Constructive Homological Algebra III.

Koszul complexes

```
Computing
<TnPr <Tn
End of computing.

;; Clock -> 2002-01-17, 19h 25m 36s.
Computing the boundary of the generator 19 (dimension 7):
<TnPr <TnPr <TnPr S3 <<Abar[2 S1][2 S1]>>> <<Abar>>> End of computing.

Homology in dimension 6:

Component Z/12Z
---done---
;; Clock -> 2002-01-17, 19h 27m 15s
```

;; Cloc

Francis Sergeraert, Institut Fourier, Grenoble, France Genova Summer School, 2006 $k= ext{commutative field.} \qquad A= ext{commutative k-algebra.} \ x_1,\ldots,x_m\in A. \qquad M=A ext{-module.}$

<u>Definition</u>: The Koszul complex $K_A(M; x_1, ..., x_m)$ is a chain complex K_* of A-modules with:

$$K_n := M \otimes_k \wedge^n k^m$$

A generator of K_n is denoted by $m \delta x_{i_1} \cdots \delta x_{i_n}$.

 $egin{aligned} ext{Differential:} & d: K_n
ightarrow K_{n-1}: \ & m \; \delta x_{i_1} \; \cdots \; \delta x_{i_n} \; \mapsto \; + \; m x_{i_1} \; \delta x_{i_2} \cdots \delta x_{i_n} \ & - \; m x_{i_2} \; \delta x_{i_1} \; \delta x_{i_3} \cdots \delta x_{i_n} \ & + \; \cdots \end{aligned}$

$$+ \ (-1)^{n-1} \ m x_{i_n} \ \delta x_{i_1} \ \delta x_{i_2} \cdots \delta x_{i_{n-1}}$$

"Geometrical" interpretation of Koszul complexes.

Principal case:

$$K_A(A;x_1,\ldots) = A \otimes_t \wedge k^m \ (\sim ext{total space})$$
 $A = ext{structural algebra} \ (\sim ext{structural group});$
 $\wedge k^m = ext{base coalgebra} \ (\sim ext{base space});$
 $t = ext{twisting cochain } (\sim ext{twisting function});$

General case:

$$K_A(M;x_1,\ldots) = M \otimes_A (A \otimes_t \wedge k^m)$$

= Fibration associated to $M \otimes_A A \to M$.

Particular case: $A = k[x_1, \dots, x_m]$.

$$K(A; x_1, \ldots, x_m) =: K(A) := A \otimes_t \wedge k^m$$

$$= \text{canonical Koszul complex of A is acyclic.}$$

$$K(A)$$
 acyclic $\Leftrightarrow K(A) =$ universal fibration of A
 $\Leftrightarrow K(A) = A$ -resolution of k :

$$0 \leftarrow k \leftarrow A \leftarrow A \otimes k^m \leftarrow A \otimes \wedge^2 k^m \leftarrow \dots$$

 $\Rightarrow K(A) = \text{possible tool to compute Tor }^{A}(M, k).$

<u>Definition</u>: M and N = A-modules $\Rightarrow \text{Tor }^A(M, N) = ???$

Let $R_A(M)$ be an A-resolution of M,

 $R_A(N)$ an A-resolution of N.

$$H_*(R_A(M)\otimes_A N)=:\operatorname{Tor}^A(M,N):=H_*(M\otimes_A R_A(N)).$$

Standard method computing Tor $^{A}(M, k)$:

- 1. Compute an A-resolution $R_A(M)$ of M of A-finite type. (Syzygies)
- $2. \Rightarrow R_A(M) \otimes_A k =$ Chain complex of finite dimensional k-vector spaces.
- $3. \Rightarrow H_*(R_A(M) \otimes_A k) = \operatorname{Tor}^A(M,k) =$ elementary computation.

- Drawbacks: 1) $R_A(M) = \text{sygyzies} \Rightarrow \text{not so easy.}$ 2) It happens $\text{Tor }^A(M,k) := H_*(M \otimes_A R_A(k))$ can be much more interesting!!
- Theorem (Serre): $\mathcal{S} = \operatorname{PDE}$ local system in $0 \in k^m$. $I_{\mathcal{S}} = \operatorname{canonical}$ ideal associated to \mathcal{S} .

 Then \mathcal{S} involutive $\Leftrightarrow \operatorname{Tor}^A(I_{\mathcal{S}}, k)_+ = 0$.

But the theorem comes

from the explicit examination of $I \otimes_A R_A(k)$.

Using this theorem needs a complete solution

for the homological problem of $I \otimes_A R_A(k)$.

Previous results described about Effective Homology:

- 1. Reductions;
- 2. Equivalences;
- 3. Basic perturbation Lemma;
- 4. Cones;
- 5. SES_i theorems;

 \Rightarrow

A simple algorithm computes

the effective homology of $K(A/\langle g_1,\ldots,g_n\rangle)$.

Typical simple example.

$$I=<\!x-t^3,y-t^5\!>\subset A=\mathbb{Q}[x,y,t].$$

How to compute
$$H_*(K(A/I)) = H_*(K(A/I; x, y, t))$$
?

Step 1: Compute a Groebner basis for *I*.

