $= 6$ vertices $+ 15$ edges $+ 10$ triangles.

Minimal presentation of $P^2\mathbb{R}$ as a simplicial set $=$ 1 vertex $+ 1$ edge $+ 1$ triangle.

Support for the notion of simplicial set: The Δ category.

Objects: $0 = \{0\}, 1 = \{0, 1\}, \ldots, m = \{0, 1, \ldots, m\}, \ldots$

Morphisms:

 $\Delta(m, n) = \{ \alpha : m \nearrow n \text{ st } (k \leq \ell \Rightarrow \alpha(k) \leq \alpha(\ell)) \}.$

Definition: A simplicial set is

a contravariant functor $X : \Delta \to \text{Sets}.$

 $X(m) = X_m = \{m\text{-simplices}\}\$ of X. $X(\alpha : m \rightarrow n) = X_{\alpha} =$ {Incidence relations of type α between X_m and X_n }. Product construction for simplicial sets.

 $X = (\{X_m\}, \{X_\alpha\}), Y = (\{Y_m\}, \{Y_\alpha\})$ two simplicial sets. $Z = X \times Y = ?$??

Simple and natural definition:

 $Z = X \times Y$ defined by $Z = (\{Z_m\}, \{Z_\alpha\})$ with:

 $Z_m = X_m \times Y_m$

If $\Delta(n, m) \ni \alpha : n \nearrow m$:

$$
Z_\alpha{:}\allowbreak\ X_m \times Y_m \stackrel{X\alpha\times Y_\alpha}{\longrightarrow} X_n \times Y_n
$$

Example:

This natural product:

automatically constructs

the "right" triangulation of $I \times I$.

Twisted Products

Ingredients:

 $B =$ base space $=$ simplical set $F =$ fibre space $=$ simplicial set $G =$ structural group $=$ simplicial group $\overline{\tau}$: $B \to G =$ twisting function

Result:

$$
E = F \times_{\boxed{\mathcal{T}}} B
$$

 \Rightarrow Fibration:

$$
F \overset{\smile}{\longrightarrow} [E=F\times_{\boxed{\mathcal{T}}} B] \overset{}{\longrightarrow} B
$$

Main point: twist τ = modifier of incidence relations

in $F \times B$.

Example 1: $B = S^1, G = \mathbb{Z}, \, \tau_1(s_1) = 0_0 \in G_0$ $\Rightarrow B \times_{\tau} G = S^1 \times \mathbb{Z} =$ trivial product.

In particular $\partial_0(s_1, \tau(s_1) \cdot k_1) = (*, k_0)$.

Example 2: $B = S^1, G = \mathbb{Z}, \tau'{}_1(s_1) = 1_0 \in G_0$ $\Rightarrow B \times_\tau G = S^1 \times \mathbb{Z} = \text{twisted product}.$

 ${\rm Now}\,\,\partial_0(s_1,k_1)=(*,\tau'(s_1).k_0)=(*,(k+1)_0).$

Daniel Kan's fantastic work ($\sim 1960 - 1980$).

Every "standard" natural topological construction process has a translation in the simplicial world.

Frequently the translation is even "better".

Typical example. The loop space construction in ordinary topology gives only an H -space (= group up to homotopy).

Kan's loop space construction produces a genuine simplicial group, playing an essential role in Algebraic Topology.

Conclusion: Simplicial world = Paradise! ???

 \Rightarrow $C_*(X) =$ chain complex canonically associated to X.

 $C_m(X) := \mathbb{Z}[X_m]$ and $d(\sigma) := \sum_{i=0}^m (-1)^m \partial_i^m$ $j^m_i(\pmb{\sigma})$.

 $H_m(X) := H_m(C_*(X)).$

"Equivalent" version: $C_*^{ND}(X)$ with:

 $C_m^{ND}(X):=\mathbb{Z}[X_m^{ND}]$ and $d(\sigma):=\sum_{i=0}^m(-1)^m\partial_i^m$ $i^{m}(\pmb{\sigma} \!\!\!\mod N\pmb{D}).$ $H^{ND}_m(X) := H_m(C^{ND}_*(X)) \stackrel{{\rm thr}}{=} H_m(X).$

General work style in Algebraic Topology.

 $Main problem = Classification.$ Main invariants $=$ Homology groups.

X given. $H_*(X) = ???$

Game rule: Please find a fibration:

 $F \hookrightarrow E \to B$

where $X = F$ or E or B

and where the homology of both other terms is known. Then use the fibration!

Main tools: $(F \hookrightarrow E \rightarrow B)$

Serre spectral sequence:

 $H_*(B;H_*(F)) \Rightarrow H_*(E)$

Eilenberg-Moore spectral sequence I:

 $\mathrm{Cobar}^{H_*(B)}(H_*(E),\mathbb{Z})\Rightarrow H_*(F)$

Eilenberg-Moore spectral sequence II:

 $\operatorname{Bar}^{H_*(G)}(H_*(E),H_*(F)) \Rightarrow H_*(F)$

But these spectal sequences $\|\text{are not}\|$ algorithms!

Example. $\pi_6S^3 = ???$. Solution (Serre). Consider 7 fibrations:

> (KM_2-SS) $K(\mathbb{Z},1) \hookrightarrow * \rightarrow K(\mathbb{Z},2)$ (KM_2-SS) $K(\mathbb{Z}_2, 1) \hookrightarrow * \rightarrow K(\mathbb{Z}_2, 2)$ (KM_2-SS) $K(\mathbb{Z}_2, 2) \hookrightarrow * \rightarrow K(\mathbb{Z}_2, 3)$ (KM_2-SS) $K(\mathbb{Z}_2,3) \hookrightarrow * \rightarrow K(\mathbb{Z}_2,4)$ $(K-S)$ $K(\mathbb{Z}, 2) \hookrightarrow X_4 \longrightarrow S^3$ $(K-SS)$ $K(\mathbb{Z}_2, 3) \hookrightarrow X_5 \rightarrow X_4$ $(K-SS)$ $K(\mathbb{Z}_2, 4) \hookrightarrow \boxed{X_6} \rightarrow X_5$

 $\text{Solution: } \pi_6(S^3) = H_6(X_6)$

Effective Homology gives effective versions of Serre and Eilenberg-Moore spectral sequences.

⇒ Basic Algebraic Topology

is within range of Symbolic Computation.

