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1 Introduction.

We present in these notes a totally new method to make effective standard ho-
mological algebra. Among other methods to attack the same problem, it is cer-
tainly the closest of “traditional” homological algebra. It is well known (?) “stan-
dard” homological algebra is not effective. Except in specific situations, the exact
and spectral sequences which are proposed to solve homological problems are not
algorithms computing the desired homology groups: they can be used only in
“favourable” circumstances. This restriction “only” is rather unfair, if we consider
the accumulation of wonderful results already obtained since Serre’s thesis from
these non-algorithmic methods. But anyway, the fact that the “standard” exact
and spectral sequences are not algorithms is an essential gap in our domain.

1.1 Previous works.

Several methods have already been proposed to fill in this gap. Rolf Schön pub-
lished a nice memoir [12] explaining how his organization based on inductive limits
allows him to solve the algorithmic problem of homological algebra. It is really a
pity this method has never been concretely used, except in a non-published work
by Alain Clément [6].

Maybe the most promising method would be based on operads. Many sorts
of operads are available, each one adapted to some subdomain, therefore which
could be used for some particular application without being troubled by irrelevant
details. The most striking theoretical result was obtained by Michael Mandell [8],
proving every homotopy type of finite type can be defined by a chain complex of
finite type provided with an E∞-module structure. Who will be able to attack the
problem of a concrete implementation of these operadic methods?

A more elementary method based on the so-called basic perturbation lemma
was previously developed, see [13, 9, 10, 11]. It was proved most common exact
and spectral sequences can then be transformed into algorithms. The method has
been also concretely programmed, see [7], allowing us to reach some homology
and homotopy groups so far unknown, raising also interesting new problems in
theoretical and concrete computer science, because of the high level of functional
programming which is necessary.

1.2 The constructive philosophy.

We present here a totally new method, with a larger scope, based on two ideas:

• The notion of solution of the homological problem (SHP) for a chain complex.
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• The notion of effective exact couple.

Most mathematicians think solving a homological problem consists in comput-
ing some homology groups. It is interesting, but it is also a partial result. Let C∗
be some chain complex and let us consider the possible result: H6(C∗) = Z/12.
What is the exact meaning? This “equality” in fact means there exists an isomor-
phism H6(C∗) ∼= Z/12. But the constructivists know it is always better in such
a situation to explicitly construct such an isomorphism. This is rarely done in
homological algebra, it is a lacuna and the unavoidable penalty is soon pending:
for the next calculations using this homology group, not explicitly knowing this
isomorphism often prevents from solving the frequent ambiguities raised by ex-
act and spectral sequences coming from example from extension problems or from
mysterious differentials.

In principle, extension problems could be solved by the Bockstein-Browder
spectral sequence, but the usual presentation of it is not an algorithm either, so
that the extension problem often remains in front of us without any available
method.

Consider the differential equation y′′ + y′ + y = 0 for y : R → R. Please solve
this equation! A possible answer could be: the “solution is R2”. It is true the
set of solutions is isomorphic to R2, but most users of differential equations would
not be very happy with such a “solution”: they would prefer to know an explicit
isomorphism between R2 and the set of solutions.

1.3 Homological problem.

Using the very spirit of constructive logic, we precisely define what the solution
of the homological problem (SHP) for some chain complex is. It is a collection of
algorithms ready to answer the various questions of homological nature which can
be asked for this chain complex and its elements, in particular the cycles. For
example: “Please what is the homology class of this cycle z”; “It is null!”; “Ah!
Then could you give me a preimage for the boundary operator?”. . .

We will see that the extension problems can be easily solved for the usual exact
sequences when complete SHPs of the relevant chain complexes are known.

The previous work using the basic perturbation lemma shows such SHPs are
often reachable, theoretically and concretely as well. The results of the present
paper significantly extend the scope of this observation.

1.4 Effective exact couples.

The same technique can be applied to many domains, in particular to the exact
couples. An exact couple is a specific triangle diagram where some exactness

properties must be satisfied. If A
g← B

f← C is a sequence of two morphisms,
exactness in B is usually translated by ker g = im f . But this is not enough:
if x ∈ B satisfies gx = 0, this means there exists a y ∈ C satisfying fy = x.
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Most often in homological algebra, when such a property is stated, this existence
property is not constructive. Making it constructive consists in producing an
algorithm ker g

σ→ C satisfying fσ = idker g. It is then not so easy to organize the
environment, for such a section σ cannot be in general a module morphism.

Working with this idea in mind, we design the notion of effective exact couple.
This notion has a striking advantage: a general algorithm can take as input an
effective exact couple and return as output the derived exact couple, also organized
as an effective exact couple. This algorithm can therefore be trivially iterated, and
if a spectral sequence is associated to this exact couple, this spectral sequence is
calculable, in particular all its differentials drp,q in the bigraded case.

This requires subtle methods of coding for the modules of the exact couple
called usually D, occuring at the upper side of the triangle diagram. This coding
is very weak, in particular the isomorphism class is unreachable, the nullity of an
element of this coding is in general undecidable: such a module is not even an
effective setoid! Yet this coding is essential when computing the derived exact
couple!

Finally, combining effective exact couples with the method explained in Sec-
tion 5, the often difficult extension problem to reconstruct at abutment the limit
homology group Hp+q from the E∞p,q is solved when this makes sense.

1.5 Concrete Implementation.

The concrete implementation work of our method is just starting and will certainly
need several years.

When we started to design the Kenzo program [7] to implement the ideas
of our previous version of effective homology resting on the basic perturbation
lemma, a general scepticism was observed in our community. We remember a high
level colleague, yet having a good concrete experience in computer science, telling
us: “You do not imagine you can implement simplicial groups in Lisp?” At this
time, almost all our papers proposed for publication were rejected. The simplicial
groups are today simply and smartly implemented in the Kenzo program [7], and
experience shows the difficulty is not at all in the simplicial groups, it is in the
terrible effective version of the simplest Eilenberg-Zilber theorem, which should
raise more interest than observed today.

You could think our Fundamental Theorem (see Section 8) cannot be reason-
ably implemented? Please cautiously wait for the continuation of the story.

2 Abstract machine.

2.1 What is a machine?

As explained in the introduction, a mathematical machine model is indispensable,
modelling the ordinary computers in a mathematical framework. According to the

3



standard computability theory, see for example [1], all the usual machine models
are equivalent and the technical details are irrelevant. The quick presentation
given in this section is elementary and sufficient for our purpose. We choose a
simplified version of the Lisp machine, see [2] for a detailed description if wished.

A universe U , some countable set, is defined, the set of all the machine objects,
such as integers, symbols, character strings, lists or arrays of such objects, and so
on. The evaluator ε of our machine is a function ε : U → U ∐ {∞}; think an
arbitrary object ω ∈ U can after all be considered as a program; when launching
such a program, most often you wait for some result (output), described in our
model by the value ρ = ε(ω) ∈ U of the execution of the program ω; if so, the
program ω terminates and returns the result ρ.

Think of this machine as a Lisp interpreter. Such an interpreter displays on
the screen a character string, the prompt, meaning the interpreter is awaiting an
input ω. The input is entered by the user from the keyboard according to some
conventions; for example typing (+ 3 2) describes the input ω as the list made
of three components, the symbol + and the integers 3 and 2. The Lisp machine
is so designed that in this case the program terminates and returns ε((+ 3 2)) =
5 probably in less than a microsecond. On the author’s Lisp machine, this is
displayed:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

> (+ 3 2) z
5
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The initial > is the Lisp prompt. The input (+ 3 2) is entered by the user.
The Maltese cross z is in fact not displayed on the screen; it is added here just to
help the reader to identify the end of the input, automatically detected by the Lisp
machine from the input syntax. Then Lisp computes and displays the output.

2.2 About equality in U .

A technical point is important. The readers experienced with programming know
the equality problem is a hard one, rarely appropriately processed by the program-
ming languages, except Lisp and its derived languages. Typically, it is not obvious
to decide whether two copies of the float number 4.56 stored at different addresses
are equal or not. Experience shows the answer must be let to the programmer,
who has the responsability to take the good decision, not so easy. Lisp example:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

> (eq 4.56 4.56) z
NIL
> (eql 4.56 4.56) z
T
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The eq function requires for equality the objects are installed at the same
address, while eql does a numerical comparison between the “abstract” mathe-
matical objects represented by the objects to be compared. It is not sensible to
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decide once for all whether two true twins are equal or not, it depends on the point
of view.