Choose a coherent monomial order,

for example DegRevLex = DRL.

$$\Rightarrow$$
 Groebner $(I, \mathrm{DRL}) = \langle xt^2 - y, t^3 - x, x^2 - yt \rangle$.

Step 2: Consider $J = \langle xt^2, t^3, x^2 \rangle$

= the associated monomial ideal.

- Then: 1. The \mathbb{Q} -vector spaces A/I and A/J are canonically isomorphic.
 - 2. $\Rightarrow K(A/I)$ and K(A/J) are graded \mathbb{Q} -vector spaces canonically isomorphic, but with non-compatible differentials:

$$d_{K(A/J)}(t^2\delta x)=0 \hspace{0.2cm} ; \hspace{0.2cm} d_{K(A/I)}(t^2\delta x)= extbf{\emph{y}}.$$

- Plan: 1. Compute $H_*(K(A/J))$.
 - 2. Apply BPL to deduce $H_*(K(A/I))$.

How to compute $H_*(A/\langle xt^2, t^3, x^2 \rangle)$?

Recursive process about the number of generators.

Relation between $H_*(A/\langle xt^2, t^3, x^2 \rangle)$ and $H_*(A/\langle t^3, x^2 \rangle)$?

Exact sequence of A-modules:

$$0
ightarrow rac{A}{< x, t>}
ightarrow rac{A}{< t^3, x^2>}
ightarrow rac{ ext{pr}}{< x t^2, t^3, x^2>}
ightarrow 0$$

Remark: $\langle x, t \rangle = \langle t^3, x^2 \rangle : xt^2 = \{a \in A \text{ st } axt^2 \in \langle t^3, x^2 \rangle \}.$

 \Rightarrow Exact sequence of chain complexes:

$$0 o extbf{ extit{K}} igg(rac{A}{< x, t>}igg) \overset{ imes xt^2}{ o} extbf{ extit{K}} igg(rac{A}{< t^3, x^2>}igg) \overset{ ext{pr}}{ o} extbf{ extit{K}} igg(rac{A}{< xt^2, t^3, x^2>}igg) o 0$$

 \Rightarrow

Effective homologies of K(A/< x, t>) and $K(A/< t^3, x^2>)$ give effective homology of $K(A/< xt^2, t^3, x^2>)$

What about the first step of the recursive process?

Continuing in the same way \Rightarrow short exact sequence:

$$0 o K\!\!\left(rac{A}{<>}
ight) \stackrel{ imes x^2}{ o} K\!\!\left(rac{A}{<>}
ight) \stackrel{
m pr}{ o} K\!\!\left(rac{A}{< x^2>}
ight) o 0$$

 \Rightarrow

It is enough to know the effective homology of K(A).

Theorem: A multi-homogeneous reduction can be produced:

with all the maps \widehat{d} , d, f, g and h homogeneous with respect to a [x, y, t]-multi-grading.

Proof.

Multi-grading of $x^{\alpha}y^{\beta}t^{\gamma}$ δx $\delta t = [\alpha + 1, \beta, \gamma + 1]$

 \Rightarrow Koszul differential \hat{d} is multi-homogeneous.

$$egin{align} h(x^lpha y^eta t^\gamma \,\,\delta x \,\,\delta t) &= 0 \ h(x^lpha y^eta t^3 \,\,\delta x) &= -x^lpha y^eta t^2 \,\,\delta x \,\,\delta t \ h(x^lpha y^4 \,\,\delta x) &= -x^lpha y^3 \,\,\delta x \,\,\delta y \ h(x^3 \,\,\delta x) &= 0 \ h(x^3) &= x^2 \,\,\delta x \ \end{pmatrix}$$

 \Rightarrow Contraction h is multi-homogeneous.

The trivial morphisms f and g are trivially multi-homogeneous.

Easy complements of Effective Homology Theorems:

If every input is multi-homogeneous, then every output is multi-homogeneous.

Applying to the SES_3 theorem for:

$$0 o oldsymbol{K}(\mathbb{Q}[x,y,t]) \overset{ imes x^{2}}{ o} oldsymbol{K}(\mathbb{Q}[x,y,t]) \overset{ ext{pr}}{ o} oldsymbol{K}\!\!\left(\!rac{\mathbb{Q}[x,y,t]}{<\!x^{2}>}\!
ight) o 0$$

Multiplication by $x^{\boxed{2}} \Rightarrow$ you must shift the multi-grading of the lefthand $K(\mathbb{Q}[x,y,t])$ to get $\times x^{\boxed{2}}$ multi-homogeneous:

$$\operatorname{Multigrading}(x^{lpha}y^{eta}t^{\gamma} \,\, \delta x \,\, \delta t) = \left[lpha + 1 + {\color{red} 2 \over 2}, eta, \gamma + 1
ight]$$

The END

```
Computing
<TnPr <Tn
End of computing.

;; Clock -> 2002-01-17, 19h 25m 36s.
Computing the boundary of the generator 19 (dimension 7) :
<TnPr <TnPr S3 <<Abar[2 S1][2 S1]>>> <<Abar>>> End of computing.

Homology in dimension 6 :
Component Z/12Z
```

;; Clock -> 2002-01-17, 19h 27m 15s

;; Cloc

Francis Sergeraert, Institut Fourier, Grenoble, France Genova Summer School, 2006