Common Lisp, Typing and Mathematics®

Francis ,5'67”967’(1(37’75Jr

August 2001

1 Introduction.

Common Lisp is seldom used by mathematicians and this is an anomaly. The high
level of quality of Common Lisp comes from a simple reason: Common Lisp is a
mathematical object, certainly one of the most beautiful and potentially productive
existing at this time. Common Lisp is a descendant of the fantastic A-calculus,
designed by Church to produce one of the deepest mathematical results of the
last century, namely the negative answer to Hilbert’s Entscheidung Problem: no
algorithm can determine whether an arbitrary mathematical statement is true,
false or undecidable.

Then, by a quite indirect route, A-calculus became a fascinating programming
language, Lisp. Lisp’s birth is old, at the end of the fifties, and forty years later
it is clear it remains the most advanced “common” programming language, “com-
mon” meaning with an ANSI norm, in this case the... Common Lisp norm. The
Common Lisp language is so advanced that it is not so easy to use it for serious
applications: a reasonable lucidity about its complex and far-reaching structure
is required; so that the initiation stage in the learning process of this language
is a little hard. The present paper is a tutorial to introduce at the mathemati-
citans the main components of Object Oriented Programming in Common Lisp.
The extraordinary work of Guy Steele and his X3J13 committee during the years
1980-1994 led to a powerful language, on one hand, but on the other hand taking
seriously account of standard practical constraints in actual programming work.
Common Lisp is now widely used for complex industrial applications, mainly be-
cause of the powerful dynamic tools that are available; but it is not very used for
scientific applications, in particular for mathematical applications, and this must
be corrected.

No concrete language can be completely formalized, but the mathematical
precision of the definition of Common Lisp gives its user much security, the pre-
cision which is required for sophisticated mathematical applications, in particular

*This text was written for a three hours satellite talk at the 2001 EACA Congress at Ezcaray.
tnstitut Fourier, Université Grenoble I.
Francis.Sergeraert@ujf-grenoble.fr

when complicated data-sharings are necessary. Another aspect of Common Lisp
is without any equivalent with the other languages: the user may freely design his
application at the best programming level, sometimes at a very high level, directly
handling rich and complex mathematical structures; for example it is explained
in Section 5.2 that three simple lines of Lisp code are sufficient to explain to the
machine that a simplicial group is simultaneously a Kan space and a Hopf algebra,
sharing a common graded differential coalgebra structure, but with some added
data, namely two simplicial morphisms describing the simplicial group structure.
Other times, in the same program, you may on the contrary work at a very low
level, in an assembler-like style. The language is carefully stratified to help the
developer to remain lucid and at ease about these questions. The Common Lisp
macro generator, without any equivalent in other common languages, allows also
the programmer to easily use his low level code when he is on the contrary working
at a high level.

Which is a good element for appreciation is the ability of a language to be
quickly adapted to new mandatory evolutions; at this time, Object Oriented Pro-
gramming (OOP) must be integrated in a language claimed common, and Common
Lisp succeeded in doing it so nicely that it can even be used to describe what OOP
exactly is. The CLOS (Common Lisp Object System) chapter of [11] is one of the
most amazing part of Computer Science. The general dynamic feature of Common
Lisp has in particular been kept: the user may dynamically change the class of his
objects; he may also redefine dynamically the classes without loosing the objects
of this class; and the user may freely decide exactly what happens for these ob-
jects. If this is not yet flexible enough, the Metaobject Protocol (MOP), not yet
normalized, but already widely used, allows our user to freely define his own OOP
system; CLOS is in fact only a particular application of MOP, see [6].

This paper is devoted to a few didactical examples to help mathematicians to
understand how Common Lisp and more precisely CLOS can be used for math-
ematical applications. It is organized as follows. Firstly, a small set of artificial
examples is used to explain the general structure of CLOS. The main work in OOP,
and certainly the most difficult one, is at the initialization stage of the instances
(objects). Even if a user does not intend to use the current Common-Lisp, study-
ing how the initialization process is designed in this environment will explain to
him the good points of view in this domain.

Then a more significant example is described to show the actual workstyle when
CLOS is used in a non-beginner job. Because the OOP subject is strongly related
to typing, a possible description of what typing could be is used as a theme of an
exercise showing how CLOS allows to implement the consequences of this descrip-
tion. This example is very simple and should be a good tutorial to simultaneously
understand the initial points of OOP under Common Lisp and what typing is, at
least from the point of view of the actual programmer.

The next section is more mathematically oriented: it is explained how the basic
mathematical categories, sets, magmas and monoids, can be directly implemented
in CLOS, without meeting any kind of difficulty. The possibility for the Lisp user
to arbitrarily mix OOP and high level functional programming (lexical closures)

gives at once the required tools. The specialized programming environments such
as Axiom, Gap, Magma... so can be skipped and the mathematician may freely
work at an arbitrary level in the programming language itself, keeping a perfect
control of the environment, without being bothered by a restrictive environment,
seldom well-adjusted to an arbitrary new research work.

It was the case of the author and his colleagues when the central problems of
Algebraic Topology were considered from a computational point of view [8, 7]. The
resulting Lisp program Kenzo [4] shows a concrete example of use of CLOS for a
relatively large implementation work!. The Kenzo program is not at all didactic,
it is an actual program able to produce mathematical results that are unreachable
otherwise. Some points of the experience acquired by Kenzo’s authors are discussed

in the last section and in this way the reader will see a few more concrete points
of CLOS.

2 CLOS (= Common Lisp Object System).

Strictly speaking, the notion of Common Lisp Object System, CLOS in short, does
not make sense anymore. The first definition of Common Lisp, known as Common-
Lisp-1984 [10], did not have any “object system”. Typing was already strong in
CL-1984, at least if wished by the user; standard types were defined and the initial
type system was freely extendable by the user, but the now classical notions of
classes, instances, generic functions and methods were not yet available. The pre-
ANSI version of Common Lisp, namely Common-Lisp-1990, contained a proposal
for an OOP system, called Common Lisp Object System [11, Ch. 28, pp 770-
864]|; the pre-versions of this object system were already widely used at this time
by the Lisp programmers. Finally, the ANSI specification [1| of Common Lisp
(1994) completely integrated the so-called Common Lisp Object System in the
very definition of the language. The standard Lisp programmer is now assumed
working according to the spirit of OOP, constantly using classes, instances of
classes, methods and so on, like in C++ or Java?. But the perfect integration of
the general ideas of OOP with the so powerful Common Lisp gives its user many
capabilities which are at this time outside of scope with other languages, mainly
when functional programming is involved. However we continue to call CLOS the
part of the ANSI Common Lisp language devoted to OOP.

This object system in Common Lisp coexists with the old typing system and
also the old structure system, which allowed the user to define, construct and use
the classical record objects, with several fields, typed or not. From a hierarchical
point of view, the typing system and the structure system are subsystems of the
object system: special predefined classes correspond to the main classical data
types, and the same for the structured objects. But normally the current Lisp
programmer mainly works with the object system, organizing his workspace in
classes, subclasses, methods and so on.

116000 Common Lisp lines and a 340pp documentation.
2With a slightly different terminology.

The Common Lisp object system is elegant and powerful. As usual in Common
Lisp, it is organized so that the user keeps a very large freedom. A standard style
is carefully designed, but the user may go far from this standard style if special
situations are encountered.

2.1 A quick comparison with C++ and Java.

A few indications are given in this section about the main OOP features of Java,
C++ and CLOS. In Java, the classes are “above” the methods (member functions):
the specific functions for a class are defined inside this class so that the class
and member function hierarchies are more or less parallel. This leads sometimes
to artificial classes, typically the System class and the Math class, when this rule
becomes non-sense in particular situations. The member functions are available
under C++ too.

In C++ you may also overload the functions, in particular the member func-
tions. No member function in CLOS?, only an overloading feature. But three other
features are provided by CLOS which make particularly convenient and elegant
the developer work:

e The initialization process of the objects is essential in OOP; the general
CLOS organisation of this work is really wonderful, in particular conceptually
very simple, leading the programmer towards the good points of view, see
Section 2.3 for a small introduction to this point.

e The method qualifiers give much flexibility to organize the work of all the
applicable methods; numerous simple examples in this paper.

e The functional basis of Common Lisp allows the user to easily install func-
tional slots (members) of any sort, in particular compiled closure slots, dra-
matically extending the programming scope; Section 4 gives striking appli-
cations of this feature; in particular the instances may be themselves fun-
callable, in other words the instances become also functional objects, see
Section 3 for a typical illustration.

In CLOS, the basic ingredients are clearly distinguished:

e The class system, mainly used through the defclass statement, allows the
user to define the structure of his instances (objects), in particular through
the notion of subclass (derived class).

e The function type is primitive; a function is an object which can be funcalled
(called) for some work about some arguments.

3A C++ or Java member function is nothing but a CLOS generic function where the first
argument is given before the function reference, with an implicit with-slots for this particular
argument; such a feature can be easily added to the environment with the Metaobject Protocol;
in general CLOS prefers to keep the maximal symmetry between the critical arguments.

e The packaging system allows the developer to precisely define what parts of
his source code are normally directly known and/or reachable by a user of
his program, obtaining in particular the equivalent of the private C++ code.

Then, if the class system and the functional organization of Common Lisp are
to be simultaneously considered, the particular notions of generic functions and
methods must be used.

e A generic function is a functional object the exact work of which will depend
on the class of its arguments.

e The code for some specific work of a generic function corresponding to some
particular class distribution of its arguments and some qualifier is a method
object; each method is defined by a defmethod statement.

e In general several methods are involved when a generic function is invoked,
they are called the applicable methods. CLOS gives its user a large freedom
to organize these methods with respect to each other, to cover any possible
situation, in particular when a sophisticated chronology of their work is re-
quired. This feature has no equivalent in C++ or Java, this is obtained by
the method qualifiers.

In this way, the CLOS methods are roughly in a three-dimensional array where
each entry is associated to a generic function, first index, the class distribution of
the parameters, second index, and the method qualifier, third index.

The CLOS method qualifiers have no equivalent in C++ or Java; a predefined
qualifier organization is provided, already rather rich, sufficient for most of the
ordinary cases®. If still more sophisticated combinations of methods are required,
the define-method-combination function allows the developer to freely extend this
organization.

For example, and this will be detailed in Section 4, a mathematician who
installs under CLOS the traditional mathematical categories must organize his
work as follows:

e The defclass statements will be used to define what a set object is, what a
group object is, what a chain complex object is, and so on.

e The defgeneric statements will be used to define functions working on these
objects, but these “functions” are traditionnally called in this case functors
in mathematics; therefore one defgeneric statement for the sum functor,
another defgeneric for the product functor, another defgeneric for the clas-
sifying space functor, and so on.

e Finally each generic function will have various methods to adapt the generic
function to specific cases; for example the product of two objects of some

4For example quite sufficient for the Kenzo program.

category is also an object of this category with the corresponding structure
to be defined. Therefore one product method for the sets, another product
method for the magmas, another product method for the monoids, and so on.
The call-next-method and change-class functions will allow these methods
to possibly refer to the less specific ones.