Fortunately, this difficult matter can be ignored in this text, a fact which is
summarized in the next statement. The readers interested by this problem must
study the notion of setoid, see for example [15] for a starting point.

Restriction 1 — We consider in this text the universe U as a “set” unambigu-
ously defined: two objects are equal if and only if they are “the same”, without any
further explanation.

2.3 Programs which do not terminate.

A program is most often designed to terminate, the runtime can be a microsecond,
a few seconds, a few days, a few centuries. . . But sometimes the program never
terminates, which is mathematically modelled as the relation ε(ω) =∞. In general
the user is not informed of this fact, and he could hope that waiting a little more
will finally give some output. For example the Lisp input:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

> (progn
(setf i 0)
(loop (setf i (+ i 1)))) z

? ? ? ? ?
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

is a program initializing the variable i to 0 and then indefinitely increasing this
value by 1; such a program does not terminate. It is easy to prove this simple
program does not terminate.

But Post’s theorem, an avatar of Gödel’s famous incompleteness theorem,
proves (!) there exists a non-empty subset T ⊂ U satisfying the amazing fol-
lowing property: for every ω ∈ T , the evaluation ε(ω) does not terminate but
unfortunately there does not exist any proof of this fact: such programs will re-
main definitively “mysterious”: experience seems to show such a program does not
terminate, but maybe, waiting a little longer, who knows. . . Of course the existence
of this subset T is not at all constructive: any element of it will never be identified
as such. A program ζ running the roots zn of Riemann’s zeta function satisfying
0 < Re < 1 and Im > 0, looking for a counter-example to Riemann’s conjecture,
maybe is an element of T ; which would then “imply” Riemann’s conjecture is
“true” but unprovable. . .

2.4 Algorithms.

An algorithm is a triple φ = (S, T, f) satisfying the properties:

1. The source component S is some subset S ⊂ U , the set of allowed inputs for
our algorithm φ.
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2. The target component T is some subset T ⊂ U : an object (output) returned
by our algorithm φ is guaranteed being an element of T .

3. The functional component f is a functional object. This object can be
combined with some allowed input ω ∈ S, this process producing a pair
[f, ω] ∈ U , and the evaluator working on this pair will terminate and will
return an output ε([f, ω]) = ρ ∈ T ⊂ U .

For example the symbol ‘+’ is a functional object for a Lisp machine, and the
input in the addition example of Section 2.1 is the list ω = (3 2); it happens
in the Lisp organization that the pair [+, (3 2)] is in fact the same object as the
list (+ 3 2). The corresponding output is then the integer 5. The corresponding
algorithm is the triple (Z × Z,Z, +) where Z × Z denotes here the set of lists of
two integers.

We most often simply write ε([f, ω]) =: f(ω) and also f : S → T ; also, by
abuse of language, the functional object f itself is often named as an algorithm,
the source set S and the target set T being maybe implied by the context.

The relation ε([f, ω]) =: f(ω) hides one of the deepest theorems of mathemat-
ics. The organization of our machine through a unique evaluator ε is an avatar of
the Gödel-Turing theorem about the constructive existence of a universal machine,
the very source of the notion of universal computer, so amazing. The laptop used
to prepare this text, putting every black pixel at the right position, is as well able
to decode a mp3 version of a Beethoven piano sonata, to compute thousands of dig-
its of ζ(−1/3); and it can also implement effective versions of spectral sequences;
all these sophisticated activities with the same small microprocessor are possible
thanks to the Gödel-Turing theorem.

The source and the target of an algorithm are not elements but subsets of U :
the relation S ∈ U does not make sense; on the contrary, the relation S ⊂ U makes
sense and is required. Yet it is often interesting to consider some subsets of U also
as machine objects, at least when it is possible, through the notion of data type,
in short type.

2.5 Types1.

Two logical objects ⊥,> ∈ U are defined, modelling the usual logigal values false
and true, and the set B = {⊥,>} ⊂ U is the (sub)set of the Boolean objects.

A type is described thanks to an algorithm τ : U → B; one says such a τ
is a universal predicate. The associated type is the set of objects Sτ = {ω ∈
U st τ(ω) = >}. In other words the subset Sτ is described through a characteristic
function which is an algorithm, the source being the whole universe U and the
target the set B of booleans. The abusive identification Sτ ∼ τ allows a user to
think of the subset Sτ ⊂ U as the element τ ∈ U .

1Please note our organization of types through characteristic functions everywhere defined
does not match the usual notion of type of the computer scientists; we could as well use the
latter but this would lead to technicalities out of scope here.
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For example the Lisp expression:
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(lambda (object)
(and (integerp object)

(evenp object)))
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

is an algorithm U → B describing the type of even integers. Illustration:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

> ((lambda (object)
(and (integerp object)

(evenp object)))
4) z

T
> ((lambda (object)

(and (integerp object)
(evenp object)))

5) z
NIL
> ((lambda (object)

(and (integerp object)
(evenp object)))

"an arbitrary character string") z
NIL
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Read T = > and NIL = ⊥. Our algorithm first examines whether the argument
object is an integer, and then, if the answer is positive, if it is even. Any object
ω ∈ U is a legal argument, for example a character string. Or even the type itself2:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

> ((lambda (object)
(and (integerp object)

(evenp object)))
(lambda (object)

(and (integerp object)
(evenp object)))) z

NIL
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Do not forget the universe U is countable; the set of functional objects, a subset
of U , is countable too, while the set of U -subsets is not countable. In other words,
most of the U -subsets are not types.

This notion of type naturally came from the notion of algorithm. If an algorithm
φ = (S, T, f) is defined, it is advised, in particular for debugging, before launching
the calculation of f(ω), to verify whether the argument ω really is an element
of S. Such a verification can be done only if S is a type. But this is not always
required. In particular, when functional programming is used, that is, when the
input ω and the output f(ω) are also functional objects, then it is in general not
possible to do such a verification. Even in such a case, frequent, we nevertheless
continue to call φ = (S, T, f) an algorithm.

2The functions capable of working on themselves are important in logic, they lead to the
Gödel-Church-Turing-Post series of negative theorems.
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3 Various sorts of effective Z-modules.

The organization allowing us to make constructive the notions of exact couple and
spectral sequence rests on very different implementations for the Z-modules we
must work with. The case of modules of finite type is standard, nothing new;
the case of modules not of finite type is on the contrary subtle and amazing.
Which is presented here is also deeply different from previous solutions for effective
homology due to the same author and other collaborators, described for example
at [9, 10].

Before processing Z-modules, let us consider the case of the sets, where the
difference between effective and locally effective sets is already there.

3.1 Effective sets.

Definition 2 — An effective set is a list of different machine objects.

A list in a computational environment is always a finite list. To be distin-
guished from an (infinite) sequence defined by an algorithm σ : N→ U modelling
the mathematical sequence (σ(n))n∈N = (σ(0), σ(1), . . .).

An exemple of effective set is A = (1 2 3 4) = {1, 2, 3, 4}. It will be convenient
not to hesitate to mix traditional notations for “mathematical” objects with the
representations of these objects as machine objects, when such a coding is defined.
We say the mathematical object {1, 2, 3, 4} is represented by the machine object
(1 2 3 4); it is also represented by the different machine object (2 1 3 4).

Conversely, we say the machine object (1 2 3 4) codes the mathematical ob-
ject {1, 2, 3, 4}; the logicians know it would be better to speak of the mathematical
object defined by the term {1, 2, 3, 4}, a term different from the term {2, 1, 3, 4},
but both terms define the same object; more precisely both terms are equal, which
is formally written {1, 2, 3, 4} = {2, 1, 3, 4}.

An effective set is defined by a finite enumeration. In the traditional termi-
nology, it is a finite extensional set. We can reasonably consider we globally know
such a set.

The equality relation being defined unambiguously between machine objects,
it is legitimate to require the elements of a set are different from each other.

