Constructive Homological Algebra I1II.

Koszul complexes

End of compu

;: Clock -> 2882-61-17, 19h 25m 36s.
Computing the boundary of the generator 19 {dimension 7} :

<TnPr <TnPr <TnPr 353 <<{Abar[2 51][2 51]>>> <<Abar>>> <<{Abar>>>
End of computing.

Homology in dimension 6 :

Component 27122

---done---
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k = commutative field. A = commutative k-algebra.

T1yee.y Ty € A. M = A-module.

Definition: The Koszul complex K y(M;xq,...,x,) is a

chain complex K, of A-modules with:
K, := M Qi AN"E™

A generator of K, is denoted by m dx;, - - - dz; .
Differential: d : K,, — K,,_1 :
m 0x;, +++ 0x;, — + mx; 0T, 0x;,
— mx;, 0T, 0x;y - 0x;,
4+ ..

+ (=) mx;, 0xi, 0xiy -+ 0x;



“Geometrical” interpretation of Koszul complexes.

Principal case:

Ka(A;xq,...) = AR ANE™ (~ total space)
A = structural algebra (~ structural group);
Ak™ = base coalgebra (~ base space);
t = twisting cochain (~ twisting function);

General case:

KA(M;CED. . .) = M ®A (A ®t /\km)
— Fibration associated to M &4 A — M.



Particular case: A = k[x1,...,Tn)].

K(A;x1y...,xm) =: K(A) := A Qs AE™

— canonical Koszul complex of A is acyclic.

K (A) acyclic & K(A) = universal fibration of A
< K(A) = A-resolution of k:

0—k—A— AQKk™ — AR N*E™ — ...

= K(A) = possible tool to compute Tor 4 (M, k).



Definition: M and N = A-modules = Tor 4(M,N) = 77?7

Let R4(M) be an A-resolution of M,
R4(N) an A-resolution of V.

H,(Ry(M)®4 N) =: Tor4(M,N) := H,(M ®4 Rs(N)).

Standard method computing Tor 4 (M, k):
1. Compute an A-resolution R4(M) of M of A-finite type.
(Syzygies)
2. > RA(M) Ra k =

Chain complex of finite dimensional k-vector spaces.

3. = H.(Ra(M) ®a k) = Tor 4(M, k) =

elementary computation.



Drawbacks: 1) Rs(M) = sygyzies = not so easy.
2) It happens Tor 4(M, k) := H.(M ® 4, Ra(k))

can be much more interesting !!

Theorem (Serre): § = PDE local system in 0 € k™.

Is = canonical ideal associated to S.

Then S involutive < Tor 4(Is, k), = 0.

But the theorem comes

from the explicit examination of I ® 4 Ra(k).

Using this theorem needs a complete solution

for the ‘homological problem‘

of I ®A RA(k)



Previous results described about Effective Homology:

1. Reductions;

2. Equivalences;

3. Basic perturbation Lemma;
4. Cones;

5. SES; theorems;

=

A simple algorithm computes

the effective homology of K(A/<g1s.++59n>).



Typical simple example.

I=<z—t,y—t°> C A =Q[z,y,t].

How to compute H,(K(A/I)) = H. (K(A/I; xz,y,t)) ?
Step 1: Compute a Groebner basis for I.

Choose a coherent monomial order,

for example DegRevLex = DRL.
= Groebner(I,DRL) =<zt? — y,t3 — x, x> — yt >.

Step 2: Consider J =< xt?,t3, 2% >

— the associated monomial ideal.



Then: 1. The Q-vector spaces A/I and A/J
are canonically isomorphic.
2. = K(A/I) and K(A/J) are
graded Q-vector spaces canonically isomorphic,

but with non-compatible differentials:

dia/5)(t8x) =0 5 dga/n(t?6x) = y.

Plan: 1. Compute H,.(K(A/J)).
2. Apply BPL to deduce H,(K(A/I)).



How to compute H,(A/<xt?, t3,22>) ?
Recursive process about the number of generators.
Relation between H,(A/<xt? t°,x*>>) and H,(A/<t>,z*>>) 7

Exact sequence of A-modules:

A b2 A pr A
<z, t> ) <t3, x?2> ) <xt?, t3,x%>
Remark: <z, t>=<t>,x*>>:xt* = {a € A st axt® € <t?,z*>}.

— 0

0 —

= Exact sequence of chain complexes:

(o) = K zms) = Ko as)
O—- K| —) —- K — K — 0
<xz,t> <t3, x2> <xt?, 3, 2>




10

=
Effective homologies of K(A/<z,t>) and K(A/ <t3,x?>)
give effective homology of K(A/ < xt?, t>, *>)

What about the first step of the recursive process?

Continuing in the same way =- short exact sequence:
A X x2 A pr A
O —-K— ) = K|— | = K — 0
<> <> <x?>

It is enough to know the effective homology of K(A).

=



11

K(A)203 K(A)ZOO K(A 3623 K(A 203

J/ch \ J{sz\ xt\ / J{xt
K(A)003 K(A 00(1\ KfA 1032‘ K(A 202

" ]

K(A/<x?>)o003 //<t> 102‘jLXm KfA/<t>)202
|
pr /




Theorem: A multi-homogeneous reduction can be produced:

nC K(Qx,y,t])

fl9

Q

—d

—d

with all the maps J, d, f, g and h ' homogeneous

with respect to a

[z, y, t]-multi-grading|.
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Proof.
Multi-grading of z®y”t” dx 6t = [ + 1,3, ~ + 1]
= Koszul differential d is multi-homogeneous.

h(x“yPt §x 6t) =0

h(xz®yPt3 dx) = —x*yPt? dx ot
h(x%y?* éx) = —x*y3 dx oy
h(x>® 6x) =0

h(z®) = z? éx

= Contraction h is multi-homogeneous.

The trivial morphisms f and g

are trivially multi-homogeneous.
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Easy complements of Effective Homology Theorems:

If every input is multi-homogeneous,

then every output is multi-homogeneous.

Applying to the SES3; theorem for:

xwu r s Yyt
0 — K(Qz,y.1)) 5 K(Qlz,y,1]) 5 K<%) 0

Multiplication by w@ = you must shift the multi-grading of
the lefthand K (Q[x,y,t]) to get Xm@ multi-homogeneous:

Multigrading(z®y°t” dz 6t) = [a + 1+ 2 ,8,v + 1]
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The END

End of compu

;: Clock -> 2882-61-17, 19h 25m 36s.
Computing the boundary of the generator 19 {dimension 7} :
<TnPr <TnPr <TnPr 353 <<{Abar[2 51][2 51]>>> <<Abar>>> <<{Abar>>>

End of computing.

Homology in dimension 6 :
Component 27122

---done---

;s Clock -> 2@882-81-17, 19h 27m 1
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