2.2 Very simple CLOS examples.

Classes can be defined with the traditional hierarchy and methods may be de-
fined which will be called or not according to the argument classes. The general
call-next-method function allows the user to invoke shadowed methods.

Let us define® a simple class C1 and a subclass C2.

> (DEFCLASS C1 ()

((sll :initarg :sll :reader sl1))) MK
#<STANDARD-CLASS C1>
> (DEFCLASS C2 (C1)

((s12 :initarg :s12 :reader s12))) MK
#<STANDARD-CLASS C2>

The C2 class is a subclass of the C1 class. A Cil-object, in Lisp you must say
a Cl-instance, has only one component, you must say in Lisp one slot, labelled
s11, and a C2-instance has one further slot labelled s12. Because of the :initarg
slot-options, these slots may be initialized through the keyword arguments :sl11
and :s12. We create a Cl-instance and a C2-instance.

> (setf il (make-instance ’cl :sl1 1)) MK

#<C1 @ #x20d3ce72>

> (setf i2 (make-instance ’c2 :s11 11 :s12 22)) M
#<C2 @ #x20bela7a>

You see, and this is the default display, only the class of the instance and its
machine address are displayed. We would like to display our simple instances
with their slots®. In general every object is displayed through the generic function
print-object, and the user is advised to write specific methods for this generic
function to obtain the desired display. Just to illustrate the general organisation
of methods in CLOS, we will define three print-object methods to “print” a C1-
or C2-instance, to show the s11 and possibly the s12 slot(s). The ¢2-method calls
the C1-method through call-next-method, and the :after method allows to print
the >’ terminal.

5The small Lisp statements showed for illustration have really been run under Allegro Com-
mon Lisp and may be repeated under any ANSI Common Lisp; the Lisp prompt is here ‘>’;
the maltese cross M4 corresponds to the <Return> key asking for the evaluation of the typed-in
statement; usually the symbols are keyed in lower case, and Lisp displays the answers with upper
case.

6This is not standard: frequently the slots are numerous and complicated, and it is not sensible
to display the instances with all their slots.

> (DEFMETHOD PRINT-O0BJECT ((cl cl) stream)
(declare (type stream stream))
(format stream "#<~S s11="S" (class-name (class-of c1)) (sll c1))
cl) "

#<STANDARD-METHOD PRINT-O0BJECT (C1 T)>

> (DEFMETHOD PRINT-0BJECT :after ((cl1 cl1) stream)
(declare (type stream stream))
(format stream ">")) MK

#<STANDARD-METHOD PRINT-0BJECT :AFTER (C1 T)>

> (DEFMETHOD PRINT-O0BJECT ((c2 c2) stream)
(declare (type stream stream))
(call-next-method)
(format stream " s12="S" (s12 c2))
c2) "

#<STANDARD-METHOD PRINT-0BJECT (C2 T)>

The format statement is analogous to the traditional printf of C. It is frequent”
to display a Lisp object with a string beginning by ‘#<’>. Now we redisplay our
existing C1- and C2-instances.
TP
(#<C1 sl1=1> #<C2 sl1=11 s12=22>)

> (change-class il ’c2 :s12 2) MK
#<C2 sli=1 s12=2>

> (change-class i2 ’cl) "

#<C1 sl1=11>

You see CLOS has taken the most natural decisions, but we will explain later
how the process can be freely customized by the programmer.

There is also the possibility of :around methods, encapsulating the so-called
primary ones:

> (DEFMETHOD PRINT-O0BJECT :around ((cl cl) stream)
(declare (type stream stream))
(format stream "*")
(call-next-method)
(format stream "*")
cl) "
#<STANDARD-METHOD PRINT-0BJECT :AROUND (C1 T)>

"In principle a non-readable display must begin with ‘#<’, but in this case, because of the
complete display, in fact it could be read...

> (DEFMETHOD PRINT-O0BJECT :around ((c2 c2) stream)
(declare (type stream stream))
(format stream "+")
(call-next-method)
(format stream "+")

c2)
#<STANDARD-METHOD PRINT-0BJECT :AROUND (C2 T)>

> (list i1 i2) »H
(+*#<C2 sl1=1 s12=2>%+ x#<C1 sl1=11>%)

Again it is interesting to deduce from this example the chronology of the calls
of the five user-defined print-object methods. The standard organization allows
the user to define primary and auziliary methods, the last ones being qualified
by the keyword :before, :after or :around; the methods are specialized by giving
arbitrary combination of classes of the arguments; here, only the first argument
was specialized, but we will see later natural situations where several arguments
are specialized. Simple but mathematically coherent rules, in particular based on
topological sorting, explain what methods work in a particular case and in what
order. Furthermore these possibilities may be freely modified or extended by the
user through the define-method-combination function.

2.3 Initializing instances.

It is well known the main part and the main difficulties of the OOP job are in the
initialization work for the instances. Let us examine the general organization of
the CLOS initialization process.

The essential components of the initialization process in CLOS are the following
generic functions:

e The standard make-instance allocates the memory space for the instance to
be created and calls initialize-instance to initialize it;

e The standard initialize-instance in fact calls shared-initialize to do the
initialization work.

The role of shared-initialize is the following. Frequently the initialization
work to be done is essentially the same when an instance is created, or reinitialized,
or when its class is changed, or finally when the ambient class is itself redefined.
If possible, the user is advised to define this common work in shared-initialize
methods. If on the contrary there are significant differences between these cases,
the user may write particular methods for the following generic functions:

e initialize-instance: called by make-instance to initialize a just created
instance; the user can extend and/or modify the standard initialization by
writing specific methods for some classes.

|make—instance| change-class

l l

— - update-instance-
initialize-instance .
-for-different-class

N/

| shared-initialize]

AN

reinitialize- update-instance-for-

-instance -redefined-class

Figure 1: The main initialization generic functions.

e reinitialize-instance: called by the user when he wants to “refresh” some
instance; sometimes it is the same as initializing from scratch, sometimes
not; in the first case it is better to write an appropriate shared-initialize
method; in the second case, the user must write specific methods for
reinitialize-instance.

e change-class: called by the user when the class of an instance is changed;
this function asks for a kind of conversion. Normally this function calls the
generic function update-instance-for-different-class and the user may
write methods for the latter. A simple example follows.

e defclass: if a defclass is in fact a redefinition of the class, each time
an instance of the old version is considered, the generic function update-
instance-for-redefined-class is applied, allowing in principle to coherently
continue the work.

e make-instance: the user can also entirely redefine the creation and initial-
ization process.

Writing appropriate methods for these generic functions, the user can freely
define the initialization work, clearly distinguishing the various levels from each
other; if sufficient, the programmer may partially or totally use the standard style
without any further work. You understand that combining these methods with
the user-defined class hierarchy, combining also with the various possibilities of
auziliary methods (:before, :after, :around), the user has a fantastically large
workspace. However, once this structure is reasonably understood, it is not difficult
to be used, and quickly very powerful.

2.4 The example of “change-class”.

The various situations that are met in the artificial simple example of this section
around the change-class generic function allow to easily understand the general
CLOS organisation of the initialization work.

> (DEFCLASS E12 ()
((sl1 :initarg :sl1 :reader sl1)
(s12 :initarg :sl2 :reader s12))) K
#<STANDARD-CLASS E12>
> (DEFCLASS E13 ()
((sl1 :initarg :sl1 :reader sl1)
(s13 :initarg :s1l3 :reader s13))) MK
#<STANDARD-CLASS E13>
> (setf ins (make-instance ’el2 :s11 1 :s12 2)) K
#<E12 Q@ #x20bc46b2>
> (change-class ins ’el3) K
#<E13 @ #x20c95952>
> ins MM
#<E13 @ #x20c95952>
> (sl1l ins) "X
1
> (813 ins) A
Error: The slot SL3 is unbound in the object #<E13 @ #x20c95952>
of class #<STANDARD-CLASS E13>.
[condition type: UNBOUND-SLOT]

No relation at all between both classes E12 and E13; there is a common slot
name, namely s11, but this does not imply any relation between both classes.
With an exception, if ever the class of an instance is changed from E12 to E13, this
common slot name will be considered by the standard change-class which in fact
calls the standard update-instance-for-different-class: this method transmits
the slots with the same names in both classes, gives up the other slots in the
source instance, and lets unbound the other slots of the target instance. Here, the
sl1 slot has been kept, the s12 slot has been given up, and the s13 slot in the
result is let unbound, which implies the error when this slot is read by the :reader
method s13. Note also the pseudo-new instance is at the same machine address,
but the small invisible steps of the garbage-collector continually modify the actual
addresses, which is made obvious by the value of the symbol ins locating our
unique but variable instance.

Let us convert again our instance, but with an additional keyword argument.

> (change-class ins ’el2 :s12 22) WX
#<E12 @ #x20b55342>

> (s12 ins) "M

22

The default methods are sufficient to pass initial arguments to change-class
to obtain partial initializations of the new wversion of the same instance. Let us
consider now the situation where for some strange “theoretical” reason, when the

10

class is changed from E12 to E13, the value of the s13 slot must be computed as the
product of the s12 slot of the source instance multiplied by some number included
in the change-class data. This is obtained as follows.

> (DEFMETHOD UPDATE-INSTANCE-FOR-DIFFERENT-CLASS :after
((source el12) (target el3) &key (multiplier 1))
(declare (type number multiplier))
(setf (slot-value target ’sl3)
(* (s12 source) multiplier))) K
#<STANDARD-METHOD UPDATE-INSTANCE-FOR-DIFFERENT-CLASS :AFTER (E12 E13)>
> (change-class ins ’el13 :multiplier 4) i
#<E13 @ #x20b588e2>
> (list (sll ins) (s13 ins)) M
(1 88)

Because we have used an :after method, the standard primary method is firstly
called, solving the s11 transfer. And after this is done, our auxiliary method works.
Note in particular how elegant is the handling of the extra multiplier argument;
because this keyword argument is used in our method, it becomes available for the
user when a change-class E12 — E13 happens.

We want finally to consider the situation where a conversion E13 — E12 must
be installed, where the new version of the instance must have both slots redefined
to zero. In this case the old version of the instance is useless, so that we can
directly obtain this conversion by a change-class method.