3.2 Locally effective sets.

Definition 3 — A locally effective set S is a type S ∈ U . A functional object
σ : U → B which is a characteristic function for S is called a membership function
for S.

No difference between a type and a locally effective set. Speaking of a locally ef-
fective set only means the environment is rather mathematically oriented, nothing
more.
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A locally effective set is an intensionally defined subset of U , but intensionally
defined by a type, that is, an algorithm τ : U → B. The standard cardinality
argument shows “most” subsets of U cannot be defined as locally effective sets.

Many different membership functions are valid for the same locally effective set,
that is, for the same type. For many different programs have the same behaviour
with respect to the evaluator ε.

3.3 About the notion of locally defined object.

Why the qualifier “locally” assigned to the adjective effective when we speak of a
locally effective set? It is a subtle but important point. The information available
through a type can be applied to any machine object, deciding if this object is an
element of the type or not. But in general no global information can be deduced
from a type. For example it is not hard to define as a machine object the type G
(Goldbach) of pairs of twin prime numbers: a simple program can examine if some
object is a list, if the length of this list is 2, if both elements are natural numbers,
if they are odd prime numbers a and b, and if their difference b− a = 2. You may
be interested by the cardinality of G, that is, by the Goldbach conjecture, but no
known process is able when this text is written to determine this cardinality, a
global information.

In the same spirit, consider the sequence (zn) made of the zeroes of the Riemann
zeta function in the strip 0 < Re < 1 and Im > 0 of the complex plane. Then the
set of the integers n corresponding to counter-examples zn of Riemann’s conjecture
is a type, for an algorithm can determine, given n ∈ N, whether Re zn = 1/2 or
not. The “local” information “is Re zn = 1/2?” is reachable, decidable, but the
global information “is this type void” is (currently) not.

You see the right interpretation of our qualifier “locally” must be done by
opposition to the opposite qualifier “globally”. No topology at all in this matter.
A more precise terminology would consist in speaking of element-wise effective
sets, but it is a little heavy and we prefer the qualifier “locally”.

3.4 Z-modules of finite type.

Definition 4 — An effective Z-module is a finite list (d1, . . . , dn) of integers di ≥ 0
satisfying di 6= 1 and the divisibility condition di−1 divides di for 1 < i ≤ n.

For example the machine object (2 6 0 0) (that is, (2,6,0,0) in mathematical
notation) is an effective Z-module, commonly denoted by Z/2 ⊕ Z/6 ⊕ Z ⊕ Z.
The usual structure theorem for the Z-modules of finite type implies this notion
of effective Z-module exactly corresponds to the notion of isomorphism class of
Z-module of finite type.

Definition 5 — An element of an effective module (d1, . . . , dn) is an arbitrary
integer list of the same length.
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For example (3 4 5 6) ∈ (2 6 0 0) and it is the same element as (1 4 5 6).
Think that, if (g1, g2, g3, g4) is the list of the canonical generators of (2 6 0 0),
the element represented by the list (3 4 5 6) is 3g1 + 4g2 + 5g5 + 6g4 = g1 +
4g2 + 5g5 + 6g4. You could systematically prefer the canonical representation of
an element of (d1, . . . , dn), the representation (a1, . . . , an) which satisfies the extra
condition 0 ≤ ai < di when di > 0, but this is just a matter of taste, and sometime
of program efficiency.

Morphisms between effective Z-modules are represented by integer matrices,
the notion of canonical representation making sense again. Elementary algorithms
compute the kernel and the image of such a morphism.

Definition 6 — An effective differential Z-module is a pair (C, d) where C is
an effective Z-module and d : C → C is a morphism satisfying the differential
condition d2 = 0.

As usual, Z(C, d) := ker d, B(C, d) := im d, the condition d2 = 0 is equiva-
lent to the relation B(C, d) ⊂ Z(C, d), and the corresponding homology group is
H(Z, d) := Z(C, d)/B(C, d).

Proposition 7 — A general algorithm Hecc computes:

• Input: An effective differential Z-module (C, d).

• Output: The homology group H(C, d). ♣

3.5 Locally effective Z-modules.

It is sensible to say the effective Z-modules are globally known, in particular they
are defined through their isomorphism class, the most important global informa-
tion. Such a module is of finite type, and the numerous modules of homological
algebra which do not satisfy this finiteness condition cannot be processed in this
way. These modules can most often be locally implemented in two very different
ways, depending on the status of the equality relation.

Definition 8 — A locally effective Z-module M is a 4-tuple M = (τ,+, 0,−)
where:

• The first component τ is a type τ : U → B, the type of the M-elements: a
machine object ω ∈ U is an element of M if and only if τ(ω) = >. In other
words, M = Sτ .

• The second component + is an algorithm + : M ×M → M implementing
the addition of M-elements.

• The third component 0 is the neutral element of M .

• The fourth component − is an algorithm − : M → M implementing the
opposite operator.
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It is clearly a “local” definition: any calculation starting from particular ele-
ments of M can be processed, but in general no global information can be deduced
from this implementation alone.

Let us recall we have assumed, cf. Restriction 1, the equality relation between
arbitrary machine objects is well defined. In particular the comparison of an M -
element with the neutral element 0 is decidable.

No global information is in general available for such a module but this does
not prevent from defining many operators taking these modules as input. A typical
example follows.

Proposition 9 — A general algorithm sum can be written down:

• Input: A pair (M1,M2) of locally effective Z-modules.

• Output: An implementation (τM ,+M , 0M ,−M) of the sum (or product)
module M = M1 ⊕M2.

♣ The input is made of the respective implementations (τM1 ,+M1 , 0M1 ,−M1) and
(τM2 ,+M2 , 0M2 ,−M2). We may decide an object ω ∈ M is a list of two elements
(ω1, ω2), with ω1 ∈M1 and ω2 ∈M2. A type τ for the M -elements is therefore the
algorithm which examines whether the argument object ω is a list of two elements,
and then, using the provided types τ1 and τ2, examines also if the components of ω
really are elements of M1 and M2.

Functional programming, a non-trivial computing technique, allows the user to
design a general algorithm (τ1, τ2) 7→ τ , using as inputs two functional objects,
returning an object which is also a functional object.

In the same way the desired algorithm +M can be computationnally deduced
from +M1 and +M2 by a general algorithm and the same for the opposite opera-
tor −M . ♣

Such general algorithms constructing a package of algorithms from some input
mainly made also of algorithms are more easily implemented with the program-
ming languages explicitly oriented toward functional programming, typically Lisp
and its derived languages, Haskell, and many others. Alonzo Church invented in
the thirties the first functional programming language, the λ-calculus, when the
computers did not yet exist, except the Turing “machine” designed also in the
thirties.

3.6 Locally effective subquotients.

The process described in the previous section looks so simple, at least when func-
tional programming is understood, that you could think all the standard construc-
tions for the modules used in textbooks of homological algebra can be implemented
as easily. This is a strong error: the quotient operator cannot in general be imple-
mented in this framework.

11



The problem is the following. Let us assume two locally effective modules M1

and M2 are implemented, and also a morphism f : M1 → M2. Being able to
constructM = M2/f(M1) is important, but it is in general impossible to presentM
also as a locally effective module.

We require a type for the elements of M . To define such a type, we must be
able to choose a canonical representant for any equivalence class modulo f(M1).
In fact we are even in general unable to decide whether two elements x, y ∈M2 are
equivalent modulo f(M1), because this is a global information aboutM1. Typically,
if M1 is not of finite type, an infinite set of possible relations is to be studied and
a computer cannot do such a work.

Still worse, sometimes the isomorphism class of M1 could be unknown, the user
being unable to know if M1 is null or not, has a finite type or not, so that the
equivalence relation defined in M2 by M1 and f is rather difficult to use! And
this is not at all “exotic” circumstances which “of course” do not really happen
in “ordinary” life: we will see on the contrary it is the ordinary situation when
handling exact couples computing spectral sequences.

Definition 10 — A locally effective subquotient is a triple S = (M1,M2, f) where
the components M1 and M2 are locally effective Z-modules and f : M1 → M2

is a module morphism. The mathematical object so represented is the quotient
module M2/f(M1).

The best example for such a subquotient requires the obvious next definition.

Definition 11 — A locally effective chain complex is an algorithm lecc : Z → U
where, for every n ∈ Z, the value lecc(n) = (Cn, dn) is a pair made of a locally
effective Z-module Cn and a morphism dn : Cn → Cn−1 satisfying the relation
dn−1dn = 0.

Proposition 12 — Let (C∗, d∗) be a locally effective chain complex. Then the
homology groups Hn(C∗) are locally effective subquotients.

♣ A homology group is a quotient ker /im = Zn/Bn = {cycles}/{boundaries}
where the roles of the numerator and the denominator are not symmetric. For
ker dn is a locally effective module when im dn+1 in general is not.

Defining ker dn as a locally effective module works as follows. The underlying
type is defined as the elements of x ∈ Cn, already defined as a type, satisfying
the extra relation dnx = 0, a relation which is decidable, see the comments of
Definition 8. So that the type ker dn is defined, and adding the +, 0 and −
components of Cn achieves to define ker dn as a locally effective module.

On the contrary, we have already explained in this section the relation of mem-
bership to im dn+1 is in general not decidable, so that it is not possible to present
im dn+1 as a locally effective module.

But the triple (Cn+1, ker dn, dn+1) is defined and is a locally effective subquo-
tient representing the homology group Hn(C∗) = ZnC∗/BnC∗. ♣

12



This object is obviously quite misleading. It is installed as a machine object in
your machine and this object really codes the homology group you are probably
interested in. But you are probably still more interested by the isomorphism class
of this homology group, which isomorphism class is in general non-deducible from
the machine object.

So that you could wonder what the real usefulness of such an object could be?
We will see this object will be the central object allowing us to make constructive
exact couples and spectral sequences.

3.7 Vanishing certificates.

If (M1,M2, f) is a locally effective subquotient representing a Z-module M , a
situation denoted by M � (M1,M2, f), and if x ∈M is represented by an element
x ∈ M2, a situation denoted by x� x, then the nullity of x, that is, the relation
x ∈ f(M1) is in general undecidable.

Constructive logic is hidden here. Saying x = 0 is claiming there exists v ∈M1

satisfying f(v) = x. But a constructive existence is always better, often crucial.

Definition 13 — A vanishing certificate for x ∈ M represented by x ∈ M2 is an
element v ∈M1 satisfying f(v) = x.

St Thomas can use this certificate and compare the objects f(v) and x in M2 to
verify the claim, for M2 is a locally effective module, where equality is decidable.
But if he unfortunately loses this certificate, he is in general unable to find it again.

Relations such as M � (M1,M2, f) and x � x when x ∈ M and x ∈ M2

will have to be frequently considered in this paper. They mean M = M2/f(M1)
and x is the equivalence class of x ∈ M2 modulo f(M1). Such a situation will be
quickly described by x ∈ M . And if v is a vanishing certificate for x, in fact for

its equivalence class modulo f(M1), we write v
0→ x.

4 The homological problem for a differential

module.

4.1 Introduction.

A central subject in most books about Homological Algebra, in particular the
numerous books about Algebraic Topology, is the hunt for homology groups. For
example for some specific space X, it could be proved that H6(X) = Z/12. The
result H6(X) “=” Z/12 is in fact a shorthand for the more precise statement:
there exists an isomorphism between the group H6(X) and the well known group
Z/12, to be considered as a preferred representant of an isomorphism class. But
it is exceptional this proof is constructive, we mean such an isomorphism is rarely
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made explicit. The situation is complex, because it is most often clear that, with
a little patience (!?), such a proof could be made constructive. Conversely, at first
sight, it is not obvious to find really useful such a constructive proof. In fact this
appreciation is incorrect.

The basic “axiom” of Constructivism is the following: “Be sure a constructive
existence proof is certainly better than a non-constructive one”. This is now
sufficiently well understood to need further explanations. In Homological Algebra,
the justification of this axiom is simple: assume for example we intend to determine
some unknown homology group H after calculations involving intermediate groups
H1, H2 and H3 = H; if the result about the computed H2 is not constructive,
then often the alleged “algorithm” H2 7→ H3 in fact fails: maybe for example
some necessary differential in a spectral sequence is in fact out of scope, or some
extension problem is unsolvable with the available information.

The present section is intended to very precisely define what a constructive
solution for a homology group is.

4.2 Isomorphism class of Z-module.

We need in particular a precise definition for the notion of isomorphism class of
Z-modules. In short, such an isomorphism class must be a machine object and
the “elements” of such an isomorphism class must be clearly defined.

We firstly consider an example, sufficient for the rest of the paper, in fact
definitively sufficient if you consider the situations where the homology groups are
Z-modules of finite type give you enough work.

We decided in Definition 4 to code an effective module as a list of natural
numbers satisfying the divisor condition. For example the machine list (2 6 0 0),
usually mathematically written (2, 6, 0, 0), so codes the Z-module Z/2⊕Z/6⊕Z⊕Z.
The standard structure theorem for the Z-modules of finite type explains every
isomorphism class of such a module is coded by exactly one integer list (d1, . . . , dn)
satisfying the conditions stated in Definition 4. The first step of our definition is
done: we have decided to represent a large set M of isomorphism classes of Z-
modules, those of finite type, by some appropriate machine objects.

Important: representing the isomorphism class is not enough: we must also be
able to represent the “elements” of such a class. More precisely, the isomorphism
class must be represented by a specific Z-module, the elements of which being
also represented by some non-ambiguous process. A typical example, in fact again
sufficient for this paper, is given in Definition 5. An element of (2 6 0 0), that
is, Z/2⊕ Z/6⊕ Z⊕ Z, is unambiguously represented by a list (a1, . . . , a4) of four
integers; this representation is sound, for an algorithm can decide if (a1, . . . , a4) =
(b1, . . . , b4): the algorithm has just to determine whether 2|(b1−a1) and 6|(b2 − a2),
and also if a3 = b3 and a4 = b4. Another method could consist in choosing the
canonical representation of an element, satisfying the conditions 0 ≤ a1 < 2 and
0 ≤ a2 < 6; as you prefer.

The Z-module M0 = Z(N), the direct sum of a countable number of copies
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of Z, is also an acceptable isomorphism class: an element of a ∈M0 can be coded
as a list (n, a0, . . . , an−1) where the first component n is an upper bound for the
indices i such that ai 6= 0; and it is easy to decide whether two such elements are
equal or not.

On the contrary, the module M1 = ZN, the direct product of a countable
number of copies of Z, is not an acceptable isomorphism class, for the number of
available machine objects to code its elements is countable, while the cardinality
of M1 is not. You can also consider a variant M2 = ZN, where the component
sequence of an element a = (ai)i∈N must be recursive, that is, produced by some
algorithm a : N → Z; we let the reader determine if such an isomorphism class is
acceptable or not.

In short, an acceptable isomorphism class of Z-modules must be soundly rep-
resented by a machine object, coding a preferred representant of the isomorphism
class, and all the elements of this representant must also be soundly represented
by appropriate machine objects.

Restriction 14 — From now on, when considering homological problems, the
collection M of acceptable isomorphism classes used for the homology groups is
restricted to the collection of Z-modules of finite type as defined in Section 3.4.

This class of acceptable isomorphism classes could be easily and significantly
extended to more general classes, but it is not the subject of the present paper.

Because of this restriction, every common problem concerning modules ele-
ments of M, such as determining kernels, images, cokernels and so on has a con-
structive solution.

4.3 The homological problem.

Definition 15 — A solution for the homological problem (SHP) posed by the
locally effective differential module (M,d) is a 4-tuple (H, σ2, σ3, σ4) where:

• The component H is an isomorphism class of Z-module H ∈M. This group
is isomorphic to the genuine homology group H(M,d) := Z(M,d)/B(M,d)
through the isomorphism defined by σ2 and σ3.

• The component σ2 is an algorithm σ2 : H → Z(M,d) giving for every “ab-
stract” homology class h ∈ H a cycle z = σ2(h) ∈ Z(M,d) representing this
homology class. In general, the map σ2 cannot be a module morphism.