> (DEFMETHOD CHANGE-CLASS :after ((ins e13) (class (eql ’el2)) &rest rest)
(declare (ignore rest))
(setf (slot-value ins ’sl1) O
(slot-value ins ’sl12) 0)) K
#<STANDARD-METHOD CHANGE-CLASS :AFTER (E13 (EQL E12))>
> (change-class ins ’el2) M
#<E12 @ #x2069248a>
> (list (sll ins) (sl2 ins)) MK
(0 0)

3 What typing is.

The small examples of the previous section were artificial, and we want to consider
now a plausible situation. We want to use CLOS to implement a simple coher-
ent typing system, allowing the user to simultaneously use arbitrary types and
high levels of functional programming, both subjects being furthermore strongly
dependent on each other.

What is typing? If a mathematical definition of typing is wished, many defini-
tions are possible, and one of them is to be illustrated by a small CLOS program.
Note this new typing system will be installed while the standard one remains alive
in our environment.

11

Typing consists in giving the programmer the ability of partial descriptions
of his algorithms. Let us call A the universe of all the machine objects, A for
anything. Any algorithm can be viewed as a map A — A not everywhere defined.
Typically the Euclid algorithm is defined on the set Nx x Ny of pairs of positive
integers, and returns such an integer. The set Ny is a subset of A, and the
latter contains also the set L of lists of any length; among these lists, some of
them are made of two positive integers; let us call £(Nx,Nx) the corresponding
subtype. The type specification (signature) for the Euclid algorithm E is then

Speaking so, we have used a few subsets of .A. Such a simple example could
imply some wrong ideas. On one hand, one could think two different types should
be disjoint, but it is not the case for £ and L£(Nx,Ny). If not disjoint, one could
then require one of the considered types is included in the other one; for example
L(Nx,Nyx) C £ and it seems sensible to organize the types as a large oriented
graph describing more and more finely the various sets of objects the user works
with. Simple typing systems usually are of this sort.

Another idea has a much larger scope; it consists in deciding a type is nothing
but some subset of A, where the membership property may be verified by an
algorithm. In other words we start only with two predefined types, A and B; the
second one, the Boolean type, has only two objects, T and 1, implemented in Lisp
as the symbols T and NIL. It is then interesting to define a type as an algorithm
A — B everywhere defined; in other words, the algorithm defining a type has the
special signature A — B.

This is sufficient in simple programming, but fails as soon as functional pro-
gramming must be considered. In fact we meet the Russel paradox or if you prefer
the Godel theorem. Let us call 7 the type of... types, that is the set of functional
objects o : A — B. Then no algorithm can verify the membership of 7! Let us
assume 7 is such an algorithm; therefore 7 : A — B is everywhere defined and
7(a) = T if and only if « defines a type, that is, a : A — B is also everywhere
defined. Then one could design the subtype 7' made of the algorithms oo € T
such that a(a) = L, in other words the type of “typing algorithms” « that are
not “element” of the type associated with «. It would be easy to write down the
algorithm 7’ corresponding to the new type 7

7'(a) = if 7(a) then not a(a)
else L

The algorithm 7’ firstly examines whether its argument « is an algorithm A — B;
if yes, the algorithm « may work on any object, in particular on itself, and 7'
returns the opposite of a(«); otherwise the answer is negative. Once the algorithm
7 : A — Bis available, then the object 7/ : A — B is available too, but Cantor and
Russel remarked there is no possible answer for 7/(7'): the answer of 7(7') should
certainly be T, so that we obtain the contradictory relation 7/(7') = not 7'(7’).
Therefore the algorithm 7 may not exist.

The traditional (pseudo-) solution for this difficult problem consists in delaying
the examination of the type of functional objects. If an object « is claimed to be

12

an algorithm 7, — T, this cannot be verified by a general algorithm ; instead,
we must wait for an actual work of the algorithm «: if the computation of a(w) is
asked for, some process can then verify the argument w is really in the type 771;
if yes the computation of a(w) is started and the result ' is examined in turn,
verifying the relation w’ € T5. In other words it is not possible to verify the type
of a functional object in general; the only possible verification consists, each time
the algorithm works, in verifying that the argument and the result have the correct
type; this “verification” is not at all complete, it can be applied only to a finite
number of calls of the algorithm c.

This organization must be recursive: the source and/or target types could in
turn be functional, so that the verifications w € 71 and w’ € T3 maybe must also
be “delayed” with the meaning just explained. In particular if w and w' are both
functional, then the functional object w will probably be used when the object w’
will work. It is only at this time the correctness of the claimed types for w, at
least for this particular use, may be verified. Examples of this sort are showed in
this paper.

In this way, when a whole program is executed, all the particular uses of the
functional objects imply that the type of arguments and result are verified, so that
when the program is finished, for all the invocations of functional objects, types of
input and output are confirmed. Thinking a little about this situation finally leads
to the following conclusion: as far as they have been used, the type rules about
functional objects have been satisfied for this specific run. A quite satisfactory
conclusion.

To illustrate the Common Lisp object system, we take as exercise subject the
implementation of such an organization in Common Lisp, using the main compo-

nents of CLOS.

3.1 Classes as structured types.

A class is firstly a structured type. Each instance (element) of a standard class has
several slots (components, fields, members), and each slot has various properties
described in the definition of the class. The builtin classes, corresponding to old
classical types (integers, symbols, ...), are not standard.

The classes are organized in a hierarchical way: a class may be or not a subclass
of another one, and this defines an order between the defined classes. This order
must be coherent but in general it is not total, that is, for two classes C; and C,,
they may or may not be compared. But any class is a subclass of the maximal
type A, which contains any object, in particular the corresponding class object
itself; to prove this point, we assign this class object to the symbol universe and
verify the object so located is of the type so described; this maximal class A
corresponds to the set (type) A of the previous section.

> (setf universe (find-class ’t)) M
#<BUILT-IN-CLASS T>

13

> (typep universe universe) "M

The types of the proposed organization for typing in this paper are pointed out
by the letters TP only. This is necessary because we have to simultaneously work
with three typing systems:

1. The old one of Common Lisp, still present in our workspace; we call it the
type-system;

2. The class-system which is the main constituent of CLOS;

3. The theoretical proposal of our exercise; it is called the TP-system in this
text.

3.2 The 1pP-class.

Each TP-type is described by an instance of the TP class now to be defined. We
define this class as follows:

> (DEFCLASS TP ()
((name :type symbol :initarg :name :initform (gensym) :reader name))
(:metaclass funcallable-standard-class)) M
#<FUNCALLABLE-STANDARD-CLASS TP>

At this time, only one slot called name is defined for an instance of TP. Four
slot-options have been used with the following meanings:

e The :type option explains the name slot must contain a symbol;

e The :initarg option says the name slot may be initialized through the key-
word :name;

e The :initform option says that if the name slot is not otherwise initialized, it
must be automatically initialized by the gensym function, a predefined Lisp
function which creates from scratch a certainly new symbol;

e Finally the :reader option asks CLOS to construct a method named name
allowing the user to call this method to obtain the value of the slot.

The :metaclass class option is explained later.

A type descriptor of the TP system is always an instance of the TP-class. The
corresponding type is functional or not; if functional the type descriptor is in fact
an instance of the FTP class, a subclass of the TP class, else the type descriptor is an
instance of the DTP class (discriminant type), another subclass of the TP class. The
situation is here particularly simple: a descriptor of type is always a TP instance,
and in fact always an instance of only one subclass, either FTP, or DTP. Much
more complicated situations between classes and subclasses can be designed under

14

CLOS, but this simple situation allows us to show the main points of the nature
of CLOS. In other words, the class diagram is this one.

TP

DTP FTP

The type descriptor is firstly some TP instance, but it is convenient in this situation
to locate the descriptor through a symbol and this is the reason of the name slot: this
slot contains the symbol which in principle locates the TP-type descriptor. So that
we have two (almost) “symmetric” pointers: the symbol points to the descriptor
and the name slot of this descriptor points to this symbol; this is nothing but an
explicit C++-this method. If ever the user is not really concerned by the symbol,
the gensym will automatically generate a symbol for coherency.

TP-instance
symbol —
.

The method name may now be applied to a TP-descriptor to obtain the associate
symbol.

We have explained in the previous section the role of the print-object generic
function. Here, our strategy consists in simply locating TP-types through symbols
to be considered as labels, so that it is natural to display such a type by the
associate symbol.

> (DEFMETHOD PRINT-OBJECT ((tp tp) stream)
(format stream
"#<"’s "'s>||
(class-name (class-of tp)) (name tp))) K
#<STANDARD-METHOD PRINT-O0BJECT (TP T)>

Which is finally displayed through the (implicit) call of this method could be
for example #<DTP INTEGER>; it is a tradition in Lisp to begin the display of a non-
readable object by ‘#<’; this notion is carefully defined in ANSI Common-Lisp, but
it is not the subject of this text. The value of (name tp) is the associate name of
the type-descriptor; the value of (class-of tp) is the class of tp, therefore the
class-object DTP or FTP, and the class-name is the symbol naming this class. We
do not want to explain here the technical details about the format Lisp function,
close to the traditional printf C function, but fantastically more flexible.

It was explained a little earlier the symmetry property between a TP-type de-
scriptor and the symbol locating it. It is a little painful for the user to manage
the necessary pointers, but an appropriate method can be used to make automatic
the process during the initialization stage.

15

> (DEFMETHOD INITIALIZE-INSTANCE :after ((tp tp) &rest rest)
(declare (ignore rest))
(set (name tp) tp)) "M

#<STANDARD-METHOD INITIALIZE-INSTANCE :AFTER (TP)>

The :after qualified method shown above means that after the standard ini-
tialization process, something must be done: the symbol in the name slot must be
bound to the TP-instance itself.

3.3 The prr-class.

We define now the subclass DTP (discriminant type) of the class TP.

> (DEFCLASS DTP (TP)
((sub :type list :accessor sub)
(sup :type list :accessor sup))
(:metaclass funcallable-standard-class)) X
#<FUNCALLABLE-STANDARD-CLASS DTP>

In the first line, the pseudo-argument TP indicates the new class is a subclass
of the class TP. Two new slots are defined, so that a DTP-instance will have three
slots because of the name slot already defined for a TP-instance:

e The sub slot (sub-types) is a list of the types that are known equal or smaller
than the one which is described by the DTP-instance.

e The sup slot (super-types) is a list of the types that are known equal or larger
than the one which is described by the DTP-instance.

Note that :accessor methods (sub and sup) have been required for the cor-
responding slots; this means these methods will allow to read the corresponding
slot but they can also be used to write it or update it. In fact, these slots must in
general be modified after the creation, to maintain the coherence of the TP-system.

We create now the minimal and the maximal type objects of the TP-system,
namely the void and any types. A special initialization work is done here because
the general initialization process will assume these types are already defined in the
environment,.