• The component σ3 is an algorithm σ3 : Z(M,d)→ H computing for every cy-
cle z ∈ Z(M,d) “its” homology class h = σ3(z) ∈ H. The composition σ3σ2

must be the identity of H. The map σ3 is necessarily a module morphism.

• The component σ4 is an algorithm σ4 : ker σ3 →M satisfying dσ4 = id kerσ3 .

The component σ4 is nothing but an algorithm producing a certificate for a
cycle z ∈M claimed having a null homology class by the algorithm σ3
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Didactical example. We assume M is the set of Z-modules of finite type as
defined in Definition 4. Let us take in particular M = (0 0) = Z2 provided with

the differential d =

[
0 2
0 0

]
.

Then H = (2) = Z/2 has two elements (0) and (1). We can choose σ2((0)) =
(0 0) and σ2((1)) = (1 0). Note it is impossible to define a σ2 which is a module
morphism, a constant and unavoidable difficulty in these constructive questions.
Here Z(M,d) = {(a 0)} and no choice, σ3((a 0)) = (a’) with a′ = a mod 2.
The σ3 component is necessarily a module morphism, its kernel is defined and in
this case it is kerσ3 = {(2a 0)} and we can choose σ4((2a 0)) = (0 a).

This example is so elementary the reader may wonder what this notion of SHP
adds to the usual style. The present paper is devoted to this matter.

Non-pedagocical examples. Our previous solution [10] to make constructive
Homological Algebra was based on the Basic Perturbation Lemma; its scope is
more restricted, mainly we did not succeed with this strategy in processing the case
of the spectral sequences not produced by filtrated complexes, but “only” by exact
couples, typically the Bockstein-Browder and Bousfield-Kan spectral sequences.
Nevertheless, when it can be applied, our previous method already gave striking
results.

If interested, the reader can find a detailed exposition of our previous solution
at [11]. In particular, [11, Section 4.7] displays a detailed particular case of so-
phisticated complex with a SHP computed: this is applied in this case in standard
Commutative Algebra, when computing effective homology of Koszul complexes
coming from ideals of polynomials. It is proved also in the same paper the effective
homology of such a Koszul complex produces as a side effect a resolution of the
considered ideal. While the standard organization does the contrary: computing
the ordinary homology of a Koszul complex from a resolution!

Another striking example can be found at [3]. The problem of computing
the homology of iterated loop spaces that are not suspensions is known to be a
hard one. It is explained in [3] the constructive methods give an easy and natural
solution, so easy that it is not difficult to concretely implement it on a computer
and produce boundary matrices and homology groups so far unreachable.

5 Solving extension problems.

5.1 Standard theory.

Let A, B and C be three commutative groups and a short exact sequence:

0→ A
i→ B

j→ C → 0

The central group B is said to be an extension of C by A. In various contexts,
the groups A and C are known, and you must “guess” the group B, that is, you
have to determine its isomorphism class.

16



The standard method works as follows, see for example [5, Chapter IV]. The
map j is surjective and there exists a section σ : C → B satisfying jσ = id C ; in
general this section cannot be a module morphism, it is sometimes said only “set-
theoretic”. We always assume the so-called normalization property is satisfied:
σ(0) = 0. Most often, nothing is said about the constructive existence of such a
section σ.

Also, because of the exactness property, a canonical map ρ : ker j → A is
defined, which is a module morphism. This quasi-retraction ρ is canonical, but its
constructive existence is also problematic. No problem if A has a finite type; in the
general case, the known existence of a unique i-preimage for an element of ker j
does not give an algorithm computing such a preimage. Anyway, in “classical”
mathematics, you can use the section σ and the quasi-retraction ρ.

The quasi-retraction ρ can be completed into a genuine retraction again denoted
by ρ : B → A defined by ρ(b) = ρ(b − σjb). This retraction is “complete” but in
general is nomore a morphism. The three classical formulas:

ρi = id A

iρ+ σj = id B

jσ = id C

are then satisfied.

A cohomology class χ ∈ H2(C,A) is then obtained from the 2-cocycle also
denoted by χ:

χ(a, b) := ρ(σ(a) + σ(b)− σ(a+ b))

This cocycle measures the failure of σ to be a morphism. Then a group law is
defined on A× C by:

(a, c) + (a′, c′) = (a+ a′ + χ(c, c′), c+ c′)

and tho inverse isomorphisms α : B
∼=→ A×χ C and α−1 : A×χ C

∼=→ B are defined
by α(b) = (ρb, jb) and α−1(a, c) = ia+ σc.

We so obtain, up to a known isomorphism, a complete description of the
group B as the “twisted” product A×τ C.

5.2 Constructive short exact sequence.

Definition 16 — A constructive short exact sequence is a diagram:

0 A B C 0
i j

ρ σ

where A, B and C are locally effective Z-modules, i and j are module morphisms,
and the following relations are satisfied:

ρi = id A

iρ+ σj = id B

jσ = id C
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The maps ρ and σ are not necessarily module morphisms. The relations ji = 0
and ρσ = 0 are satisfied, and our sequence is ordinarily exact in the direction
west-east. The maps ρ and σ are available to allow you to constructively use this
property.

In particular, if such a constructive exact sequence is given, you can construct
the cocyle χ classifying it and also the corresponding isomorphism B ∼= A×χ C.

Definition 17 — A constructive short exact sequence of chain complexes is a
diagram:

0 An−1 Bn−1 Cn−1 0

0 An Bn Cn 0

i j

i j

ρ σ

ρ σ

d d d

where:

• Every column is a chain complex of locally effective Z-modules.

• Every horizontal row is a constructive short exact sequence.

• The horizontal morphisms i and j are compatible with the differentials.

5.3 A constructive long exact sequence.

In classical homological algebra, when a short exact sequence of chain complexes

0→ A∗
i→ B∗

j→ C∗ → 0 is given, a long exact sequence is deduced:

· · · → Hn+1C
∂−→ HnA

i−→ HnB
j−→ HnC

∂−→ Hn−1A→ · · ·

The morphism ∂ is called the connection morphism, and the morphisms again
denoted by i and j come from the given short exact sequence.

If you know for example the groups H∗A and H∗C, this long exact sequence
is supposed to allow you to determine the unknown groups H∗B. Most books
of homological algebra, mainly those principally devoted to algebraic topology,
state such a claim in a rather fuzzy way, but “typical” striking examples are soon
presented to convince the reader this “implicit” statement is correct.

Examining more carefully this matter, the long exact sequence produces a short
exact sequence:

0→ coker(Hn+1C
∂→ HnA)

i−→ HnB
j−→ ker(HnC

∂→ Hn−1A)→ 0

and we are in front of an extension problem. Before solving this extension prob-
lem, you must compute a cokernel and a kernel with respect to the connection
morphisms that are mathematically defined, but rarely in a constructive way!
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If you have overcome this first obstacle, there remains to determine the coho-
mology class classifying the extension. And you are in a strange situation: you
have to determine the corresponding section σ and retraction ρ, having as target
or source the group HnB that you do not yet know!

In this simple situation, the solution is well known, instead of homology classes
inside an unknown group, you must use cycles in ZnB representing these homology
classes; so the cohomology class χ classifying the extension can be determined.
Making systematic such a solution is easy when solutions for the homological
problem SHPA and SHPC are given for the chain complexes A∗ and C∗. Working
in this way, we easily obtain again a SHPB for the central chain complex B∗, so
that this SHPB can be used later for another analogous work. And so on.

The appropriate presentation of this method consists in considering the un-
known homology group HnB as coded as a locally effective subquotient as ex-
plained in Proposition 12: this coding is summarized by the formula: HnB �
(Bn+1, ZnB, d): we know the unknown (!) group HnB is the quotient HnB =
ZnB/d(Bn+1). So every cycle a ∈ ZnB codes some homology class a ∈ HnB, this
being usable even if we do not know the isomorphism class of HnB.

This point of view will be also the key point to prove our main theorem about
the effective exact couples in Section 8, and we think the detailed proof below
solving our extension problem is also a good introduction to this technique.

Theorem 18 — An algorithm can be written down:

• Input: A constructive short exact sequence of locally effective chain com-
plexes:

0 A∗ B∗ C∗ 0
i j

ρ σ

Respective SHPA and SHPC for the chain complexes A∗ and C∗.

• Output: A SHPB for the chain complex B∗.

In the main applications, the involved chain complexes are not of finite type,
so that no algorithm can directly compute H∗B from B∗ alone.

♣ We must (very) carefully study the short exact sequence:

0 Cok HnB Ker 0
i j

ρ σ

where in short we denote Cok := coker(Hn+1C
∂→ HnA) and Ker = ker(HnC

∂→
Hn−1A).

We have printed in gray the central group HnB to recall this group is currently
unknown and elements of this group can be used only through cycles representing
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these homology classes. Deciding once for all that chains in general, cycles in
particular, are denoted by latin characters a, b, . . . , and homology classes are
denoted by gothic characters a, b, . . . , should help reading.

The map i of the diagram is obtained by following the diagram chasing path:

Cok→ HnA
σ2→ ZnA

i→ ZnB

where the map σ2 is produced by SHPA, see Definition 15. Also the map Cok →
HnA consists in choosing a representant of an element of the cokernel; because of
Restriction 14, this can be elementary done. The morphism i : Cok→ HnB is so
implemented as a map i : Cok→ ZnB which in general is neither canonical nor a
morphism.

The map j of the diagram is canonical and is implemented as a genuine mor-
phism j : ZnB → Ker, it is simply obtained from the path:

ZnB
j→ ZnC

σ3→ Ker ⊂ HnC

where the “map” ZnC → Ker is in fact incorrect; we mean only that if an element
of ZnC is in the image of j, then its homology class is necessarily in Ker; which
homology class is determined through the σ3 component of SHPC .

The map σ : Ker → HnB implemented as a map σ : Ker → ZnB : a 7→ a6 is
obtained from the diagram:

a3 a2 0

a4 a5 a1 a0

A∗ B∗ C∗

rown−1

rown

a6

to be understood as follows. In these episodes of diagram chasing, the chains are
denoted ak, the index k showing the construction chronology. The arrows illustrate
the “main” maps i, j and d. For example a1 above is obtained after a0, in fact
from a0 thanks to the section σ : Cn → Bn, but we prefer to display the map
j : a1 7→ a0 than the map σ : a0 7→ a1. The dashed arrows are used to
illustrate differences.

If a ∈ Ker ⊂ HnC is a homology class, then the elements of the above diagram
are obtained as follows:

• a0 ∈ ZnC is a representant of a produced by σ2 in SHPC .
• a1 ∈ Bn is a j-preimage of a0 produced by σ : Cn → Bn.
• a2 = da1 ∈ Bn−1(B) necessarily satisfies ja2 = 0, for a0 is a cycle.
• a3 ∈ Zn−1A is an i-preimage of a2 produced by ρ : Bn−1 → An−1.
• Because a ∈ Ker, the homology class of a3 is null and the component σ4 of

SHPA produces a d-preimage a4 ∈ An.
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• a5 = ia4 ∈ Bn and necessarily da5 = a2.
• Finally the difference a6 = (a1 − a5) ∈ ZnB.

Then the map σ : Ker→ HnB implemented as σ : Ker→ ZnB is defined by σc =
a6. You observe nothing is new with respect to the standard proof of exactness
of the long exact sequence at HnC; the only important point is that the various
constructive data allowed us to construct in turn the map σ. It is easy for a
machine program, using the now standard methods of functional programming,
to produce the functional object σ : Ker → ZnB from all the functional objects
which are available in our environment. In much less time than it was necessary
to write down these explanations.

The retraction ρ : HnB → Cok implemented as ρ : ZnB → Cok is firstly
defined for the elements of ker(j : ZnB → Ker). Let a0 be such an element.

a6 a5 a5
a0

a4
a1

a3 a2

rown

rown+1

A∗ B∗ C∗

• The cycle a1 = ja0 ∈ ZnC must be a boundary.
• The d-preimage a2 ∈ Cn+1 of a1 is produced by the component σ4 of SHPC .
• The map σ : Cn+1 → Bn+1 produces a j-preimage a3 ∈ Bn+1.
• a4 = da3 ∈ Bn(B) has the same image in Cn as a0.
• An i-preimage a5 ∈ ZnA of (a0 − a4) is produced by ρ : Bn → An.
• a5 ∈ HnA is the homology class of a5, computed by the σ3 component of

SHPA.
• a6 ∈ Cok is the equivalence class of a5 modulo the image of ∂ : Hn+1C →
HnA, computable because of Restriction 14.

Then the desired map ρ′ : ker(j : HnB → Ker) → Cok, implemented as a
map ρ′ : ker(j : ZnB → Ker) → Cok is defined by ρ′(a0) = a6. This map is
a morphism and is canonical, but do not forget in general “canonical” does not
imply “computable”. Then ρ can be completed into a map ρ : ZnB → Cok by
ρ(a) := ρ′(a− σja), but this map in general is nomore a morphism.

0 Cok HnB Ker 0
i j

ρ σ

The relations ρi = id Cok and jσ = id Ker are satisfied. If a ∈ ZnB, then
iρa + σja is only homologous to a, but we will see in a moment we can compute
a d-preimage of the difference.
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If now c, c′ ∈ Ker are two arguments for the looked-for cocycle χ defining our
extension, in general the difference σ(c) + σ(c′) − σ(c + c′) is not null, but it is
certainly in the kernel of j : ZnB → Ker. The cocyle χ ∈ H2(Ker,Coker) is
therefore defined as:

χ(c, c′) = ρ(σ(c) + σ(c′)− σ(c + c′)).

The standard extension theory proves HnB ∼= Coker×χKer and an elementary
calculation can produce the unique possible isomorphism class HB ∈ M of this
group and also some explicit isomorphism HnB ↔ Coker×χ Ker.

We need also the three components σ2, σ3 and σ4 to achieve the construction
of SHPB. We define σ2 and σ3 firstly with respect to the model Coker ×χ Ker
of HnB. It is easy to justify σ2(a, c) = ia + σc ∈ ZnB if a ∈ Cok and c ∈ Ker.
In the same way, σ3(b) = (ρb, jb) is the unique possible definition of σ3. These
definitions can then be converted into correspondances with HB thanks to an
arbitrary isomorphism Coker×χ Ker ∼= HB.

Constructing the map σ4 is a little more complicated, but no choice. We start
with an a0 ∈ ZnB satisfying ja0 = 0 ∈ Ker and ρa0 = 0 ∈ Cok. The diagram
previously drawned to construct ρ : ZnB → Cok can then be completed as below:

a5
a0

a4
a1

a3 a2

a6

0

a7

a11

a8a9

a10

rown

rown+1

A∗ B∗ C∗

The added ingredients are:

• The homology class of the cycle a5 is now in the image of the connection mor-
phism ∂ : Hn+1C → HnA. This produces as usual a6 ∈ Zn+1C, a7 ∈ Bn+1,
a8 ∈ Bn(B) and a9 ∈ ZnA such that the difference a5 − a9 is a boundary.
• The σ4 component of SHPA produces a d-preimage a10 ∈ An+1 of a5 − a9.
• a11 = ia10 ∈ Bn+1 therefore satisfies da11 = i(a5 − a9) = a0 − a4 − a8.
• This implies d(a11 + a7 + a3) = a0 and we can define σ4(a0) = a11 + a7 + a3.

Again this is nothing but the standard proof of the short exact sequence con-
necting Coker, HnB and Ker, verifying along the proof that the existence of every
necessary object is constructive. A routine exercise. ♣

This proof is a routine exercise, but constructively (!) writing down the corre-
sponding machine program maybe is a little less routine.

To finish with this matter, let us mention the same method can also be used
when SHPs are provided for A∗ and B∗, or for B∗ and C∗ to compute the missing
SHPC or SHPA.
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6 Exact couples.

6.1 Definition.

Definition 19 — An exact couple is a diagram

D D

E

i

jk

where the following conditions are satisfied:

• The components D and E are Z-modules.

• The components i, j and k are Z-module morphisms.

• The circular sequence is exact, that is, ker j = im i, ker k = im j and ker i =
im k.

Such an exact couple is denoted by the 5-tuple (D,E, i, j, k).