> (MAKE-INSTANCE ’DTP :name ’void) MM
#<DTP VOID>
> (SETF
(sub void) ’(void)
(sup void) ’(void any)) M
(VOID ANY)

16

> (SET-FUNCALLABLE-INSTANCE-FUNCTION void
#’ (lambda (obj)
(declare (type t obj))
(the boolean nil))) M
#<Interpreted Function (unnamed) @ #x20b9e882>

Firstly the DTP-instance to be assigned to the void symbol is created by the
call of the generic function make-instance, then the sub and sup slots are defined,
and finally, because of the :metaclass class option, it is possible to associate a
functional object to this instance, namely the function which always return nil;
this is nothing but the characteristic function of the void type in our environment.
Example of use of this function:
> (funcall void ’anything) WK
NIL

Because of the funcall, the functional object associate to the object pointed
by the symbol void is called with the symbol anything as argument. Whatever is
the argument, the answer is nil. We can verify the pointer symmetry between the
name slot and the corresponding symbol:

> void M

#<DTP VOID>

> (name void) "X
VOID

We do exactly the same work for the any type, without showing the corre-
sponding part of the session, perfectly symmetric of the void work.

The general process of initialization of a DTP-instance can now be defined.
Firstly we need an add-relation function, allowing us to add a new order relation
to the environment, something like “integer < number”, and all the consequent
relations. This function updates the sub and sup slots of the involved DTP-instances
with the union Lisp function.

> (DEFMETHOD ADD-RELATION ((dtpl symbol) (dtp2 symbol))
(the list
(with-slots (sub) (eval dtpl)
(declare (type list sub))
(with-slots (sup) (eval dtp2)
(declare (type list sup))
(dolist (item sub)
(declare (type symbol item))
(setf (sup (eval item))
(union (sup (eval item)) sup)))
(dolist (item sup)
(declare (type symbol item))
(setf (sub (eval item))
(union (sub (eval item)) sub)))
(1ist dtpl dtp2))))) Wk
#<STANDARD-METHOD ADD-RELATION (SYMBOL SYMBOL)>

A new :after method can then be defined this time for the DTP-type. Again
because this is an :after method, the defined process is added to the standard
initialization process, in particular giving the allocation of the instance, the ini-
tialization of arguments through initargs and initforms.

> (DEFMETHOD INITIALIZE-INSTANCE :after ((dtp dtp)
&key prdc
(dsub ’(void))
(dsup ’(any)))
(declare
(type (function (t) boolean) prdc)
(type list dsub dsup))
(with-slots (name sub sup) dtp
(declare
(type symbol name)
(type list sub sup))
(setf
sub (union dsub (list name))
sup (union dsup (list name)))
(dolist (item dsub)
(declare (type symbol item))
(add-relation item name))
(dolist (item dsup)
(declare (type symbol item))
(add-relation name item)))
(set-funcallable-instance-function dtp prdc)) "X
#<STANDARD-METHOD INITIALIZE-INSTANCE :AFTER (DTP)>

This method for the generic function initialize-instance uses not only the
dtp-instance to be initialized, but also the keyword optional arguments :prdc
(predicate), dsub (direct subtypes) and dsup (direct supertypes). This mechanism
works as follows: if an initialize-instance method uses a keyword argument,
this argument is available to the user when it creates an instance of the corre-
sponding class; usually this argument is used for a small work to be done during
the initialization stage. Artificial example:

> (defclass cc () ((slot :initarg :slot :reader slot))) M

#<STANDARD-CLASS CC>

> (defmethod initialize-instance :after ((cc cc) &key incslot)
(incf (slot-value cc ’slot) (* 2 incslot))) "

#<STANDARD-METHOD INITIALIZE-INSTANCE :AFTER (CC)>

> (setf cc-instance (make-instance ’cc :slot 3 :incslot 5)) M

#<CC @ #x20ccbe3a>

> (slot cc-instance) MK

13

The :slot argument, because it is an :initarg, is used to ordinarily initialize
the unique slot named slot of a c-instance; but the :after initialize-instance
method, then adds twice the other keyword argument :incslot.

For the initialization of a dtp-instance, the :prdc argument is used to define the
predicate function defining the type, which is associated to the the dtp-instance

18

and used when the dtp-instance is funcalled; the :dsub and :dsup arguments allow
the user to give the list of direct sub- and super-types; the method then computes,
with the help of add-relation, all the sub- and super-types. If not used, these
arguments default to an obvious value.

Let us define the TP-version of the boolean type.
> (MAKE-INSTANCE ’DTP
:name ’BOOLEAN
:prdc #’(lambda (obj)
(declare (type t obj))
(the boolean
(if (member obj ’(nil t))
t nil)))) M
#<DTP BOOLEAN>
> (funcall boolean ’t) M
T
> (funcall boolean ’true) K
NIL

We use now the standard number types number, integer and fixnum to give
examples of use of the :dsub and :dsup arguments.

> (make-instance ’dtp :name ’number :prdc #’numberp) M4
#<DTP NUMBER>
> (make-instance ’dtp :name ’fixnum
:prdc #’(lambda (obj)
(declare (type t obj))
(the boolean
(typep obj ’fixnum)))
:dsup ’ (number)) "M
#<DTP FIXNUM>
> (make-instance ’dtp :name ’integer :prdc #’integerp
:dsub ’(fixnum) :dsup ’(number)) K
#<DTP INTEGER>
> (sup fixnum) YK
(INTEGER FIXNUM NUMBER ANY)
> (funcall fixnum 3) MK
T
> (funcall fixnum 3.3) '
NIL
> (funcall number 3.3) '

In particular the relations “fixnum < integer” and “integer < number” have implied
“fixnum < number”. Note in these examples, the prdc slots for number and integer
have been defined through symbols, for example #’numberp points to the functional
value of the symbol numberp, in this case a predefined Lisp function examining
whether its argument is a number. On the contrary, the prdc slot of the fixnum
TP-instance is a function constructed in the call of make-instance.

The user may also construct several new types, and after, explicitly using the

19

add-relation, define the order relations between them.
> (make-instance ’dtp
:name ’tl
:prdc #’(lambda (obj)
(declare (type t obj))
(the boolean (eql obj 1)))) K
#<DTP T1>
> (make-instance ’dtp
‘name ’t12
:prdc #’(lambda (obj)
(declare (type t obj))
(the boolean
(if (member obj ’(1 2))
t nil)))) M
#<DTP T12>

and in the same way the types T123 (three objects 1, 2 and 3) and T1234 (four ob-
jects 1, 2, 3 and 4) are constructed, without using the :dsub and :dsup arguments.
Then the user can maintain the structure of his type set; the mapcar shows the list
of the sup slots of the just defined types.

> (mapcar #’sup (list t1 t12 t123 t1234)) "

((T1 ANY) (T12 ANY) (T123 ANY) (T1234 ANY))

> (add-relation ’t1 ’t12) M

(T1 T12)

> (mapcar #’sup (list t1 t12 t123 t1234)) K

((T1 T12 ANY) (T12 ANY) (T123 ANY) (T1234 ANY))

> (add-relation ’t123 ’t1234) M

(T123 T1234)

> (mapcar #’sup (list tl1 t12 t123 t1234)) K

((T1 T12 ANY) (T12 ANY) (T123 T1234 ANY) (T1234 ANY))
> (add-relation ’t12 ’t123) "

(T12 T123)

> (mapcar #’sup (list t1 t12 t123 t1234)) K

((T12 T1 T123 T1234 ANY) (T12 T123 T1234 ANY) (T123 T1234 ANY) (T1234 ANY))

Which is striking in such a process is the fact that the order relations must
be explained to the machine by the user, again a case of a necessary intuitionistic
work! Of course it would be easy to design a simple generator of enumerative types
which would itself determine the order relations that are satisfied, but, because of
Cantor, Russel and Gdédel, this is definitively impossible for general types.

3.4 The rrr and sr classes.

Now we process the FTP-class, devoted to the functional types. To simplify the
presentation, we consider only the functions 77 — 75, in other words the functions
with exactly one argument. It is easy to prove this is theoretically sufficient, but
practically it is not. The standard trick consists in considering a function with two
arguments as a function defined for a list of two elements. The further technicalities

20

for the case of an arbitrary number of arguments are far from the subject of this
paper, so that we do not want to consider them?®.

The FTP-class is defined as follows:

> (DEFCLASS FTP (TP)
((sorc :type symbol :initarg :sorc :reader sorc)
(trgt :type symbol :initarg :trgt :reader trgt))
(:metaclass funcallable-standard-class)) MK
#<FUNCALLABLE-STANDARD-CLASS FTP>

This time, two slots, sorc (source) and trgt (target), are added to the name
slot of the underlying TP-structure; these slots must be two TP-types, in fact two
symbols locating them, according to our organization. Note these source and
target types can be discriminant or functional.

A functional object will be an instance of the class SF, for safe-function, safe
because the types of argument and result are systematically verified when the
function works:

> (DEFCLASS SF ()
((sorc :type symbol :initarg :sorc :reader sorc)
(trgt :type symbol :initarg :trgt :reader trgt))
(:metaclass funcallable-standard-class)) MK
#<FUNCALLABLE-STANDARD-CLASS SF>

The definition of FTP and SF are almost the same! In the case of an FTP-instance,
the associated function will examine whether some object is in this type. In the
case of an SF-instance, the associated function will be the functional object itself;
the slots sorc and trgt are then additional information about the correct types of
argument and result.

To explain the main part of the work to be done now, let us consider a functional
type 71 — T» and a particular function f declared to be f : T} — T5; in what
cases, this particular f is in the functional type 71 — 75?7 Only one solution: we
must have the order relations: 71 < T} and T, < T4, and the reader understands
now why we took care of these order relations. We therefore need a subtypep
Lisp function to compare types. If both arguments are discriminant types, the
answer is read in a sup slot; if both arguments are functional, the appropriate
comparisons must be applied to the respective sources and targets; if the types are
not of the same nature, one being discriminant and the other one being functional,
the answer is certainly negative®. Lisp translation:

8Common Lisp is also there fantastically more advanced than the other current languages:
the numerous types of argument transfer that are available give the user a great flexibility to
manage the various cases; they are allowed only because of the great mathematical precision of
the definition of the language structure.

Tt would be easy to work only with (pseudo-) “discriminant” types, even for functional objects,
but the organization chosen here makes more obvious the deep difference of nature between both
kinds of types; in particular in this way, a DTP-type and an FTP-type can never be compared.