The components of an exact couple are often graded or bigraded with various
compatibility conditions between module gradings and morphism gradings, but
the general theory of exact couples as newly organized here is independent of such
gradings.

The composition jk is an endomorphism of E and it is a differential : jkjk = 0.
This produces a Z-module of cycles Z(E, jk) := ker jk, a module of boundaries
B(E, jk) := im jk and a homology group H(E, jk) := Z(E, jk)/B(E, jk).

6.2 Derived exact couple.

Definition 20 — Let (D,E, i, j, k) be an exact couple. Then the derived exact
couple:

D′ D′

E ′

i′

j′k′

is defined as follows.

• The component D′ is the i-image of D: D′ := i(D) = ker j ⊂ D.

• The component E ′ is the homology group E ′ := H(E, jk) :=
Z(E, jk)/B(E, jk).

• The component i′ is the restriction of i to the submodule D′.
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• Let a ∈ D′. There exists b ∈ D satisfying ib = a; then j′a := jb ∈
H(E, jk) = E ′ is the homology class of the cycle jb ∈ Z(E, jk).

• Let a ∈ E ′. The homology class a ∈ E ′ = H(E, jk) is represented by a cycle
a ∈ Z(E, jk) ⊂ E; then k′a := ka.

Proposition 21 — Definition 20 is coherent.

♣ D′ and E ′ are Z-modules. The image of i′ is in the image of i, that is, in D′.

The map j′ is well defined. On the one hand, jk(jb) = 0, for kj = 0, and
jb ∈ Z(E, jk) is satisfied. On the other hand, if b′ is another i-preimage of a,
then i(b − b′) = 0, and the exactness of the initial exact couple produces c ∈ E
with kc = b − b′; so that jb − jb′ = jkc ∈ B(E, jk) and the cycles jb and jb′ are
homologous: j′a := jb = jb′ does not depend on the choice of the preimage b.

The map k′ is well defined. On the one hand, a ∈ Z(E, jk), so that j(ka) = 0
and k′a := ka ∈ ker j = D′. If a′ is another representant for the homology class a,
this implies a− a′ = jkb for some b ∈ E, and ka− ka′ = kjkb = 0: the definition
of k′a does not depend on the choice of the representant a.

The relation j′i′ = 0 is satisfied. Let a ∈ D′; then j′i′a := ja = 0, for
D′ = ker j.

The relation k′j′ = 0 is satisfied. If a ∈ D′ and ib = a, then j′a := jb =: c; a
cycle representing c is jb, so that k′j′a = k′c := kjb = 0.

The relation i′k′ = 0 is satisfied. If a ∈ E ′ is represented by a ∈ Z(E, jk), then
i′k′a = ika = 0.

Let a ∈ ker j′ ⊂ D′. Let b ∈ D be an i-preimage of a, that is, ib = a.
Then j′a := jb and j′a = 0 means jb ∈ B(E, jk); this produces c ∈ E satisfying
jb = jkc; therefore b− kc ∈ ker j = im i which produces in turn d ∈ D satisfying
id = b− kc. Applying i to the last relation gives iid = ib− ikc = ib = a, in other
words a ∈ ii(D) = i(D′) = i′(D′). The relation ker j′ = im i′ is proved.

Let a ∈ ker k′ ⊂ E ′ = H(E, jk). If a ∈ Z(E, jk) represents the homology
class a, the relation ka = 0 is satisfied. The exactness of the initial exact couple
produces b ∈ D with jb = a; then c = ib ∈ D′ and j′c := jb = a = a. The relation
ker k′ = im j′ is proved.

Let a ∈ ker i′ ⊂ D′. On the one hand a = ib for some b ∈ D and on the other
hand ia = 0. The exactness of the initial exact couple produces c ∈ E with kc = a.
But c ∈ Z(E, jk), for jkc = ja = jib = 0, so that the homology class c is defined
and k′c = a. The relation ker i′ = im j′ is proved. ♣

7 Effective exact couples.

Definition 22 An effective exact couple is a 5-tuple (D,E, i, j, k):
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D D

E

i

jk

where:

• The component D is a locally effective subquotient.

• The component E is an effective Z-module.

• The components i, j and k are morphism modules, satisfying the exactness
properties usually required for exact couples under an effective form detailed
below.

Observe the very different natures of the D and E components. The E com-
ponent is the easiest: E is an “ordinary” effective module, in particular of finite
type, and “everything” about it can be easily deduced from the machine object
implementing it. On the contrary, the D component is only a locally effective
subquotient, the fuzziest sort of machine object in our environment. A fuzzy ob-
ject but which will be the key object allowing us to compute the related spectral
sequence.

The module D is a locally effective subquotient, represented by a triple
(D1, D2, f). The module morphism i is implemented as a f -coherent pair of mor-

phisms i1 : D1 → D1 and i2 : D2 → D2. In particular, if v
0→ x, then i1v

0→ i2x.

The morphism j : D → E is implemented as a morphism j2 : D2 → E;
this morphism must satisfy the coherence condition j2f = 0. The morphism k
is implemented as a map k2 : E → D2 which in general cannot be a module
morphism: the genuine morphism k : E → D in general cannot be lifted in a
module morphism E → D2.

We will see the fact k2 is not necessarily a module morphism is a real obstacle
when computing the derived exact couple of an effective exact couple. We can
decide once for all k20 = 0. But what about the compatibility of k2 with addition?
The solution is the following: we must assume an algorithm lk : E×E → D1 (lk =
legal k) is provided, satisfying the relation k2(a+b)−k2(a)−k2(b) = f(lk(a, b)) for
every a, b ∈ E. In other words, the algorithm lk is a certificate the map k : E → D
represented by the map k2 : E → D2 really is a module morphism.

The module E is of finite type and can be presented by a Z-resolution 0 ←
E ← E2 ← E1 ← 0 implicitly given by Definition 4. The morphism k can therefore
be organized as a pair of coherent morphisms E2 → D2 and E1 → D1 from which
k2 and lk are easily deduced. It is tempting to organize the whole work using also
analogous resolutions for D, but the standard result about a resolution of length 2
for every Z-module is not constructive in infinite dimension; this is the reason why
it seems impossible to avoid these technicalities.

The relation ji = 0 means that for every a ∈ D, the relation j2i2a = 0 is
satisfied. Because the image j2i2a ∈ E which is an effective module, no certificate
is necessary.
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The converse situation is quite different. If a ∈ D satisfies j2a = 0, then a
provided algorithm ee′ji : ker j2 → D2 × D1 : a 7→ (b, c) produces a “preimage”
b ∈ D2 (or ∈ D) and a certificate f(c) = a− i2b. Read ee′ji as “effective exactness
for ker j ⊂ im i”. It is not in general possible to directly require i2b = a.

The relation kj = 0 must be validated by a provided algorithm eekj : D2 → D1 :
a 7→ b satisfying fb = k2j2a: no reason the choice made for k2(ja) ∈ D when
defining k2 sends ja to 0; this would imply the relation “membership to im j” is
decidable, which is false in general. Read eekj as “effective exactness for ker k ⊃
im j”.

In the same way, an algorithm ee′kj : ker(k2	 f)→ D2 is provided. The source
is made of all the pairs (a, b) ∈ E × D1 satisfying k2a = fb. Then ee′kj(a, b) = c
satisfies j2c = a. This means that if “someone” provides a proof that ka = 0, then,
probably using this proof, an algorithm computes a j-preimage or more precisely
a representant for this preimage.

The reader has already guessed two other effectiveness algorithms are required.
On the one hand a map is provided eeik : E → D1 : a 7→ b, which satisfies fb = ika,
proving the relation 0 = ik : E → D. On the other hand, more complicated,
another map is provided ee′ik : ker(i 	 f) → E × D1 : (a, b) 7→ (c, d); the source
of this map is the type of pairs (a, b) ∈ D2 ×D1 satisfying i2a = fb; that is, the
element of D represented by i2a is proved null thanks to the provided certificate b;
then, probably using in particular this certificate, our algorithm knows how to
compute a k-preimage c for the element of D represented by a and also a certificate
d validating a = k2c modulo f(D1).

7.1 The graded and bigraded cases.

The most interesting exact couples are defined in a graded or bigraded context.
All the definitions and results must then be adapted in a simple way: consider
the situation for every degree (or bidegree) separately. For example the Bockstein
exact couple is graded, and D = ⊕Dn, E = ⊕En, the morphisms i and j have
degree 0 and the morphism k has degree -1.

Then you must consider E is an algorithm E : Z→ U such that for every n ∈ Z,
the image E(n) =: En is an effective module, and the same for the decomposition
of D in an infinite sum of locally effective subquotients. The definition of exact
couple is then easily adapted, and also the proof of the fundamental theorem of
the next section. Note in this case every En is required effective when E = ⊕En
in general is not.

The same in the bigraded case.

8 The fundamental theorem.

Theorem 23 — A general algorithm dec (derive exact couple) can be written
down:
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• Input: An effective exact couple (D,E,i,j,k).

• Output: The derived exact couple (D′, E ′, i′, j′, k′) also organized as an ef-
fective exact couple.

The output exact couple satisfies the same properties as the input exact couple,
and this algorithm can therefore be trivially iterated; a repetitive work which will
provide all the terms of the possibly associated spectral sequence. In particular
all the differentials of the spectral sequence can be deduced from the initial exact
couple.

♣ The component E ′ is the homology group of the differential module (E, jk)
with jk = j2k2 computable, a genuine module morphism, even if k2 is not. The
module E is effective, which allows to elementarily compute E ′ also as an effective
module, see Proposition 7.

The component D′ is defined as D′ := im i = ker j. The relation 0 = j2f :
D1 → E is satisfied, which implies im f ⊂ ker j2. Which implies in turn D′ := ker j
is also a locally effective subquotient defined by the triple D′� (D1, ker j2, f). As
already observed, the module E is effective and ker j2 is a locally effective module,
in particular a type.

The restriction i′2 of i2 : D2 → D2 to D′2 = ker j2 is sufficient to define i′, for
j2i2 = 0, without any certificate. We must keep the same i′1 := i1. We observe the
“fuzzy” module D is in fact rather convenient.

Let us construct now the morphism j′, that is a morphism j′2 : ker j2 → E ′.
If a ∈ D′2 = ker j2 represents a ∈ D′, we know a ∈ ker j2 and the algorithm ee′ji
computes (b, c) ∈ D2 × D1 satisfying fc = a − i2b. In particular the equivalence
class b of b satisfies ib = a. The j2-image of b is the j-image of b, and it is
necessarily a cycle of the differential module (E, kj), the homology class j2b ∈ E ′
of this cycle being elementarily computable, for the module E is effective. We
obtain in this way an algorithm a 7→ j2b which is the desired j′2 implementing the
genuine j′ : D′ → E ′.

Constructing k′ : E ′ → D′, that is, k′2 : E ′ → D′2 is more direct. Given a
homology class a ∈ E ′ := H(E, jk), because the differential module (E, jk) is
effective, an elementary algorithm can produce a cycle a ∈ (E, jk) representing
this homology class. In particular j2k2a = 0 and k2a ∈ ker j2 = D′2. Then
k′2a := k2a is appropriately defined.

The main ingredients of the derived couple are constructed, and there remains
to verify this derived couple is also effective.

Constructing ee′j′i′ . Let a ∈ D′2 satisfying j′2a = 0. Necessarily, a ∈ ker j2.
Using the effectiveness algorithm ee′ji, we obtain a pair (b, c) ∈ D2×D1 satisfying
i2b = a − fc and j′2a is the homology class of the cycle j2b which therefore is
a boundary. The differential module (E, jk) is effective, and we can elementarily
compute a preimage d of j2b for the boundary operator jk; in other words, j2k2d =
j2b and b − k2d ∈ ker j2 = D′2 is a good candidate. Let us examine i′2(b − k2d) =
i2b− i2k2d = a−fc− i2k2d. The algorithm eeik applied to d produces e ∈ D1 = D′1
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satisfying fe = i2k2d, so that finally i′2(b − k2d) = a − f(c + e). The algorithm
ker j′2 → D′2 ×D′1 : a 7→ (b− k2d, c+ e) is a solution for ee′j′i′ .

Constructing eek′j′ . Let a ∈ D′2 = ker j2. We must be able to certify k′2j
′
2a ∈

f(D′1) = f(D1). The construction of j′2a uses (b, c) ∈ D2×D1 satisfying i2b = a−fc
and then j′2a is the homology class of j2b in (E, jk). Applying k′2 to this class has
been previously done by choosing a cycle d representing this homology class, not
necessarily the cycle j2b, and k′2j

′
2a = k2d which is to be proved in f(D1). The

cycles j2b and d are homologous and we can elementarily compute e ∈ E satisfying
j2k2e = d−j2b. So that k2d = k2(j2b+(d−j2b)) = k2(j2b+j2k2e) = k2j2(b+k2e) and
the vanishing certificate for the last element provided by the initial exact couple
is a valid certificate for the derived one: we may choose eek′j′(a) := eekj(b + k2e).
The fact k2 is not a morphism was not here an obstacle.

Constructing ee′k′j′ . Let a ∈ H(E, kj) represented by a ∈ Z(E, jk) and b ∈ D1

a vanishing certificate for k2a ∈ D′ representing 0 = k′a ∈ D′. Me must find
a j′-preimage for a. The effectiveness algorithm eekj produces c ∈ D2 satisfying
j2c = a. Then the element d = i2c is in im i2 ⊂ ker j2 = D′2 and it is clear that
j′2d = a.

Constructing eei′k′ . If a ∈ H(E, jk) is represented by the cycle a ∈ Z(E, jk),
then i′2k

′
2a := i2k2a. The vanishing certificate for the last element provided by the

initial exact couple can be used as well for the derived exact couple.

Constructing ee′i′k′ . Let a ∈ D′2 = ker j2 and b ∈ D1 a certificate satisfying
i′2a := i2a = fb. We must find a k′2-pseudo-preimage c ∈ E ′ for a and a certificate
in D1 proving k′2c = a modulo this certificate. The initial effectiveness algorithm
ee′ik produces c ∈ E and d ∈ D1 satisfying k2c = a+fd. Then c is a cycle in (E, jk),
for j2k2c = j2(a+fd) = 0. The homology class c of the cycle c is a good candidate
for the wished homology class. But computing k′2c consists in choosing a cycle c′,
often different from c, and k′2c := k2c

′. The cycles c and c′ are homologous and an
element e ∈ E can be produced satisfying c′ − c = j2k2e. An obvious calculation
gives a − k′2c = a − k2c

′ = a − k2(c + (c′ − c)) = a − (k2c + k2(c
′ − c) + fe′) =

(a− k2c) + k2j2k2e+ fe′ and the three summands of the last term can be certified
as elements of f(D1). In particular e′ has been produced by the algorithm lk of
the initial exact couple to correct the fact that k2 is not necessarily compatible
with addition.

Constructing lk′. Let a ∈ E ′ (resp. a′ ∈ E ′). Computing k′2(a + a′) (resp.
k′2a, k′2a

′) is made through choices of cycles of (E, jk), resp. a′′, a and a′. The
relation a′′ = a+a′ is in general not satisfied, let us call a′′′ the error a′′′ = a′′−a−a′.
The homology class of a′′′ in the differential module (E, jk) is null and a′′′ = j2k2b
for a computable b ∈ E. Then, using eekj, we obtain c ∈ D1 satisfying fc = k2a

′′′.
Using now the lk component of the initial exact couple, we successively find out
the elements c′, c′′ ∈ D1 justifying the calculation: k′2(a + a′) − k′2(a) − k′2(a′) =
k2(a

′′)− k2(a)− k2(a
′) = k2(a

′′′ + a+ a′))− k2(a)− k2(a
′) = k2(a

′′′) + k2(a+ a′) +
f(c′) − k2(a) − k2(a

′) = f(c) + f(c′) + f(c′′) = f(c + c′ + c′′). We can therefore
define lk′(a, a′) = c+ c′ + c′′. ♣
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9 The didactic example of bicomplexes.

[See [14, pp. 19-21].]

10 The Bockstein spectral sequence.

11 Solving extension problems at abutment.
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