21

> (DEFUN SUBTYPE-P (tpl tp2)
(declare (type symbol tpl tp2))
(the boolean
(etypecase (eval tpl)
(dtp
(etypecase (eval tp2)
(dtp (if (member tp2 (sup (eval tpl)))
t nil))
(ftp nil)))
(ftp
(etypecase (eval tp2)
(dtp nil)
(ftp (and (subtype-p (sorc (eval tp2)) (sorc (eval tpl)))

(subtype-p (trgt (eval tpl)) (trgt (eval tp2)))))))))) *K
SUBTYPE-P

We cannot try the subtype-p function if the initialization work for FTP-instances
is not finished. Remember in general a TP-instance must also be funcallable to ver-
ify the type of any object. The standard initialization work is therefore completed
as follows.

> (DEFMETHOD INITIALIZE-INSTANCE :after ((ftp ftp) &rest rest)
(declare (ignore rest))
(set-funcallable-instance-function ftp
#’ (lambda (obj)
(declare (type t obj))
(the boolean
(and (typep obj ’sf)
(subtype-p (sorc ftp) (sorc obj))
(subtype-p (trgt obj) (trgt ftp))))))) K
#<STANDARD-METHOD INITIALIZE-INSTANCE :AFTER (FTP)>

This time the associated function is entirely deduced from the sorc and trgt
slots, available after the standard initialization work. You see the only objects
of type some FTP-descriptor are SF-instances, and the appropriate order relations
must be verified between source, target and the considered functional type. Now
we can create a few FTP-instances and do the obvious tests for subtype-p.

> (subtype-p ’fixnum ’integer) X
T
> (subtype-p ’fixnum ’fixnum) K
T
>

(subtype-p ’integer ’fixnum) MM
NIL
> (make-instance ’ftp

:name ’fii

:sorc ’integer

1trgt ’integer) M4
#<FTP FII>

22

> (make-instance ’ftp
:name ’fnf
:sorc ’number
:trgt ’fixnum) M
#<FTP FNF>
> (subtype-p fii fixnum) K
NIL
> (subtype-p fii fixnum) YK
NIL
> (subtype-p fii fnf) M
NIL
> (subtype-p fnf fii) MK

There remains to define the initialization of the SF-instances and to make them
work. An SF-instance is funcallable and the associate function will be the ordinary
function the user intends to define, with the type verifications automatically added.
Lisp translation:

> (DEFMETHOD INITIALIZE-INSTANCE :after ((sf sf) &key f)
(declare (type (function (t) t) f£))
(set-funcallable-instance-function sf

(with-slots (sorc trgt) sf
#’ (lambda (arg)
(declare (type t arg))
(unless (funcall (eval sorc) arg)
(error "The argument ~S should be of type ~S."
arg sorc))
(the t
(let ((rslt (funcall f arg)))
(unless (funcall (eval trgt) rslt)
(error "The result ~S should be of type ~S."
rslt trgt))
rslt)))))) K
#<STANDARD-METHOD INITIALIZE-INSTANCE :AFTER (SF)>

> (setf 2+ (make-instance ’sf
:sorc ’integer
:trgt ’integer
:f #’(lambda (n) (+ n 2)))) M
#<SF @ #x20cb326a>
> (funcall 2+ 5)
7
> (funcall 2+ 5.5) ™
Error: The argument 5.5 should be of type INTEGER.

23

3.5 Improvements.

But it is a little painful to use the make-instance method with its keywords, so
that we use another aspect of the Common Lisp environment, the macro generator
to make automatic the appropriate call to make-instance. We detail the work for
the creation of SF-instances.

> (DEFMACRO MAKE-SF (sorc trgt f)

¢ (make-instance ’sf

:sorc ,sorc :trgt ,trgt :f ,f)) MK

MAKE-SF
> (macroexpand

> (make-sf ’number ’integer #’(lambda (n) (+ n 5))))) K
(MAKE-INSTANCE ’SF :SORC ’NUMBER :TRGT ’INTEGER :F #’(LAMBDA (N) (+ N 5)))
> (setf 5+ (make-sf ’number ’integer

#’ (lambda (n) (+ n 5)))) "X

#<SF @ #x20bbf6da>
> (funcall 5+ 6) X
11
> (funcall 5+ 6.5) "™
Error: The result 11.5 should be of type INTEGER.

The defmacro must be considered as defining a source text translator converting
a call to make-sf into some make-instance. The translation mechanism is tested
by using the macroexpand Lisp function. Then the 5+ function is really created and
then used. This time the error is in the result type.

Constructing the DTP and FTP instances can be processed in the same way. We
do not show the details.

To explain the coherence of this type system, we add another stage of verifica-
tion: a discriminant type is essentially a function A — B, so that the functional
type of this function should be also verified. Let us solve this challenge. We slightly
modify the DTP-initializer.

> (DEFMETHOD INITIALIZE-INSTANCE :after ((dtp dtp)

(set-funcallable-instance-function dtp
(make-sf ’any ’boolean prdc))) M
#<STANDARD-METHOD INITIALIZE-INSTANCE :AFTER (DTP)>

As an example, let us consider the frequent case of a user who forgets the
positive answer of the member function is not the boolean T:

> (member 3 (1 2 3 4 5)) M
(3 4 5)

Such a user could erroneously define an enumerative type as follows:

24

> (make-dtp ’colors

#’ (Lambda (obj)

(member obj ’(red orange yellow green blue indigo violet)))) M

#<DTP COLORS>
> (funcall colors ’black) K
NIL
> (funcall colors ’blue) M
Error: The result (BLUE INDIGO VIOLET) should be of type BOOLEAN.

and you see the type error... during the type verification is detected and a clear
message is displayed. This cannot be applied to the boolean type itself, because an
infinite loop would be generated. You see also in such a case the functional object
associated with an instance (DTP) is not purely functional but another (SF)-instance
which in turn has an associated functional object.

3.6 The function compose.

It is traditional in discussions between Lisp and C++ or Java programmers to
give the example of the compose function to make obvious how C++ is weak when
functional programming is involved; see at [3] how the “official” solution in C++
is technically difficult. We give here a simple Lisp solution, furthermore at once
valid for any data types.

Firstly we construct the pair and any-sf types!?:
> (make-dtp ’pair
#’ (lambda (obj)
(and (consp obj)
(consp (cdr obj))
(null (cddr obj))))) K
#<DTP PAIR>
> (make-dtp ’any-sf
#’ (lambda (obj)
(typep obj ’sf))) MK
#<FTP ANY-SF>

Then the 2-sf-that-may-be-composed type may be defined!!.

10Exercise: a previous version of this paper had the claimed “subtle” definition of the any-sf
type: (make-ftp ’any-sf ’void ’any); this really defines a type, but the compose SF-instance
would not have the any-sf type, why? Analyzing precisely the difference between both defini-
tions for any-sf is quite interesting and shows that any strict typing system cannot be entirely
satisfactory, some freedom must necessarily be given to the programmer ; it is exactly the point
of view of the Common Lisp designers.

HExercise: Design a make-subdtp constructor to make automatic the generation of the : dsup
argument and using the predicate associated to the initial type.

25

> (make-dtp ’2-sf-that-may-be-composed
#’ (Lambda (obj)
(and (funcall pair obj)
(funcall any-sf (first obj))
(funcall any-sf (second obj))
(subtype-p (trgt (second obj)) (sorc (first obj)))))
:dsup ’(pair)) K
#<DTP 2-SF-THAT-MAY-BE-COMPOSED>

Now the compose functional object is constructed where the types at any level
are verified.

> (setf compose
(make-sf ’2-sf-that-may-be-composed ’any-sf
#’ (lambda (arg)
(let ((sf2 (first arg))
(sf1 (second arg)))
(make-sf (sorc sfl) (trgt sf2)
#’ (lambda (arg)
(funcall sf2 (funcall sfl arg)))))))) MK
#<SF @ #x20ba9602>
> (setf 4+ (funcall compose (list 2+ 2+))) M
#<SF @ #x20baeba2>
> (funcall 4+ 5) *H
9
> (funcall 4+ 5.5) "
Error: The argument 5.5 should be of type INTEGER.

More subtle example: the composed function is in the right type with respect
the argument, but a used function is not.

> (setf 3/2+ (make-sf ’integer ’integer

#7 (lambda (x) (+ x 3/2)))) K
#<SF @ #x20bca3ba>
> (setf 3+ (funcall compose (list 3/2+ 3/2+))) MK
#<SF @ #x20bcff8a>
> (funcall 3+ 6) "M
Error: The result 15/2 should be of type INTEGER.

The last type-error example; this time, the compose function itself observes its
argument does not have the required type.

> (funcall compose (list compose compose)) MM
Error: The argument (#<SF @ #x206b77e2> #<SF @ #x206b77e2>)
should be of type 2-SF-THAT-MAY-BE-COMPOSED.

26

4 CLOS and Mathematical Structures.

We give a small example to explain how CLOS can easily be used to implement
the classical mathematical structures. Most often, an object of some type in math-
ematics is a structure with several components, frequently of functional nature.
In this small presentation, we consider the case of a user who wants to handle
sets, magmas, associative magmas and monoids ; these simple particular cases are
sufficient to understand how CLOS gives the right tools to process mathematical
structures. In the following section, we will describe how these simple methods
have been used in [4] to implement the main structures of Algebraic Topology such
as chain complexes, simplicial sets, simplicial groups, Hopf algebras, and also the
various morphisms between these objects.

4.1 Sets.

We define a SET class whose instances correspond to the sets of the classical set
theory.

> (DEFCLASS SET ()
((name :type symbol :initarg :name :initform (gensym) :reader name)
(prdcf :type function :initarg :prdcf :reader prdcf)
(cmprf :type function :initarg :cmprf :reader cmprf))) K
#<STANDARD-CLASS SET>

In this organization, a set is made of three slots. The name slot has the same
role as for the types of the previous section: it is only an auxiliary tool to locate
easily the sets; the slot contains the symbol that locates the set, and we make
automatic this organization:

> (DEFMETHOD SHARED-INITIALIZE :after ((set set) slot-names &rest rest)
(declare (ignore slot-names rest))
(set (name set) set)) M

#<STANDARD-METHOD SHARED-INITIALIZE :AFTER (SET T)>

The appropriate print-object method; when a set or an object of a subclass
will be displayed, the output will show the corresponding class and the name:

> (DEFMETHOD PRINT-O0BJECT ((set set) stream)
(declare (type stream stream))
(format stream "#<~S ~S>" (class-name (class-of set)) (name set))
(the set set)) M

#<STANDARD-METHOD PRINT-0BJECT (SET T)>

The second slot of a set, namely the prdcf slot (predicate-function), contains
a function which can be called to examine whether some arbitrary object is an
element of the set. To use easily this slot, we define two functions, owns and in;
the first one may answer yes or no, that is, t or nil; and the second one generates

27

an error if the membership relation is not satisfied'2.
> (DEFUN OWNS (set obj)
(declare
(type set set)
(type t obj))
(the boolean
(funcall (prdcf set) obj))) K
OWNS
> (DEFUN IN (set obj)
(declare
(type set set)
(type t obj))
(if (funcall (prdcf set) obj)
obj
(error "The object ~S is not in ~S."

obj set))) 'K

The explanation of the third slot cmpr is given a little later; we construct the
set N of non-negative integers.

> (MAKE-INSTANCE ’set
:name ’N
:prdcf #’(lambda (obj)
(declare (type t obj))
(the boolean
(and (integerp obj)
(>= obj 0))))
rcmprf #7=) MM
#<SET N>

> (owns N +1) M
T

> (owns N -1) X
NIL

The cmprf slot is essential in this context. There are frequently strong differ-
ences between an element of a set as thought by the mathematician and its possible
machine representations, the s being important. The notion of equality in math-
ematics is “primitive” and rarely logically considered by mathematicians. On the

12The sections about our two main didactical examples, typing and mathematical categories,
are entirely independent; but the lucid reader will observe the root class of the second application,
namely the set class, can after all be also considered as a typing system in a mathematical
context!

28

contrary, this notion is crucial in Computer Science, and Common Lisp is by far
the most precise language from this point of view'3. Here, we want to let the user
freely decide how equality is defined between the elements of his sets, and this
is the role of the cmprf slot (comparison function). For example, the comparison
between elements in the set N is done by the Lisp predefined function #’=, in par-
ticular appropriate to compare integers. Again we define a function cmpr to easily
use the cmprf slot of a set.

> (DEFUN CMPR (set elmnl elmn2)
(declare
(type set set)
(type t elmnl elmn2))
(the boolean
(funcall (cmprf set)
(in set elmnl) (in set elmn2)))) "M

Note the use of the in function to verify that the compared elements are really
in the considered set. Now we can compare two elements of N.

> (cmpr N 4 9) "H

NIL

> (cmpr N 4 -9) "

Error: The object -9 is not in #<SET N>.

Let us construct now the set z/5, that is the set of integers modulo 5. In our
context, the most elegant method to implement this set consists in admitting a
representation of an element of Z/5 by an arbitrary integer, possibly negative or
> 4, and to define the comparison with the help of the mod function, a predefined
Lisp function.

> (MAKE-INSTANCE ’SET
:name ’Z/5
:prdcf #’integerp
:cmprf #’(lambda (elmnl elmn2)
(= 0 (mod (- elmnl elmn2) 5)))) "X
#<SET Z/5>
> (cmpr Z/5 4 9) "

This time the comparison between 4 and 9 is positive: these machine integers
are different representations of the same mathematical object. You understand it
is easy in this framework to define quotient sets.

13In particular all the standard predefined Lisp functions allow the user to freely define the
equality relation to be used for every particular call.

29

4.2 Magmas.

A magma is a set provided with a law of composition without any particular
required property. It is a set with an additional ingredient, a function able to work
on two elements of the magma and returning another element, their composition
according the composition law. It is natural in this context to define the magma
subclass of the set class; any magma instance is a set with a further slot, the lawf
slot.

> (DEFCLASS MAGMA (set)
((lawf :type function :initarg :lawf :reader lawf))) MK
#<STANDARD-CLASS MAGMA>

Again a function is added to the environment allowing the user to easily refer
the lawf slot of a magma.

> (DEFMETHOD LAW ((magma magma) &rest rest)
(case (length rest)
(1 (in magma (first rest)))
(2 (in magma
(funcall (lawf magma)
(in magma (first rest))
(in magma (second rest)))))
(otherwise
(error "Non-correct arguments in:~@
(LAW "S™{ "S™})." magma rest)))) "M
#<STANDARD-METHOD LAW (MAGMA)>

We intend in general to allow the user to refer the law defining a magma with
an arbitrary number of elements, at least if this makes sense. In such a case,
CLOS allows the user to define a generic function, here the law generic function,
with one mandatory argument, called here magma and any number of other argu-
ments put together in a list reachable through the symbol rest!. The ingredient
(magma magma) in the parameter list has two meanings: the first magma names the
first parameter, and the second magma explains the corresponding argument must
be of class magma, otherwise the method is not applicable.

For a magma without any further claimed property, it is sensible to allow one
argument, and then this argument is returned, or two arguments and then the
product of these arguments according to the composition law is returned. Other-
wise an error message is displayed. Note how the in function is used to verify the
correct type of the arguments.

We have defined the set N and it is possible to transform it now into a magma.
Note how the standard initialization process of an instance allows the user to
obtain such a conversion without any further work.

4More precisely, the symbol &rest marks in the parameter list a new zone, in this case with a
symbol locating the “other” arguments; the Lisp programmer almost always chooses the symbol
rest to locate this list.

30

> (change-class N ’magma
:lawf #’(lambda (nl n2)
(* n1 (- n2 3)))) X
#<MAGMA N>

> (law N 4 5) "X

8

> (law N 4 -5) K

Error: The object -5 is not in #<MAGMA N>.
> (law N 1 0) »

Error: The object -3 is not in #<MAGMA N>. K
> (law N 4) »u

4

> (law N 4 5 6) "4

Error: Non-correct arguments in:

(LAW #<MAGMA N> 4 5 6).

The constructed magma in fact is not correct; let us construct a classical correct
one:

> (make-instance ’magma
:name ’Q
:prdcf #’rationalp
:cmprf #°=
:lawf #7+) MK
#<MAGMA Q>
> (law Q 3/2 2/3)
13/6
> (law Q 3/2 2/3 4/5) "
Error: Non-correct arguments in:
(LAW #<MAGMA Q> 3/2 2/3 4/5).

This is simply the rational set Q provided with the standard addition law. The
last result is non-satisfactory: the law is associative and it should be possible
to make operate this law on an arbitrary number of arguments. The solution
consists in defining a new class A-MAGMA (associative magma). No new slot in this
class: membership of the new class only means the object, some magma, has an
associative law.

> (DEFCLASS A-MAGMA (magma) ()) K
#<STANDARD-CLASS A-MAGMA>

But this new class may be used to define a new method for the generic function
law; in this new case, an arbitrary positive number of arguments can be used. A
simple recursive process defines the new method from the old one: if the argu-
ment number is three or more, the computation is decomposed, otherwise the next
method is called; the law is associative and this definition is coherent.

31

> (DEFMETHOD LAW ((a-magma a-magma) &rest rest)
(if (> (length rest) 2)
(law a-magma
(in a-magma (first rest))
(apply #’law a-magma (rest rest)))
(call-next-method))) "
#<STANDARD-METHOD LAW (A-MAGMA)>

You see in particular how the very basic Lisp function apply allows to recall the
same method with one argument removed. We inform now the environment that
our magma Q is associative:

> (change-class Q ’a-magma) K
#<A-MAGMA Q>

which allows us to compute the composition in Q of an arbitrary number of ele-
ments. Because the magma method will eventually be called, a possible type fault
is intercepted.

> (law Q 1/2 2/3 3/4 4/5) "X

163/60

> (law Q 1/2 2/3 0.75 4/5) "

Error: The object 0.75 is not in #<A-MAGMA Q>.

4.3 Monoids.

And the process can be continued for ever and ever, allowing the user to enrich
as far as necessary the considered mathematical structures. Here, the following
step consists in considering the structure of monoids. A monoid is an associative
magma with a unit. Only a unit slot is to be added to the a-magma structure. It
is impossible in general to verify the claimed unit e satisfies the required prop-
erty, but however the property e * e = e can be tested; doing this test through
a shared-initialize method allows it to be used in a make-instance, or in a
change-class, Or in a reinitialize-instance as well. The membership of the
monoid may be also tested.

> (DEFCLASS MONOID (a-magma)
((unit :initarg :unit :reader unit))) M
#<STANDARD-CLASS MONOID>
> (DEFMETHOD SHARED-INITIALIZE :after ((monoid monoid) slot-names &rest rest)
(let ((unit (unit monoid)))
(unless (owns monoid unit)
(error "Sorry, the claimed unit ~S is not in ~S."
unit monoid))
(unless (cmpr monoid unit (law monoid unit unit))
(error "Sorry, ~S does not look like a unit in ~S."
unit monoid)))) K
#<STANDARD-METHOD SHARED-INITIALIZE :AFTER (MONOID T)>

32

> (change-class Q ’monoid :unit 1) MK

Error: Sorry, 1 does not look like a unit in #<MONOID Q>.
> (reinitialize-instance Q :unit 0) MK

#<MONOID Q>

Note the error about the unit is intercepted after the standard initialization
process, so that our Q is then become a monoid, as observed in the error message,
but a wrong monoid; it is natural in this situation to use reinitialize-instance
to redefine the object. A little more sophisticated use of :around methods would
allow us to verify the coherence before changing class, and to refuse it if detected
non-coherent.

It is interesting to convert Z/5, currently a set, into a monoid with the unit 10,
why not.

> (change-class Z/5 ’monoid

:lawf #7+

:unit 10) X
#<MONOID Z/5>
> (cmpr Z/5 10 (law Z/5 10 10)) "M

In a monoid, the composition law may logically be called for zero argument;
in this case, the unit is the result. A new method for the generic function law is
therefore stacked.

> (DEFMETHOD LAW ((monoid monoid) &rest rest)
(if (= 0 (length rest))
(unit monoid)
(call-next-method))) "
#<STANDARD-METHOD LAW (MONOID)>
> (list (law Q) (law Z/5)) ™
(0 10)

This looks a little artificial because (1aw Q) and (unit Q) are in fact synony-
mous, but think of the frequent case where you have to process a statement like
(apply #’law Q some-list) where the last argument is a computed list, which
could be sometimes empty; with our new monoid method for the law generic func-
tion, even if the value of some-1ist is the empty list, the correct process is applied.

4.4 What about the morphisms?

So far we have only worked with the objects of the mathematical categories of
sets, magmas, associative magmas, monoids. What about the morphisms? The
solution is easy, but needs a little lucidity about the usual compatibility properties
with ambient structures. We only sketch a possible solution, the expansion of
which being obvious.

The root of our classes of morphisms is the class of morphisms between sets.

33

> (DEFCLASS SET-MRPH ()
((sorc :type set :initarg :sorc :reader sorc)
(trgt :type set :initarg :trgt :reader trgt)
(f :type function :initarg :f :reader f))) "
#<STANDARD-CLASS SET-MRPH>

A set-mrph instance is essentially a source, some set, a target, some set, and
a function mapping any object of the source to an object of the target. Again
the standard functional properties of Common Lisp give the developper the right
environment. We could also hide the f slot into the special hidden functional slot
of a funcallable instance, as we did for the TP-instances in Section 3; it is only a
question of taste.

We need something to be able to “funcall” a set-mrph:

> (DEFUN ? (mrph elmn)
...
code which:
1) verifies elmn is in the source of mrph;
2) applies the f slot of mrph to elmn to compute the image;
3) verifies this image is in the target of mrph;
4) returns the image.

)) X

?

> (7 some-set-mrph some-source-element) MK

Now a magma-morphism is nothing but a set-morphism satisfying the standard
compatibility properties with the magma structures of source and target. So that:

> (DEFCLASS MAGMA-MRPH (set-mrph) ()) 'K
#<STANDARD-CLASS MAGMA-MRPH>

and the same for a-magma-mrph, monoid-mrph and so on. Note this organization
allows the user to clearly distinguish a set-morphism between magmas from a
magma-morphism between the same magmas; in the first case the compatibility
properties are not satisfied or maybe only non-required; in the second case the
compatibility properties are assumed satisfied. Such morphisms are intensively
used in the Kenzo program and considered in the following section.

4.5 What about functors?

Working with categories, the mathematician inevitably will have to work with
functors. In this organisation a tower of compatible functors is nothing but one
generic function with various methods corresponding to the different cases. For
example the cartesian product functor is defined for sets, magmas, associative
magmas, monoids, and many other categories. It is sufficient to implement all
these functors in one generic function, as follows.

34

> (DEFMETHOD PRODUCT ((setl set) (set2 set))
(make-instance ’set
:name (intern (format nil "~“S-PRDC-"S" (name setl) (name set2)))
:prdcf #’(lambda (obj)
(declare (type t obj))
(the boolean
(and (listp obj)
(= 2 (length obj))
(owns setl (first obj))
(owns set2 (second obj)))))
:cmprf #’(lambda (pairl pair2)
(declare (type list pairl pair2))
(the boolean
(and (cmpr setl (first pairl) (first pair2))
(cmpr set2 (second pairl) (second pair2))))))) K
#<STANDARD-METHOD PRODUCT (SET SET)>
> (product N Z/5) X
#<SET N-PRDC-Z/5>
> (cmpr N-prdc-Z/5 (4 5) (9 5)) WK
NIL
> (cmpr N-prdc-Z/5 (4 5) (4 10)) K
T
> (cmpr N-prdc-Z/5 ’(4 5) ’(-4 10)) "
Error: The object (-4 10) is not in #<SET N-PRDC-Z/5>.

You see how clear and natural is the code of the product method. It is only
a question of constructing the appropriate prdcf and cmprf slots, some functions,
from the corresponding slots of the arguments set1 and set2; the process is always
the same, so that the Lisp closures, a subtle notion not available in C++ or Java's,
give the user the natural tool, even he does not know exactly what a closure is!

For the richer structures of magma, a-magma and monoid, it is sufficient to write
down new specific methods for the same generic function, defining the additional
work to be done, using the previous work thanks to call-next-method.

> (DEFMETHOD PRODUCT ((magmal magma) (magma2 magma))
(change-class (call-next-method) ’magma
:lawf #’(lambda (pairl pair2)
(1ist
(law magmal (first pairl) (first pair2))
(law magma2 (second pairl) (second pair2)))))) M
#<STANDARD-METHOD PRODUCT (MAGMA MAGMA)>
> (DEFMETHOD PRODUCT ((magmal a-magma) (magma2 a-magma))
(change-class (call-next-method) ’a-magma)) MM
#<STANDARD-METHOD PRODUCT (A-MAGMA A-MAGMA)>
> (DEFMETHOD PRODUCT ((monoidl monoid) (monoid2 monoid))
(change-class (call-next-method) ’monoid
:unit (list (unit monoidl) (unit monoid2)))) K
#<STANDARD-METHOD PRODUCT (MONOID MONOID)>

15 available in Maple since the Release 5, but no OOP in Maple. ..

35

> (SETF Q2 (product Q Q)) 'K

#<MONOID Q-PRDC-Q>

> (SETF Q4 (product Q2 Q2)) K

#<MONOID Q-PRDC-Q-PRDC-Q-PRDC-Q>

> (law Q4 °((1/2 2/3) (3/4 4/5))
»((5/6 6/7) (7/8 8/9))) ™

((4/3 32/21) (13/8 76/45))

> (unit Q4) "

(0 0) (0 0))

Note also the applicability rule for methods of a generic function implies the
product of a monoid by a magma, for example, will fortunately be a magma.

> (product Q N) K
#<MAGMA Q-PRDC-N>

5 CLOS and the Kenzo program.

The Kenzo program is the first significant machine program about classical Alge-
braic Topology. It is not only a program implementing various known algorithms;
new methods have been developped to transform the main “tools” of Algebraic
Topology, mainly the spectral sequences, not at all algorithmic in the traditionnal
organisation, into actual computing methods.

5.1 An example of Kenzo work.

Let us show a simple example to illustrate which is possible with this program.
The homology group HsQ*Moore(Z,,4)' is “in principle” reachable thanks to old
methods, see [2], but experience shows even the most skilful topologists meet some
difficulties to determine it, see |7, 9]. With the Kenzo program, you construct the
Moore space.

> (setf md (moore 2) &
[K1 Simplicial-Set]

The program returns the Kenzo-object #1, a simplicial set, that is, a combi-
natorial version of the Moore space which is asked for, and this object is assigned

to the symbol m4. Then you construct the third loop-space of this Moore space.
L 1oop_ Spa S
[K15 Simplicial-Group]

16The space Moore(Zs,4) is a “canonical” space having only non-trivial homology in dimen-
sion 4, namely Zs, and Q*Moore(Zs2,4), its third loop space, is the space of continuous maps
from the 3-sphere S to this Moore space; the challenge is to determine the fifth homology group
of this functional space.

36

The combinatorial version of the loop space is highly infinite: it is a combinato-
rial version of the space of continuous maps S® — Moore(Zs, 4) but functionnally
coded as a small set of functions in a simplicial-group object, that is, a simpli-
cial set with an added group structure compatible with the simplicial structure.
Finally the fifth homology-group is asked for.

> (homology o3m4 5) K
Homology in dimension 5 :
Component Z/2Z

Component Z/2Z

Component Z/2Z

Component Z/2Z

Component Z/2Z
---done---

and the result H;Q*Moore(Zs,4) = Z3 is obtained in 1m30s with a PC 400MHZ. In
natural situations a little more complicated, the Kenzo program has already com-
puted new homology groups unreachable so far with “classical” Algebraic Topology,
even from a theoretical point of view.

5.2 Kenzo classes.

Figure 2 shows the class diagram of Kenzo objects. The situation is to be compared
with which was explained in Section 4 about the most elementary mathematical
structures. The lefthand part of the class diagram is made of the main mathemati-
cal categories that are used in combinatorial Algebraic Topology. A chain complex
is a graded differential module; an algebra is a chain complex with a compatible
multiplicative structure, the same for a coalgebra but with a comultiplicative!”
structure. If a multiplicative and a comultiplicative structures are added and if
they are compatible with each other in a natural sense, then it is a Hopf algebra,
and so on.

The hopf-algebra and simplicial-group classes are typical cases where a multi-
heritage situation is met; we show the actual Kenzo definitions of these classes.

(DEFCLASS HOPF-ALGEBRA (coalgebra algebra)
0))

(DEFCLASS SIMPLICIAL-GROUP (kan hopf-algebra)
((grml :type simplicial-mrph :reader grmll)
(grin :type simplicial-mrph :reader grinl)))

You see the definition of the hopf-algebra class is particularly striking; it ex-
plains that a Hopf-algebra is nothing but an algebra and a coalgebra; the com-
patibility conditions between both structures cannot be verified by a program and
they necessarily depend on the programmer’s “lucidity”. In the same way, a simpli-

1"That is, some cooperator A — A ® A.

37

‘kenzo—object‘

/

‘ chain-complex ‘ reduction

N

|

‘simplicial—set‘ ‘hopf—algebra‘

/ ‘ simplicial—mrph‘

‘ simplicial-group ‘

‘ ab-simplicial-group ‘

Figure 2: The Kenzo class diagram.

38

ctal group is a kan object and a hopf-algebra object sharing some common data,
namely a coalgebra structure, with two further slots, grml (group multiplication)
and grin (group inversion), those slots being some simplicial morphisms.

In such a multi-heritage situation, it is important the call-next-method func-
tion works as hoped-for. Look at this artificial situation just to show the process;
The C class has two subclasses €D and CE, which have in common the subclass CDE;
the artificial initialize-instance methods let you verify that call-next-method
remembers its story when deciding what really the next method must be. Here,
when processing the CD-level, call-next-method “remembers” the process was ini-

tiated from the CDE-level, so that the CE-level stage is not forgotten.
C

> (defclass C () () ™

#<STANDARD-CLASS C>

> (defclass CD (C) ()) .

#<STANDARD-CLASS CD>

> (defclass CE (C) () "«

#<STANDARD-CLASS CE>

> (defclass CDE (CD CE) ()) "W

#<STANDARD-CLASS CDE>

> (defmethod initialize-instance ((c c) &rest rest)
(print "C-initialization")) K

#<STANDARD-METHOD INITIALIZE-INSTANCE (C)>

> (defmethod initialize-instance ((cd cd) &rest rest)
(print "beginning CD-initialization")
(call-next-method)
(print "finishing CD-initialization")) K

#<STANDARD-METHOD INITIALIZE-INSTANCE (CD)>

> (defmethod initialize-instance ((ce ce) &rest rest)
(print "beginning CE-initialization")
(call-next-method)
(print "finishing CE-initialization")) K

#<STANDARD-METHOD INITIALIZE-INSTANCE (CE)>

> (defmethod initialize-instance ((cde cde) &rest rest)
(print "beginning CDE-initialization")
(call-next-method)
(print "finishing CDE-initialization")) K

#<STANDARD-METHOD INITIALIZE-INSTANCE (CDE)>

> (make-instance ’C) K

"C-initialization"

#<C @ #x212184da>

> (make-instance ’CD) M

"beginning CD-initialization"

"C-initialization"

"finishing CD-initialization"

#<CD @ #x21220e8a>

39

> (make-instance ’CE) "X

"beginning CE-initialization"
"C-initialization"

"finishing CE-initialization"

#<CE Q@ #x2122698a>

> (make-instance ’CDE) MK

"beginning CDE-initialization"

"beginning CD-initialization"

"beginning CE-initialization" <—+¢+—<«—!I
"C-initialization"

"finishing CE-initialization"

"finishing CD-initialization" <¢—+—¢—I!!!
"finishing CDE-initialization"

#<CDE @ #x2122c03a>

And you may also play with the auziliary :before, :after and :around methods
to order as you like the various initialization steps. As a typical example, when
the essential part of the initialization work of any kenzo-object is done, then the
object is finally pushed in a list which is used later as explained in the next section.
This is obtained as follows.

(DEFMETHOD INITIALIZE-INSTANCE :after ((k kenzo-object) &rest rest)
(push k *k-list*))

In this way this is done if and only if the initialization work is successfully
finished, even for the more specialized structures: if for example the specialized
initialization work for a simplicial set fails and stops on error, then the pushing
statement concerning the weakest structure is not run.

5.3 Optimizing computations.

The Kenzo program is certainly one of the most functional programs ever written
down. It is frequent that several thousands of functions are present in memory,
each one being dynamically defined from other ones, which in turn are defined
from other ones, and so on. In this quite original situation, the same calculations
are frequently asked again. To avoid repeating these calculations, it is better to
store the results and to systematically examine for each calculation whether the
result is already available.

Because of this situation, it is very important not to have several copies of the
same function; otherwise it is impossible for one copy to guess some calculation
has already been done by another copy. This is a very important question in this
program, so that the following strategy has been used. Each Kenzo object has
a rigorous definition, stored as a list in the dfnt slot of the object. This is the
main reason of the top class kenzo-object: making easier this process. The actual
definition of the kenzo-object class:

40

(DEFCLASS KENZ0-0BJECT ()

((idnm :type fixnum :reader idnm)
(dfnt :type list :reader dfnt)
(prpr :type list :reader prpr)
(cmmn :type list :reader cmmn)))

Then, when any kenzo-object is to be considered, its definition is constructed
and the program firstly looks in *k-list* whether some object corresponding to
this definition already exists; if yes, no kenzo-object is constructed, the already
existing one is simply returned. Look at this small example where we construct the
second loop space of S3, then the first loop space, and then again the second loop
space. In fact the initial construction of the second loop space required the first
loop space, and examining the identification number K?? of these objects shows
that when the first loop space is later asked for, Kenzo is able to return the already
existing one.

> (setf s3 (sphere 3)) MK

[K372 Simplicial-Set]

> (setf 02s3 (loop-space s3 2))
[K380 Simplicial-Group]

> (setf o0s3 (loop-space s3 1)) MK
[K374 Simplicial-Group]

> (setf 02s3-2 (loop-space s3 2)) M
[K380 Simplicial-Groupl

> (eq 02s3 02s3-2)

The last statement shows the symbols 02s3 and 02s3-2 points to the same
machine address. In this way we are sure any kenzo-object has no duplicate, so
that the memory process for the values of numerous functions cannot miss an
already computed result. Let us look some dfnt slots:

> (dfnt 02s3) M

(LOOP-SPACE [K374 Simplicial-Group])
> (dfnt (k 374)) M

(LOOP-SPACE [K372 Simplicial-Set])

> (dfnt (k 372)) ™

(SPHERE 3)

You see in this way the history of the construction process can be freely exam-
ined by the user, which is important in the development stage.

5.4 Delaying initializations.

The complete structure of a Kenzo object is extremely complicated, and many
components are often useless. Another CLOS feature is therefore used to avoid
the maybe non-necessary initialization works. The following artificial example
explains how this is possible; it is a kind of autoloading mechanism, elegant, easy

41

to be used, and useful to avoid initializing needless slots. We assume a C class,
where each C object has two slots, s11 and s12; the first one is necessary, but the
second one would be the result of a compler process here simulated as being 1000
times the value of the first one.

> (DEFCLASS F ()

((s1l1 :type integer :initarg :sll :reader sl1)
(s12 :type integer :reader s12))) MK

#<STANDARD-CLASS F>

> (DEFMETHOD SLOT-UNBOUND (class (fi f) (slot-name (eql ’s12)))
(declare (ignore class))
(setf (slot-value fi ’s12) (* 1000 (s1l1 £i)))
(s12 fi)) "M

#<STANDARD-METHOD SLOT-UNBOUND (T F (EQL SL2))>

> (SETF FI (make-instance ’f :s11 23)) MK

#<F Q@ #x213a7b8a>

> (SLOT-BOUNDP fi ’s12) 'K

NIL

> (812 fi) M

23000

> (SLOT-BOUNDP fi ’sl12) "4
T

You see the generic function slot-unbound is available which is called by the
error manager when a non-initialized slot is asked for. The standard process finally
does generate an error. But the user can write specialized methods for this generic
function, allowing him instead to initialize the missing slot by some process using
the available information. You see the initialization process lets uninitialized the
s12 slot of the F-instance located by £i, but when this slot is asked for, the “right”
value is in fact returned! A new examination by slot-boundp shows the slot is now
bound.

This process is extremely convenient to organize the data as a living object
where each time some missing component is questionned, an automatic “repairing
process” is started, computing the missing information. The process may be re-
cursive, so that if, in the repairing process, some other datum is again missing, an
other repairing process is recursively started, and so on.

This possibility is intensively used in the Kenzo program. Look at this small
experience. Firstly we reinitialize the environment by cat-init. When the fourth
loop space 255 is constructed, you see only 26 Kenzo objects are present in the
environment. Then the homology group H>Q*S® is asked for. The answer, Z, is
quickly obtained, but the number of present Kenzo objects is now 504; an enormous
set of slot-unbound calls has generated the construction of 478 new Kenzo objects,
necessary to do the calculation. Furthermore a :before method had been added
just to count the number of slot-unbound calls, a convenient debugging trick; you
see the homology calculation has recursively generated 240 slot-unbound calls.

> (cat-init) "M
---done---

42

> (setf sb5 (sphere 5)) "

[K1 Simplicial-Set]

> (setf o4sb5 (loop-space sb 4))

[K21 Simplicial-Group]

> (length *k-listx) MK

26

> (setf counter 0) 'K

0

> (defmethod slot-unbound :before (class instance slot)
(declare (ignore class instance slot))
(incf counter)) M

#<STANDARD-METHOD SLOT-UNBOUND :BEFORE (T T T)>

> (homology o04s5 2) 'K

Homology in dimension 2 :

Component Z/2Z

---done---

> (length *k-list*) M

504

> counter MK

240

5.5 Mixing low level and high level programming.

Computing time is crucial for the applications of the Kenzo program. The com-
plexity of the implemented algorithms is highly exponential, so that the developer
must carefully consider how he can improve the computing time of the written
down Lisp code. In particular, if the heart of the program may be written close to
the machine language, large amounts of computing time can be saved. But con-
versely this must not penalize the readability and the modularity of the program.

Which is striking with the current version of Common Lisp is the possibility
of easily mixing low level and high level programming. The features about OOP
previously described in this paper show how Common Lisp is powerful in high
level programming, allowing the user to directly handle the sophisticated objects
of Algebraic Topology such as chain complexes, products and coproducts, Hopf
algebras, simplicial sets and simplicial groups.

But on the other hand, the Kenzo program intensively uses the low level part of
the Common Lisp language, that is, the quasi-assembler language which is the very
root of the language, such as the popular (?) car, cdr, and cons. This is possible
thanks to the Common Lisp macrogenerator, already mentioned Section 3.5. Let
us consider the case of the type absm, that is, abstract simplex. These objects are
really the most elementary consituents of the Kenzo geometric objects, and they
are so intensively used, billions of times for every significant Kenzo run, that you
must not use CLOS for these kernel structures. Kenzo defines the absm type as
follows:

43

(DEFUN ABSM-P (object)
(declare (type any object))
(the boolean
(and (consp object)
(eq :absm (car object))
(typep (cdr object) ’iabsm))))

(DEFTYPE ABSM () ’(satisfies absm-p))

The absm-p function explains an absm is a cons (pair) where the lefthand com-
ponent is the keyword :absm and the righthand one is an iabsm, that is, an internal
absm; in the same way, elsewhere in the program, it is explained an iabsm is again a
cons where the righthand component is anything and the lefthand component is a
fixnum coding a degeneracy operator. Most of computations in Algebraic Topology
are in fact low level computations about degeneracy operators where such an op-
erator is a decreasing list of small integers, like (5 2 0); because this list is strictly
decreasing, it can be represented by the fixnum 37 because 37 = 2% + 22 + 20, so
that all the standard calculations about degeneracy operators become fine calcula-
tions at the bit level on binary fixnums. But Common Lisp has all the predefined
functions to do such a job, so that the programmer can efficiently work according
to this strategy. A considerable memory space is saved so and furthermore the
calculations are much faster.

If a degeneracy operator is to be extracted from an absm, the dgop macro is
used:

> (DEFMACRO DGOP (absm)
‘(the dgop (cadr (the cadr ,absm))) YK
DGOP
> (macroexpand ’(dgop argument)) Y
(THE DGOP (CADR (THE ABSM ARGUMENT)))

which explains that in fact the call of dgop is synonymous with a call of the
assembler-like cadr, but the types of argument and result are verified:

> (dgop (absm 37 ’something)) "

37

> (dgop ’not-an-absm) K

Error: object "NOT-AN-ABSM" is not of type "ABSM".
[condition type: PROGRAM-ERROR]

When the program is compiled, the compiler firstly translates the source code
when a macro call is found, so that it is an assembler-like statement which is
compiled; furthermore an appropriate compiler option allows the compiled code
to ignore or not the type verifications through the ‘the’ statements. When the
program is finalized for production work, of course these type verifications are dis-
carded to save computing time. You see in this way the Lisp code is readable, this
code being firstly translated in low level Lisp statements, therefore very efficiently
compiled, without loosing if necessary the type verifications.

44

References

[1] ANSI Common-Lisp.

www.xanalys.com/software_tools/reference/HyperSpec/

[2] Gunnar Carlsson and R. James Milgram. Stable homotopy and iterated loop
spaces. in [5], pp 505-583.

[3] compose.cpp.
http://www.boost.org/libs/compose/compose.hpp.html

[4] Xavier Dousson, Julio Rubio, Francis Sergeraert and Yvon Siret. The Kenzo
program. http://www-fourier.ujf-grenoble.fr/~sergerar/Kenzo/

[5] Handbook of Algebraic Topology (Edited by I.M. James). North-Holland
(1995).

|6] Gregor Kiczales, Jim des Riviéres and Daniel G. Bobrow. The Art of the
Metaobject Protocol. MIT Press, 1991.

[7] Julio Rubio, Francis Sergeraert. Constructive Algebraic Topology. Talk at the
EACA Conference of Tenerife, 1999. To appear in Bulletin des Sciences Math-
ématiques.

[8] Francis Sergeraert. The computability problem in algebraic topology. Advances
in Mathematics, 1994, vol. 104, pp 1-29.

[9] Francis Sergeraert. "X, objet du 3¢ type. Gazette des Mathématiciens, 2000,
vol. 86, pp 29-45.

[10] Guy L. Steele Jr. Common Lisp. Digital Press, 1984.

[11] Guy L. Steele Jr. Common Lisp, second edition. Digital Press, 1990.

45

